Наилучшее и наилучшее односторонее приближения ядра бигармонического уравнения и оптимальное восстановление значений операторов
Для класу Bρp,0≤ρ<1,1≤p≤∞, 2π-періодичних функцій вигляду f(t)=u(ρ,t), де (ρ,t)— бігармонічна функція в одиничному колі, знайдено точні значення найкращого та найкращого односторонього наближень ядра Kρ(t) згортки f=Kρ∗g,∥g∥ρ≤l у метриці L1. Розглянута задача відновлення значень оператора згортки...
Saved in:
Date: | 1995 |
---|---|
Main Author: | |
Format: | Article |
Language: | Russian |
Published: |
Інститут математики НАН України
1995
|
Series: | Український математичний журнал |
Subjects: | |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/164467 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Наилучшее и наилучшее односторонее приближения ядра бигармонического уравнения и оптимальное восстановление значений операторов / М.Ш. Шабозов // Український математичний журнал. — 1995. — Т. 47, № 11. — С. 1549–1557. — Бібліогр.: 6 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSummary: | Для класу Bρp,0≤ρ<1,1≤p≤∞, 2π-періодичних функцій вигляду f(t)=u(ρ,t), де (ρ,t)— бігармонічна функція в одиничному колі, знайдено точні значення найкращого та найкращого односторонього наближень ядра Kρ(t) згортки f=Kρ∗g,∥g∥ρ≤l у метриці L1. Розглянута задача відновлення значень оператора згортки згідно з інформацією про значення граничних функцій. |
---|