Periodic boundary-value problem for third-order linear functional differential equations

Gespeichert in:
Bibliographische Detailangaben
Datum:2008
1. Verfasser: Hakl, R.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2008
Schriftenreihe:Український математичний журнал
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/164492
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Periodic boundary-value problem for third-order linear functional differential equations / R. Hakl // Український математичний журнал. — 2008. — Т. 60, № 3. — С. 413–425. — Бібліогр.: 20 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-164492
record_format dspace
spelling irk-123456789-1644922020-02-10T01:28:43Z Periodic boundary-value problem for third-order linear functional differential equations Hakl, R. Статті 2008 Article Periodic boundary-value problem for third-order linear functional differential equations / R. Hakl // Український математичний журнал. — 2008. — Т. 60, № 3. — С. 413–425. — Бібліогр.: 20 назв. — англ. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/164492 517.9 en Український математичний журнал Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Статті
Статті
spellingShingle Статті
Статті
Hakl, R.
Periodic boundary-value problem for third-order linear functional differential equations
Український математичний журнал
format Article
author Hakl, R.
author_facet Hakl, R.
author_sort Hakl, R.
title Periodic boundary-value problem for third-order linear functional differential equations
title_short Periodic boundary-value problem for third-order linear functional differential equations
title_full Periodic boundary-value problem for third-order linear functional differential equations
title_fullStr Periodic boundary-value problem for third-order linear functional differential equations
title_full_unstemmed Periodic boundary-value problem for third-order linear functional differential equations
title_sort periodic boundary-value problem for third-order linear functional differential equations
publisher Інститут математики НАН України
publishDate 2008
topic_facet Статті
url http://dspace.nbuv.gov.ua/handle/123456789/164492
citation_txt Periodic boundary-value problem for third-order linear functional differential equations / R. Hakl // Український математичний журнал. — 2008. — Т. 60, № 3. — С. 413–425. — Бібліогр.: 20 назв. — англ.
series Український математичний журнал
work_keys_str_mv AT haklr periodicboundaryvalueproblemforthirdorderlinearfunctionaldifferentialequations
first_indexed 2025-07-14T17:02:23Z
last_indexed 2025-07-14T17:02:23Z
_version_ 1837642593791377408
fulltext UDС 517.9 R. Hakl (Math. Inst. Acad. Sci. Czech Republic, Brno) PERIODIC BOUNDARY-VALUE PROBLEM FOR THIRD ORDER LINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS* ПЕРIОДИЧНА ГРАНИЧНА ЗАДАЧА ДЛЯ ЛIНIЙНИХ ФУНКЦIОНАЛЬНО-ДИФЕРЕНЦIАЛЬНИХ РIВНЯНЬ ТРЕТЬОГО ПОРЯДКУ For the linear functional differential equation of the third order u′′′(t) = `(u)(t) + q(t), theorems on the existence and uniqueness of a solution satisfying the conditions u(i)(0) = u(i)(ω), i = 0, 1, 2, are established. Here, ` is a linear continuous operator transforming the space C ( [0, ω]; R ) into the space L ( [0, ω]; R ) , and q ∈ L ( [0, ω]; R ) . The question on the nonnegativity of a solution of the considered boundary-value problem is also studied. Для лiнiйного функцiонально-диференцiального рiвняння третього порядку u′′′(t) = `(u)(t) + q(t) встановлено теореми про iснування та єдинiсть розв’язку, що задовольняє умови u(i)(0) = u(i)(ω), i = 0, 1, 2. Тут ` є лiнiйним неперервним оператором, що трансформує простiр C ( [0, ω]; R ) у простiр L ( [0, ω]; R ) , а q ∈ L ( [0, ω]; R ) . Також розглянуто питання про невiд’ємнiсть розв’язку розглядуваної граничної задачi. Introduction. Consider the linear functional differential equation u′′′(t) = `(u)(t) + q(t), (0.1) where ` : C ( [0, ω];R ) → L ( [0, ω];R ) is a linear continuous operator and q ∈ L ( [0, ω];R ) . By a solution of the equation (0.1) we understand a function u : [0, ω] → R, which is absolutely continuous together with its first and second derivatives and satisfies the equation (0.1) almost everywhere in [0, ω]. The following notation will be made use of: R = ]−∞,+∞[ , R+ = [0, +∞[ , [x]+ = 1 2 (|x|+ x), [x]− = 1 2 (|x| − x); C ( [0, ω];R ) is a Banach space of continuous functions u : [0, ω] → R with the norm ‖u‖C = max { |u(t)| : t ∈ [0, ω] } ; C̃2 ( [0, ω];R ) is a set of functions u : [0, ω] → R which are absolutely continuous together with their first and second derivatives; *The research was supported by the Academy of Sciences of the Czech Republic, Institutional Research Plan No. AV0Z10190503 and the Grant No. 201/06/0254 of the Grant Agency of the Czech Republic. c© R. HAKL, 2008 ISSN 1027-3190. Укр. мат. журн., 2008, т. 60, № 3 413 414 R. HAKL L ( [0, ω];R ) is a Banach space of Lebesgue integrable functions p : [0, ω] → R with the norm ‖p‖L = ω∫ 0 |p(s)|ds; P is a set of linear nondecreasing operators ` : C ( [0, ω];R ) → L ( [0, ω];R ) , i.e., such linear operators that `(u)(t) ≥ 0 for t ∈ [0, ω] whenever u(t) ≥ 0 for t ∈ [0, ω]. The equalities and inequalities between functions are understood almost everywhere in an appropriate interval. In the present paper, we investigate the question on the existence, uniqueness, and nonnegativity of a solution of the equation (0.1) satisfying the boundary conditions u(i)(0) = u(i)(ω), i = 0, 1, 2. (0.2) The periodic boundary-value problem for higher order ordinary differential equations has been investigated by many authors (see, e.g., [1 – 11] and references therein). Note that in [5], unlike the earlier known results, there are investigated, among others, the existence and uniqueness of an ω-periodic solution of the nonautonomous ordinary differential equation u(n) = n∑ k=1 pk(t)u(k−1) + q(t) without the requirement on the function p1 to be of constant sign. In this paper we improve the result of [5] for n = 3 and pk ≡ 0, k = 2, 3, in a certain way (see Corollary 1.1). For functional differential equations, one can name only a few papers devoted to the study of the periodic boundary-value problem (see, e.g., [12 – 16]). The paper is organized as follows. In Section 1, theorems on the existence and uniqueness, as well as on the nonnegativity, of a solution of (0.1), (0.2) are established. Sections 2 and 3 are devoted to the proofs of the main results and examples showing their optimality, respectively. All the results will be concretized for the differential equation with deviating argument of the form u′′′(t) = p(t)u(τ(t)) + q(t), (0.3) where p, q ∈ L ( [0, ω];R ) and τ : [0, ω] → [0, ω] is a measurable function. Together with the equation (0.1) we will consider the corresponding homogeneous equation u′′′(t) = `(u)(t). (0.4) From the general theory of boundary-value problems for linear functional differential equations, the following theorem is well-known (see [17], for equations with regular operators see, e.g., [18, 19]). Theorem 0.1. The problem (0.1), (0.2) is uniquely solvable if and only if the corresponding homogeneous problem (0.4), (0.2) has only a trivial solution. ISSN 1027-3190. Укр. мат. журн., 2008, т. 60, № 3 PERIODIC BOUNDARY-VALUE PROBLEM FOR THIRD ORDER LINEAR FUNCTIONAL ... 415 1. Main results. Theorem 1.1. Let the operator ` admit the representation ` = `0 − `1, where `0, `1 ∈ P. Let, moreover, i ∈ {0, 1}, and ω∫ 0 `0(1)(s)ds + ω∫ 0 `1(1)(s)ds 6= 0, (1.1) ω∫ 0 `i(1)(s)ds < 32 ω2 , (1.2) ∫ ω 0 `i(1)(s)ds 1− ω2 32 ∫ ω 0 `i(1)(s)ds ≤ ω∫ 0 `1−i(1)(s)ds, (1.3) ω∫ 0 `1−i(1)(s)ds ≤ 64 ω2 1 + √√√√√1− ω2 32 ω∫ 0 `i(1)(s)ds . (1.4) Then the problem (0.1), (0.2) has a unique solution. The following two assertions immediately follow from Theorem 1.1. Corollary 1.1. Let p 6≡ 0, and either ω∫ 0 [p(s)]+ds < 32 ω2 , ∫ ω 0 [p(s)]+ds 1− ω2 32 ∫ ω 0 [p(s)]+ds ≤ ω∫ 0 [p(s)]−ds ≤ 64 ω2 1 + √√√√√1− ω2 32 ω∫ 0 [p(s)]+ds , or ω∫ 0 [p(s)]−ds < 32 ω2 , ∫ ω 0 [p(s)]−ds 1− ω2 32 ∫ ω 0 [p(s)]−ds ≤ ω∫ 0 [p(s)]+ds ≤ 64 ω2 1 + √√√√√1− ω2 32 ω∫ 0 [p(s)]−ds . Then the problem (0.3), (0.2) has a unique solution. ISSN 1027-3190. Укр. мат. журн., 2008, т. 60, № 3 416 R. HAKL Corollary 1.2. Let σp(t) ≥ 0 for t ∈ [0, ω], where σ ∈ {−1, 1}, and 0 < ω∫ 0 ∣∣p(s) ∣∣ds ≤ 128 ω2 . Then the problem (0.3), (0.2) has a unique solution. Remark 1.1. The inequality ω∫ 0 ∣∣p(s) ∣∣ds ≤ 128 ω2 in Corollary 1.2 is optimal and it cannot be weakened (see Example 3.1 in Section 3). Theorem 1.2. Let q(t) ≥ 0 for t ∈ [0, ω] and let the operator ` admit the representation ` = `0 − `1, where `0, `1 ∈ P. Let, moreover, i ∈ {0, 1}, the conditi- ons (1.1) – (1.3) be fulfilled, and ω∫ 0 `1−i(1)(s)ds ≤ 32 ω2 . (1.5) Then the problem (0.1), (0.2) has a unique solution u, and (−1)iu(t) ≥ 0 for t ∈ [0, ω]. (1.6) Theorem 1.2 implies the following three assertions. Corollary 1.3. Let q(t) ≥ 0 for t ∈ [0, ω], p 6≡ 0, and ω∫ 0 [p(s)]+ds < 32 ω2 , ∫ ω 0 [p(s)]+ds 1− ω2 32 ∫ ω 0 [p(s)]+ds ≤ ω∫ 0 [p(s)]−ds ≤ 32 ω2 . Then the problem (0.3), (0.2) has a unique solution, and this solution is nonnegative. Corollary 1.4. Let q(t) ≥ 0 for t ∈ [0, ω], p 6≡ 0, and ω∫ 0 [p(s)]−ds < 32 ω2 , ∫ ω 0 [p(s)]−ds 1− ω2 32 ∫ ω 0 [p(s)]−ds ≤ ω∫ 0 [p(s)]+ds ≤ 32 ω2 . Then the problem (0.3), (0.2) has a unique solution, and this solution is nonpositive. ISSN 1027-3190. Укр. мат. журн., 2008, т. 60, № 3 PERIODIC BOUNDARY-VALUE PROBLEM FOR THIRD ORDER LINEAR FUNCTIONAL ... 417 Corollary 1.5. Let q(t) ≥ 0, σp(t) ≥ 0 for t ∈ [0, ω], where σ ∈ {−1, 1}, and 0 < ω∫ 0 |p(s)|ds ≤ 32 ω2 . Then the problem (0.3), (0.2) has a unique solution u, and the function σu is nonpositive. Remark 1.2. The inequality ω∫ 0 ∣∣p(s) ∣∣ds ≤ 32 ω2 in Corollary 1.5 is optimal and it cannot be weakened (see Example 3.2 in Section 3). 2. Proofs. To prove Theorems 1.1 and 1.2, we will need the following two lemmas. Lemma 2.1 can be found in [20] in more general form. Lemma 2.1. Let u ∈ C̃2 ( [0, ω];R ) be a nonconstant function satisfying (0.2). Then M0 −m0 < ω2 32 (M2 −m2), (2.1) where Mi = max { u(i)(t) : t ∈ [0, ω] } , mi = min { u(i)(t) : t ∈ [0, ω] } , i = 0, 2. Proof. It is obvious that M2 > 0, m2 < 0, M0 −m0 > 0. Put v(t) = u(t) for t ∈ [0, ω], u(t− ω) for t ∈ ]ω, 2ω]. Then, obviously, there exist a ∈ [0, ω[ and c ∈ ]a, a + ω[ such that v(a) = m0, v(c) = M0. The integration by parts on [a, c] yields M0 −m0 = 1 2 c∫ a [ (c− s)(s− a) ]′ v′′(s)ds, whence, in view of the continuity of v′′, we get M0 −m0 < 1 2 M2 a+c 2∫ a [(c− s)(s− a)]′ds + m2 c∫ a+c 2 [(c− s)(s− a)]′ds  = = (c− a)2 8 (M2 −m2). (2.2) ISSN 1027-3190. Укр. мат. журн., 2008, т. 60, № 3 418 R. HAKL Analogously, on the interval [c, a + ω] we obtain M0 −m0 < (a + ω − c)2 8 (M2 −m2). (2.3) Therefore, multiplying the corresponding sides of the inequalities (2.2) and (2.3), on account of the fact that 4AB ≤ (A + B)2, we have that (2.1) holds. The lemma is proved. Lemma 2.2. Let the operator ` admit the representation ` = `0 − `1, where `0, `1 ∈ P. Let, moreover, i ∈ {0, 1} and (1.1) – (1.3) be fulfilled. Then every nontrivial function u ∈ C̃2 ( [0, ω];R ) satisfying (0.2) and (−1)iu′′′(t) ≥ (−1)i`(u)(t) for t ∈ [0, ω], (2.4) assumes positive values. Proof. Assume on the contrary that there exists a nontrivial nonpositive function u ∈ C̃2 ( [0, ω];R ) satisfying (0.2) and (2.4). First we will show that u is not a constant function. Indeed, supposing u(t) = = const < 0 for t ∈ [0, ω], the integration of (2.4) from 0 to ω yields ω∫ 0 `1−i(1)(s)ds ≤ ω∫ 0 `i(1)(s)ds, which contradicts (1.1) and (1.3). Now put M0 = max { |u(t)| : t ∈ [0, ω] } , m0 = min { |u(t)| : t ∈ [0, ω] } , (2.5) M2 = max { u′′(t) : t ∈ [0, ω] } , m2 = −min { u′′(t) : t ∈ [0, ω] } , (2.6) and choose t1, t2 ∈ [0, ω] such that u′′(t1) = M2, u′′(t2) = −m2. (2.7) Obviously, M0 > 0, m0 ≥ 0, M2 > 0, m2 > 0, (2.8) and either t1 < t2 (2.9) or t1 > t2. (2.10) Let (2.9) hold. Then the integration of (2.4) from 0 to t1, from t1 to t2, and from t2 to ω, respectively, on account of (2.5), (2.7), (2.8), and the assumption `0, `1 ∈ P, results in (−1)i(M2 − u′′(0)) ≥ (−1)i t1∫ 0 `(u)(s)ds ≥ −M0 t1∫ 0 `i(1)(s)ds, (2.11) ISSN 1027-3190. Укр. мат. журн., 2008, т. 60, № 3 PERIODIC BOUNDARY-VALUE PROBLEM FOR THIRD ORDER LINEAR FUNCTIONAL ... 419 (−1)i(−m2 −M2) ≥ (−1)i t2∫ t1 `(u)(s)ds ≥ −M0 t2∫ t1 `i(1)(s)ds, (2.12) (−1)i(u′′(ω) + m2) ≥ (−1)i ω∫ t2 `(u)(s)ds ≥ −M0 ω∫ t2 `i(1)(s)ds. (2.13) If i = 0, then from (2.12) we get M2 + m2 ≤ M0 ω∫ 0 `0(1)(s)ds. If i = 1, then from (2.11) and (2.13), in view of (0.2), we obtain M2 + m2 ≤ M0  t1∫ 0 `1(1)(s)ds + ω∫ t2 `1(1)(s)ds  ≤ M0 ω∫ 0 `1(1)(s)ds. Consequently, we have M2 + m2 ≤ M0 ω∫ 0 `i(1)(s)ds. (2.14) Analogously one can show that (2.14) is satisfied also in the case when (2.10) holds. Thus, in both cases (2.9) and (2.10), the inequality (2.14) holds and, according to Lemma 2.1, from (2.14) we get M0 −m0 < ω2 32 M0 ω∫ 0 `i(1)(s)ds. (2.15) On the other hand, the integration of (2.4) from 0 to ω, by virtue of (0.2), (2.5), and the assumption `0, `1 ∈ P, yields m0 ω∫ 0 `1−i(1)(s)ds ≤ M0 ω∫ 0 `i(1)(s)ds. (2.16) From (1.1) and (1.3) it follows that ∫ ω 0 `1−i(1)(s)ds 6= 0, and thus (2.15) results in (M0 −m0) ω∫ 0 `1−i(1)(s)ds < ω2 32 M0 ω∫ 0 `i(1)(s)ds ω∫ 0 `1−i(1)(s)ds. (2.17) Now, using (2.16) in (2.17), on account of (2.8), we have ω∫ 0 `1−i(1)(s)ds− ω∫ 0 `i(1)(s)ds < ω2 32 ω∫ 0 `i(1)(s)ds ω∫ 0 `1−i(1)(s)ds, which, in view of (1.2), contradicts (1.3). The lemma is proved. ISSN 1027-3190. Укр. мат. журн., 2008, т. 60, № 3 420 R. HAKL Proof of Theorem 1.1. According to Theorem 0.1 it is sufficient to show that the problem (0.4), (0.2) has only a trivial solution. Suppose on the contrary that there exists a nontrivial solution u of (0.4), (0.2). Then, according to Lemma 2.2, u assumes both positive and negative values. Put M0 = max { u(t) : t ∈ [0, ω] } , m0 = −min { u(t) : t ∈ [0, ω] } , (2.18) and define numbers M2 and m2 by (2.6). Choose t1, t2 ∈ [0, ω] such that (2.7) holds. Obviously, M0 > 0, m0 > 0, M2 > 0, m2 > 0, (2.19) and without loss of generality we can assume that (2.9) hold. The integration of (0.4) from 0 to t1, from t1 to t2, and from t2 to ω, respectively, in view of (2.7), (2.18), (2.19), and the assumption `0, `1 ∈ P, yields M2 − u′′(0) ≤ M0 t1∫ 0 `0(1)(s)ds + m0 t1∫ 0 `1(1)(s)ds, (2.20) M2 + m2 ≤ m0 t2∫ t1 `0(1)(s)ds + M0 t2∫ t1 `1(1)(s)ds, (2.21) u′′(ω) + m2 ≤ M0 ω∫ t2 `0(1)(s)ds + m0 ω∫ t2 `1(1)(s)ds. (2.22) If we sum the corresponding sides of (2.20) and (2.22), on account of (0.2), we get M2 + m2 ≤ M0 ∫ I `0(1)(s)ds + m0 ∫ I `1(1)(s)ds, (2.23) where I = [0, t1] ∪ [t2, ω]. According to Lemma 2.1, from (2.21) and (2.23) we obtain M0 + m0 < ω2 32 ( m0A0 + M0A1 ) , (2.24) M0 + m0 < ω2 32 ( m0B1 + M0B0 ) , (2.25) where A0 = t2∫ t1 `0(1)(s)ds, A1 = t2∫ t1 `1(1)(s)ds, (2.26) B0 = ∫ I `0(1)(s)ds, B1 = ∫ I `1(1)(s)ds. (2.27) If i = 0, then from (2.24) and (2.25), in view of (1.2) and (2.19), we get ISSN 1027-3190. Укр. мат. журн., 2008, т. 60, № 3 PERIODIC BOUNDARY-VALUE PROBLEM FOR THIRD ORDER LINEAR FUNCTIONAL ... 421 0 < m0 ( 1− ω2 32 A0 ) < M0 ( ω2 32 A1 − 1 ) , (2.28) 0 < M0 ( 1− ω2 32 B0 ) < m0 ( ω2 32 B1 − 1 ) , (2.29) whence we obtain( 1− ω2 32 A0 ) ( 1− ω2 32 B0 ) < ( ω2 32 A1 − 1 ) ( ω2 32 B1 − 1 ) . If i = 1, then from (2.24) and (2.25), in view of (1.2) and (2.19), we get 0 < M0 ( 1− ω2 32 A1 ) < m0 ( ω2 32 A0 − 1 ) , (2.30) 0 < m0 ( 1− ω2 32 B1 ) < M0 ( ω2 32 B0 − 1 ) , (2.31) whence we obtain( 1− ω2 32 A1 ) ( 1− ω2 32 B1 ) < ( ω2 32 A0 − 1 ) ( ω2 32 B0 − 1 ) . Consequently, we have( 1− ω2 32 Ai ) ( 1− ω2 32 Bi ) < ( ω2 32 A1−i − 1 ) ( ω2 32 B1−i − 1 ) . (2.32) On the other hand, on account of (2.26) and (2.27), using the inequality 4AB ≤ ≤ (A + B)2, we find ( 1− ω2 32 Ai ) ( 1− ω2 32 Bi ) ≥ 1− ω2 32 ω∫ 0 `i(1)(s)ds, (2.33) ( ω2 32 A1−i − 1 ) ( ω2 32 B1−i − 1 ) ≤ 1 4 ω2 32 ω∫ 0 `1−i(1)(s)ds− 2 2 . (2.34) Now, using (2.33) and (2.34) in (2.32), we get 1− ω2 32 ω∫ 0 `i(1)(s)ds < 1 4 ω2 32 ω∫ 0 `1−i(1)(s)ds− 2 2 . (2.35) Moreover, from (2.28) – (2.31), by virtue of (2.19), (2.26), and (2.27), we have ω2 32 ω∫ 0 `1−i(1)(s)ds ≥ ω2 32 ( A1−i + B1−i ) > 2. (2.36) Therefore, the inequality (2.35), on account of (1.2) and (2.36), contradicts (1.4). The theorem is proved. ISSN 1027-3190. Укр. мат. журн., 2008, т. 60, № 3 422 R. HAKL Proof of Theorem 1.2. According to Theorem 1.1, the problem (0.1), (0.2) has a unique solution u. It is sufficient to show that (1.6) holds. Suppose the contrary, that there exists t0 ∈ [0, ω] such that (−1)iu(t0) < 0. Then, according to Lemma 2.2, the function u assumes both positive and negative values. Define numbers M0, m0, M2, and m2 by (2.18) and (2.6), respectively, and choose t1, t2 ∈ [0, ω] such that (2.7) is fulfilled. Obviously, (2.19) holds. Let (2.9) be satisfied. Then the integration of (0.1) from t1 to t2, in view of (2.7), (2.18), and the assumptions `0, `1 ∈ P and q(t) ≥ 0 for t ∈ [0, ω], results in m2 + M2 = − t2∫ t1 (`(u)(s) + q(s))ds ≤ ≤ m0 ω∫ 0 `0(1)(s)ds + M0 ω∫ 0 `1(1)(s)ds. Let (2.10) be satisfied. Then the integration of (0.1) from 0 to t2 and from t1 to ω, respectively, in view of (2.7), (2.18), and the assumptions `0, `1 ∈ P and q(t) ≥ 0 for t ∈ [0, ω], yields m2 + u′′(0) = − t2∫ 0 (`(u)(s) + q(s))ds ≤ ≤ m0 t2∫ 0 `0(1)(s)ds + M0 t2∫ 0 `1(1)(s)ds, M2 − u′′(ω) = − ω∫ t1 (`(u)(s) + q(s))ds ≤ ≤ m0 ω∫ t1 `0(1)(s)ds + M0 ω∫ t1 `1(1)(s)ds. If we sum the corresponding sides of the last two inequalities, on account of (0.2) we obtain m2 + M2 ≤ m0 ω∫ 0 `0(1)(s)ds + M0 ω∫ 0 `1(1)(s)ds. (2.37) Thus, in both cases (2.9) and (2.10) we have (2.37). Now, according to Lemma 2.1, the inequality (2.37) results in M0 + m0 < ω2 32 m0 ω∫ 0 `0(1)(s)ds + M0 ω∫ 0 `1(1)(s)ds , whence, on account of (1.2) and (1.5), we get a contradiction M0 + m0 < M0 + m0. The theorem is proved. ISSN 1027-3190. Укр. мат. журн., 2008, т. 60, № 3 PERIODIC BOUNDARY-VALUE PROBLEM FOR THIRD ORDER LINEAR FUNCTIONAL ... 423 3. Examples. Example 3.1. Let σ ∈ {−1, 1}, ε > 0 be arbitrary, and choose k ∈ ]0, 1] and d ∈ ]0, 1/4[ such that 384/((3− 16d2)k) = 128 + ε. Put x(t) =  96 (3− 16d2)kd t for t ∈ [0, d[, 96 (3− 16d2)k for t ∈ [d, 1/2− d[, 96 (3− 16d2)kd (1/2− t) for t ∈ [1/2− d, 1/2 + d[, − 96 (3− 16d2)k for t ∈ [1/2 + d, 1− d[, 96 (3− 16d2)kd (t− 1) for t ∈ [1− d, 1] and u(t) = −(1− t) t∫ 0 sx(s)ds− t 1∫ t (1− s)x(s)ds. Then the function u satisfies the conditions (0.2) with ω = 1, and u(3/4) = −u(1/4) = = 1/k. Therefore we can choose t0, t1 ∈ [0, 1] such that u(t0) = σ, u(t1) = −σ. Obviously, u is a nontrivial solution of the problem u′′′(t) = p(t)u(τ(t)), u(i)(0) = u(i)(1), i = 0, 1, 2, with p(t) df= σ|x′(t)| for t ∈ [0, ω], τ(t) df= t0 for t ∈ [0, 1/4[∪ [3/4, 1], t1 for t ∈ [1/4, 3/4[. On the other hand, σp(t) ≥ 0 for t ∈ [0, ω] and 1∫ 0 |p(s)|ds = 4 · 96 (3− 16d2)k = 128 + ε. Example 3.2. Let σ ∈ {−1, 1}, ε > 0 be arbitrary, and choose k ∈ ]0, 1[ and d ∈ ]0, 1/4[ such that 96/ ( (3− 16d2)k ) = 32 + ε. Put ISSN 1027-3190. Укр. мат. журн., 2008, т. 60, № 3 424 R. HAKL x(t) =  48 (3− 16d2)kd t for t ∈ [0, d[, 48 (3− 16d2)k for t ∈ [d, 1/2− d[, 48 (3− 16d2)kd (1/2− t) for t ∈ [1/2− d, 1/2 + d[, − 48 (3− 16d2)k for t ∈ [1/2 + d, 1− d[, 48 (3− 16d2)kd (t− 1) for t ∈ [1− d, 1] and u(t) = −σ 2 − (1− t) t∫ 0 sx(s)ds− t 1∫ t (1− s)x(s)ds. Then the function u satisfies the conditions (0.2) with ω = 1, and u(1/4) = −σ/2 − − 1/(2k) < −(σ + 1)/2, u(3/4) = −σ/2 + 1/(2k) > (1 − σ)/2. Therefore we can choose t0 ∈ [0, 1] such that u(t0) = −σ. Obviously, u assumes both positive and negative values and u is a solution of the problem u′′′(t) = p(t)u(t0) + q(t), u(i)(0) = u(i)(1), i = 0, 1, 2, with p(t) df= σ[x′(t)]−, q(t) df= [x′(t)]+ for t ∈ [0, ω]. On the other hand, q(t) ≥ 0, σp(t) ≥ 0 for t ∈ [0, ω], and 1∫ 0 |p(s)|ds = 2 · 48 (3− 16d2)k = 32 + ε. 1. Baslandze S. R., Kiguradze I. T. On the unique solvability of a periodic boundary value problem for third-order linear differential equations // Differents. Uravneniya. – 2006. – 42, № 2. – P. 153 – 158. 2. Cabada A. The method of lower and upper solutions for second, third, fourth, and higher order boundary value problems // J. Math. Anal. and Appl. – 1994. – 185. – P. 302 – 320. 3. Cabada A. The method of lower and upper solutions for third order periodic boundary value problems // Ibid. – 1995. – 195. – P. 568 – 589. 4. Gegelia G. T. On boundary value problems of periodic type for ordinary odd order differential equations // Arch. Math. – 1984. – 4. – P. 195 – 204. 5. Kiguradze I. On periodic solutions of n-th order ordinary differential equations // Nonlinear Anal.: Theory, Meth. and Appl. – 2000. – 40. – P. 309 – 321. 6. Kiguradze I. T., Kusano T. On periodic solutions of higher order nonautonomous ordinary differential equations // Differents. Uravneniya. – 1999. – 35, № 1. – P. 72 – 78. 7. Lasota A., Opial Z. Sur les solutions périodiques des équations différentielles ordinaires // Ann. polon. math. – 1964. – 16. – P. 69 – 94. 8. Lasota A., Szafraniec F. H. Sur les solutions périodiques d’une équation différentielle ordinaire d’ordre n // Ibid. – 1966. – 18. – P. 339 – 344. 9. Nieto J. J. Periodic solutions for third order ordinary differential equations // Comment. math. Univ. carol. – 1991. – 32, № 3. – P. 495 – 499. ISSN 1027-3190. Укр. мат. журн., 2008, т. 60, № 3 PERIODIC BOUNDARY-VALUE PROBLEM FOR THIRD ORDER LINEAR FUNCTIONAL ... 425 10. Omari P., Trombetta M. Remarks on the lower and upper solutions method for second- and third-order periodic boundary value problems // Appl. Math. Comput. – 1992. – 50, № 1. – P. 1 – 21. 11. Villari G. Soluzioni periodiche di una classe di equazioni differenziali del terz’ordine quasi lineari // Ann. mat. pura ed appl. – 1966. – 73, № 4. – P. 103 – 110. 12. Lomtatidze A., Mukhigulashvili S. On periodic solutions of second order functional differential equations // Mem. Different. Equat. Math. Phys. – 2004. – 5. – P. 125 – 126. 13. Mukhigulashvili S. On a periodic boundary value problem for second-order linear functional di- fferential equations // Boundary Value Problems. – 2005. – № 3. – P. 247 – 261. 14. Mukhigulashvili S., P◦uža B. On a periodic boundary value problem for third order linear functional differential equations // Funct. Different. Equat. (to appear). 15. Ronto A. N. On the periods of periodic motions in autonomous systems // Ukr. Math. J. – 2001. – 53, № 1. – P. 108 – 128. 16. Ronto A. N., Samoilenko A. M. On the unique solvability of linear boundary value problems of periodic type // Dopov. Nats. Akad. Nauk Ukr. – 2002. – № 9. – P. 42 – 46. 17. Hakl R., Mukhigulashvili S. On a boundary value problem for n-th order linear functional differential systems // Georg. Math. J. – 2005. – 12, № 2. – P. 229 – 236. 18. Kiguradze I., P◦uža B. On boundary value problems for systems of linear functional differential equations // Czech. Math. J. – 1997. – 47, № 2. – P. 341 – 373. 19. Schwabik Š., Tvrdý M., Vejvoda O. Differential and integral equations: boundary value problems and adjoints. – Praha: Academia, 1979. 20. Hakl R., Mukhigulashvili S. On one estimate for periodic functions // Georg. Math. J. – 2005. – 12, № 1. – P. 97 – 114. Received 15.10.07 ISSN 1027-3190. Укр. мат. журн., 2008, т. 60, № 3