Muckenhoupt–Wheeden theorem for generalized f-Riesz-type potentials

We obtain the Muckenhoupt-Wheeden theorem for some class of potentials. As a consequence, we describe the equivalent norm in the generalized Bessel potential space of negative order.

Gespeichert in:
Bibliographische Detailangaben
Datum:2008
1. Verfasser: Knopova, V.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2008
Schriftenreihe:Український математичний журнал
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/164773
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Muckenhoupt–Wheeden theorem for generalized f-Riesz-type potentials / V. Knopova // Український математичний журнал. — 2008. — Т. 60, № 11. — С. 1520–1528. — Бібліогр.: 11 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-164773
record_format dspace
spelling irk-123456789-1647732020-02-11T01:28:43Z Muckenhoupt–Wheeden theorem for generalized f-Riesz-type potentials Knopova, V. Статті We obtain the Muckenhoupt-Wheeden theorem for some class of potentials. As a consequence, we describe the equivalent norm in the generalized Bessel potential space of negative order. Одержано теорему Макенхаупта–Відена для одного класу потенціалів. Як наслідок, описано еквівалентну норму в просторі узагальнених потенціалів Весселя від'ємного порядку. 2008 Article Muckenhoupt–Wheeden theorem for generalized f-Riesz-type potentials / V. Knopova // Український математичний журнал. — 2008. — Т. 60, № 11. — С. 1520–1528. — Бібліогр.: 11 назв. — англ. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/164773 519.21 en Український математичний журнал Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Статті
Статті
spellingShingle Статті
Статті
Knopova, V.
Muckenhoupt–Wheeden theorem for generalized f-Riesz-type potentials
Український математичний журнал
description We obtain the Muckenhoupt-Wheeden theorem for some class of potentials. As a consequence, we describe the equivalent norm in the generalized Bessel potential space of negative order.
format Article
author Knopova, V.
author_facet Knopova, V.
author_sort Knopova, V.
title Muckenhoupt–Wheeden theorem for generalized f-Riesz-type potentials
title_short Muckenhoupt–Wheeden theorem for generalized f-Riesz-type potentials
title_full Muckenhoupt–Wheeden theorem for generalized f-Riesz-type potentials
title_fullStr Muckenhoupt–Wheeden theorem for generalized f-Riesz-type potentials
title_full_unstemmed Muckenhoupt–Wheeden theorem for generalized f-Riesz-type potentials
title_sort muckenhoupt–wheeden theorem for generalized f-riesz-type potentials
publisher Інститут математики НАН України
publishDate 2008
topic_facet Статті
url http://dspace.nbuv.gov.ua/handle/123456789/164773
citation_txt Muckenhoupt–Wheeden theorem for generalized f-Riesz-type potentials / V. Knopova // Український математичний журнал. — 2008. — Т. 60, № 11. — С. 1520–1528. — Бібліогр.: 11 назв. — англ.
series Український математичний журнал
work_keys_str_mv AT knopovav muckenhouptwheedentheoremforgeneralizedfriesztypepotentials
first_indexed 2025-07-14T17:21:35Z
last_indexed 2025-07-14T17:21:35Z
_version_ 1837643800872222720
fulltext UDC 519.21 V. Knopova (Inst. Cybern. Nat. Acad. Sci., Ukraine, Kyiv) MUCKENHOUPT – WHEEDEN THEOREM FOR GENERALIZED f -RIESZ TYPE POTENTIALS TEOREMA MAKENXAUPTA – VIDENA DLQ UZAHAL|NENYX POTENCIALIV f -RISIVS|KOHO TYPU We obtain the Muckenhoupt-Wheeden theorem for some class of potentials. As a consequence, we describe the equivalent norm in the generalized Bessel potential space of negative order. OderΩano teoremu Makenxaupta – Videna dlq odnoho klasu potencialiv. Qk naslidok, opysano ekvivalentnu normu v prostori uzahal\nenyx potencialiv Besselq vid’[mnoho porqdku. Introduction. The paper is devoted to the generalization of Muckenhoupt – Wheeden theorem (see [1], Theorem 3.6.1, also [2]) to the case of potentials I xf µ( ) = µ ( )dy x y f x yn n − −( )−∫ 2 R , (1) where µ is any positive measure on Rn , and f is a Bernstein function, which means that f is a real-valued function defined on ( 0, ∞ ) , satisfying the following conditions: 1) f C∈ ∞∞( , )0 , 2) f ( x ) ≥ 0, 3) ( ) ( )( )−1 k kf x ≤ 0 for all k ≥ 1. For a positive measure µ, we define the f -maximal function M f µ M xf µ( ) = sup ( ( , )) ( )/ r n n n B x r f r r> − 0 2 µ ω , (2) where ωn = dx Sn−∫ 1 is the volume of a unit ball in Rn . For f ( x ) = x α, this maxi- mal function is called a fractional maximal function of a measure µ and is denoted by Mαµ , see [2], for example. We show that the Lp -norm of M f µ , 1 < p < ∞ , is equivalent to the Lp -norm of I f µ . Such an equivalence gives us the description of an equivalent norm in the generalized Bessel potential space Hp f n( ),| | ( )⋅ −2 2 R , which is the closure of the Schwartz space S n( )R under the norm u Hp f n( ),| | ( )⋅ −2 2 R : = F f Fu Lp n − −+ ⋅ ⋅1 2 11( ( ) )( ) ( ) ( )R , 1 < p < ∞ , see [3, 4] for more information about the construction of such spaces. Here F , F−1 are respectively the Fourier and the inverse Fourier transforms. Besides others the generalized Bessel potential spaces are interesting from the analytical point of view as they are the particular cases of the spaces of generalized smoothness, and appear as domains of generators of Lp -sub-Markovian semigroups: if f is a Bernstein function, then − −f ( )∆ is the generator of an Lp -sub-Markovian semigroup, corresponding to a Lévy process ( )Xt t ≥0 with Lévy exponent f ( )ξ 2 ( i.e., Eei Xt〈 〉ξ, = e t f− ( )ξ 2 ) . The domain of − −f ( )∆ is Hp f n( ),| | ( )⋅ 2 2 R , which we can identify with the dual of Hp f n( ),| | ( )⋅ −2 2 R . In the case where f is a Bernstein function satisfying some growth © V. KNOPOVA, 2008 1520 1520ISSN 1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 11 MUCKENHOUPT – WHEEDEN THEOREM … 1521 restrictions and such that the convolution semigroup associated with it has monotone 0-potencial density, it was proved in [5], Theorem 1.1.2, that the kernel of the resolvent associated with − −f ( )∆ is equivalent to the kernel of I f . For u Lp n∈ ( )R , 1 ≤ p < ∞ , we can also define the potential as I u xf ( ) : = u y x y f x y dyn n ( ) − −( )−∫ 2 R . (3) Therefore in the case µ ( )dy = u y dy( ) , u Lp n∈ ( )R positive, the generalization of the Muckenhoupt – Wheeden theorem gives us the equivalence of norms: u Hp f n( ),| | ( )⋅ −2 2 R ∼ I u uf p p+ ∼ M u uf p p+ , where M u xf ( ) : = sup ( ) ( )/ ( , )r n n n B x rf r r u y dy > − ∫ 0 2 1 ω . (4) Here and below the relation ⋅ ∼ ⋅1 2 means that there exist positive constants c1 and c2 such that c1 1⋅ ≤ ⋅ 2 ≤ c2 2⋅ . The “classical” Muckenhoupt – Wheeden theorem, i.e., the equivalence of Lp n( )R -norms of Riesz potentials Iαµ of a positive measure µ, 0 < α < n, and of the fractional maximal function Mα , is a useful tool in the theory of function spaces. This theorem plays an important role in the proof of such a remarkable fact that the positive cone of Triebel – Lizorkin spaces Fpq nα ( )R , 1 < p < ∞ , 1 < q ≤ ∞ , α < < 0, is independent of q, see Corollary 4.3.9 from [2], also [6] for the original result. Further, the Muckenhoupt – Wheeden theorem is useful for getting estimates for non- linear potentials, in particular, it is employed to show the equivalence of different definitions of capacities, see § 4.4 – 4.5 [2] and the reference therein. Also, the weighted Muckenhoupt – Wheeden inequality applied to I1 allows to obtain some norm inequalities for the Schrödinger operator L = − −∆ v for v of some type, which can be used for getting the eigenvalue estimates for L, see [7, 8]. Therefore the generalized version of the Muckenhoupt – Wheeden theorem may give rise to new results in the theory of function spaces and applications. The main result of the paper is formulated in the following theorem. Theorem 1. Let 1 < p < ∞ , n ≥ 2, and assume that the Bernstein function f satisfies (6) and (7). Then there exists a constant c such that for any positive measure µ c M f p −1 µ ≤ I f p µ ≤ c M f p µ . (5) Since the left-hand side inequality is trivial, it remains to prove the right-hand side part. The proof is based on Lemma 1 and Lemma 2 below, see also [2, p. 73 – 74]. Assumptions and auxiliary results. In what follows we will assume that our Bernstein function satisfies the following assumptions: 1. There exists β > 0 such that for all λ ≥ 1 c1λβ ≤ f x f x ( ) ( ) λ , x > 0; (6) 2. There exists 0 < σ < n p/ 2 such that for all λ ≤ 1 c2λσ ≤ f x f x ( ) ( ) λ , x > 0. (7) ISSN 1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 11 1522 V. KNOPOVA Here c1, c2 are some positive constants, independent on x and λ . Consider some examples. Examples. 1. f x x( ) = α , 0 ≤ α ≤ 1. 2. f x x x( ) ln( )= +α α1 , 0 ≤ α < 1 / 2. Indeed, (6) is satisfied with β ≤ α due to monotonicity of f x( ); to prove (7) con- sider the function g x x c x( ) ln( ( ) ) ln( )= + − +1 1λ λα ε α , 0 < α ≤ 1. ′g x( ) = α λ λ λα α α ε αx x c x − + − +     1 1 1( ) > α λ λ α α α εx x c − + −[ ] 1 1 > 0 if α < ε . Since g( )0 = 0, then g x( ) > 0 for all x > 0, and hence we have (7) with α < σ < < n p/ 2 . 3. f x x e x( ) = −( )−1 4 . Again, we have (6) with β ≤ 1 / 2 due to monotonici- ty. To show (7) consider the function g x( ) = 1 14 4− − −( )− −e c ex xλ ελ . Then for suitable c > 0 ′g x( ) = 2 x cλ λε−( ) > 0 if ε < 1 2 . Since g( )0 = 0, we get (7) with 1 / 2 < σ < n p/ 2 . 4. f x( ) = x I x I x ν ν +1( ) ( ) , see [9]. Here Iν is the modified Bessel function of the first kind, see [10]. Sinse I xν( ) ∼ 1 1 2Γ ( )ν ν +     x as x → 0 , I xν( ) ∼ 1 2π x ex as x → ∞ , we have f x x( ) /∼ ν 2 as x → 0 , and f x x( ) ∼ as x → ∞ , hence we can choose constants c1 and c2 such that (6) and (7) are satisfied. 5. f x( ) = x K x K x ν ν −1( ) ( ) , see [9]. Here Kν is the modified Bessel function of the third kind, see [10]. Since K xν( ) ∼ Γν ν 2 2 x     as x → 0 , K xν( ) ∼ π 2x e x− as x → ∞ , we have f x( ) ∼ xΓ Γ ( ) ( ) ν ν − 1 2 = x 2 1( )ν − , ν > 1, as x → 0 , and f x x( ) ∼ as x → → ∞ , hence as above we can choose constants c1 and c2 such that (6) and (7) are satisfied with β ≥ 1 / 2 and σ > 1. 6. By the same arguments, (6) and (7) are satisfied for Bernstein functions f x( ) = = xI x I x ν ν β α ( ) ( ) and f x( ) = xK x K x ν ν α β ( ) ( ) , ν > 0, α > β > 0 (see [9]). Below we will use the estimates for derivatives of a Bernstein function, see [4]: f xk( )( ) ≤ k f x xk ! ( ) , k ≥ 1 , x > 0 . (8) ISSN 1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 11 MUCKENHOUPT – WHEEDEN THEOREM … 1523 For a positive measure µ define the Hardy – Littlewood maximal finction M xµ( ) : = sup ( ) ( , )r n n B x r w r dy > ∫ 0 1 µ . (9) In case µ ( )dy = u y dy( ) for some Lp -function u, 1 ≤ p ≤ ∞ , we will use the notation Mu . We will need the Hardy – Littlewood – Wiener theorem, see, for example, [2], Theorem 1.1.1. Denote by “Vol” the volume of a set. Theorem 2 (Hardy – Littlewood – Wiener [2]). Let u Lp n∈ ( )R , 1 ≤ p ≤ ∞ . There exists a constant A depending only on p and n such that a) if p = 1, then Vol x Mu x: ( ) >{ }λ ≤ A u λ 1 for all λ > 0; b) if 1 < p ≤ ∞ , then Mu p ≤ A u p. (10) Lemma 1. Let f be a Bernstein function satisfying (6) and (7), I f be as in (3), and 1 ≤ p < ∞ . Then I u xf ( ) ≤ cMu x f Mu x u p p n ( ) ( ) /          2 . (11) Proof. Take 0 < δ < 1, split the integral: I u xf ( ) = u y x y f x y dy u y x y f x y dyn x y n x y ( ) ( ) − −( ) + − −( )− − < − − ≥ ∫ ∫2 2 δ δ = I I1 2+ , and consider the terms I1 and I2 separately. Changing the variables y = r ζ , r ∈ +R , ζ ∈ −Sn 1, we obtain I1 = 0 2 1 δ ζ σ ζ∫ ∫ − − − u x r r f r d drn n Sn ( ) ( ) ( ) , where σ ζn d( ) is the surface measure on Sn−1. Let ρ( , )x dr = u x r d drn Sn ( ) ( )− − ∫ ζ σ ζ 1 and ρ( , )x r = 0 1 r n S u x d d n ∫ ∫ − − ( ) ( )τζ σ ζ τ = u y dy B x r ( ) ( , ) ∫ . Using (8), we get I1 = 0 2 δ ρ∫ − ( , ) ( ) x dr r f rn = ISSN 1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 11 1524 V. KNOPOVA = ρ ρ δ δ ( , ) ( ) ( , ) ( ) ( ) ( ) ( ) x r r f r x r n r f r n f r r f r drn n n− + − − + −− − + + ′     ∫2 0 0 1 2 2 3 2 22 ≤ ≤ ρ δ δ δ ρδ ( , ) ( ) ( , ) ( ) x f n x r r f r drn n− + −+ ∫2 0 1 2 ≤ ≤ ω δ n Mu x f r n dr r f r ( ) ( ) ( ) 1 2 0 2− −+         ∫ . Since f satisfies (6), we have that the last integral is less than 1 2 1 20 1 f dx x( )δ β− −∫ and thus I1 ≤ c M u x f ( ) ( )δ−2 . Further, by Hölder’s inequality, we get I2 ≤ u x y f x y dyp n p x y p 1 2 1 − −( )          − ′ − ≥ ′ ∫ δ / = = u c r f r r drp n p n p δ ∞ − ′ − ′ ∫           1 2 1 1 ( ) / = = u c f dp n p n n p 1 1 2 2 1 1∞ − − ′ − ′ ∫        ( ) ( ) / δτ δ τ δ τ τ ≤ ≤ c u f dp n p p np n p p 1 1 2 1 1 2 1 δ δ τ τ σ ( )/ / ( ) − ′ ′ − ∞ ′− + − ′ ′ ∫     ≤ c u f p n p 2 2 δ δ − − ( / ) ( ) , where (7) is used in the third line. For δ > 1 the estimates are the same due to the restricttions on σ and β (we need not to pose the restriction β < n / p , since β can be arbitrary small in (6)). Combining the estimates for I1 and I2 and choosing δ = u Mu p p n    / , we arrive at (11). Remark 1. Let g xp( ) = x f x p n( )/2 , x > 0. The function gp −1 is convex, mono- tone increasing for 2p n/ ≤ 1 and monotone decreasing for 2p n/ > 1. Then we can get the inequalities analogous to the Sobolev inequality, but under some restrictions on the norm u p . 1. If 2p n/ ≤ 1, then cg xp −1( ) ≤ g cxp −1( ) if c ≥ 1 and then for u , u p ≤ 1, we have, due to the Hardy – Littlewood – Wiener theorem, 1 1 u g I u p p p f p p− ( ) ≤ g I u x up f p p p −     1 ( ) ≤ Mu u p p p p ≤ C, or ISSN 1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 11 MUCKENHOUPT – WHEEDEN THEOREM … 1525 g I up f p −1( ) ≤ u p . (12) 2. If 2p n/ > 1, then we have g cxp −1( ) ≤ g xp −1( ) for c ≥ 1, and in this case if u p > 1, g I up f−1( ) ≤ g g Mu u up p p p −         1 ≤ Mu u p , whence (12) is satisfied if u p > 1. Remark 2. Lemma 1 and Theorem 2a) imply weak type estimates: Vol x I u xf: ( ) >{ }λ ≤ c g u− ( )1 1λ / , (13) where g x( ) = g x1( ) = x f x n( )/2 . Indeed, x I u xf: ( ) >{ }λ ⊂ x Mu x u g u : ( ) >           − 1 1 1 λ . Applying Theorem 2a), we get (13). Moreover, (13) is valid for finite measures on Rn , u 1 = µ ( )R n . Remark 3. Note that the statements of Lemma 1 and Remark 2 can be naturally generalized to the case of finite measures on Rn . Remark 4. For the case of Riezs potentials, i.e. when f ( x ) = x α, 0 < α < 1, see [2], Proposition 3.1.2 and Theorem 3.1.4. Lemma 2. There exists a > 1, b > 0, such that for all λ > 0, for all ε , 0 < < ε < 1, Vol x I x af: ( )µ λ>{ } ≤ ≤ b g x I x x M xf f − − >{ } + >{ }1 1( ) : ( ) : ( ) ε µ λ µ ελVol Vol . (14) Proof. Since µ is a positive measure, by Fatou’s Lemma the potential (1) is lo- wer semicontinuous. Then the set x I f: µ λ>{ } is open. By Whitney decompositi- on theorem there exists a set of dyadic cubes Qi{ } with disjoint interior such that for all Qi there exists x : dist ( x , Qi ) ≤ 4 diam Q i . (15) For such x we have I xf µ( ) ≤ λ . Assume that Q Qi∈{ }, a > 1 and consider the set x Q I x af∈ >{ }: ( )µ λ . 1. Suppose Q x M xf∩ : ( )µ ελ≤{ } ≠ ∅. Let P be a ball concentric with Q, with radius 6 diam Q . Let µ1 : = µ P , µ2 : = µ µ− 1. By Remark 2, Vol x I x af: ( )µ λ 1 2 >{ } ≤ c g a dn − − ∫( )    1 1 1 λ µ R . Let x Q0 ∈ be such that M xf µ( )0 ≤ λε and let B x( )0 = B x Q( , )0 8diam ( then P ⊂ ⊂ B x( )0 ) . Then ISSN 1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 11 1526 V. KNOPOVA d n µ1 R ∫ ≤ d P µ∫ ≤ d B x µ ( )0 ∫ ≤ M x g B xf µ( ) ( ( ))0 0Vol( ) ≤ λε g B xVol( ( ))0( ). By definition, f is increasing. Then for δ > 0 there exists cδ > 0 such that for all δ ≤ λ ≤ 1, x ≥ 1, f x( )λ ≤ c f x fδ λ( ) ( ). Since for n ≥ 2, g = g2 is also increasing, for such x and λ we get g g x( ) ( )λ ≤ ≤ c g xδ λ( ) , and hence due to monotonocity ( take λ = g −1( )v , x = g w−1( ) ) , we have g w−1( )v ≤ g c g g g w− − −( )1 1 1 δ ( )( ) ( )v ≤ ≤ g g c g g w− − −( )1 1 1( )( ) ( )δ v ≤ g c g w− −1 1( ) ( )δ v . Further, for small diameters of Q we have dn µ1 R∫ ≤ 1, and g B xVol( ( ))0( ) < 1. Then from 1 ε < g B x dn Vol( ( ))0 1 ( ) ∫ µ R , for a > 1 such that λ a > 0, we get g a−     1 ε ≤ g a g B x dn − ( )     ∫ 1 0 1 λ µ Vol( ( )) R ≤ g a d c B x n − ∫       1 1 0 λ µ δ R Vol( ( )), where the constant cδ depends on the size of the cubes Qi{ } but is independent of the choice of Qi (i.e., we may assume that the size of Qi{ } is bounded from below by 2−M with M fixed and large enough). Then by covering Vol x Q I x af∈ >{ }: ( )µ λ 1 2 ≤ b g Q− −1 1( ) ( ) ε Vol , (16) or, covering the whole set x I x af: ( )µ λ 1 2 >{ } ⊂ x I xf: ( )µ λ>{ }, a > 1, Vol x I x af: ( )µ λ 1 2 >{ } ≤ b g x I xf − − >{ }1 1( ) : ( ) ε µ λVol . (17) 2. Take x Q1 ∉ ; then we have (15). Because of the choice of P, there exists a constant L depending only on n and such that for all y Pc∈ , ∀ ∈x Q : x y1 − ≤ ≤ L x y− ( we may assume here L ≥ 1) . By the property of Bernstein functions f f x y−( )2 ≤ f L x y1 2−( ) ≤ L f x y1 2−( ) , and since I xf µ( )1 ≤ λ (due to the conditions of Whitney decomposition, we have (15)), we get I xf µ2( ) ≤ L I xn f+1 2 1µ ( ) ≤ λLn+1. Choose a > 2 1Ln+ ; then if I xf µ2( ) ≤ aλ / 2 and I xf µ( ) > aλ , we obtain I xf µ1( ) > aλ / 2. Thus, for all x Q∈ such that Q x M f∩ : µ ελ≤{ } ≠ ∅, we can write the inclusion ISSN 1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 11 MUCKENHOUPT – WHEEDEN THEOREM … 1527 x Q I x af∈ >{ }: ( )µ λ ⊂ x Q I x af∈ > : ( )µ λ 1 2 . Let us summarize the statements proved above. The set x I x af: ( )µ λ>{ } can be covered by cubes of two types: 1) Q : Q x M f∩ : µ ελ≤{ } ≠ ∅. In the case of such Q, for all x Q∈ we have x I x af: ( )µ λ>{ } ⊂ I x af µ λ 1 2 ( ) >{ }; 2) Q̃ : Q̃ ⊂ x M f: µ ελ>{ } . Covering x I x af: ( )µ λ>{ } by such cubes, in view of (17), we get the esti- mate (14). Lemma 2 is proved. Proof of Theorem 1. For any r > 0 I xf µ( ) ≥ µ ( )dy x y f x yn x y r − −( )− − ≤ ∫ 2 ≥ 1 2r f r dyn x y r ( ) ( )− − ≤ ∫ µ , and by the definition of M f we get the lower bound. Let us show the upper bound. Integrate (14): Vol x I x a df p R : ( )µ λ λ λ>{ } −∫ 1 0 ≤ ≤ b g x I x df p R − − −>{ }∫1 1 1 0 ( ) : ( ) ε µ λ λ λVol + + Vol x M x df p R : ( )µ ελ λ λ>{ } −∫ 1 0 . Changing the variables, we get a x I x dp f p aR − −>{ }∫ Vol : ( )µ λ λ λ1 0 ≤ ≤ b g x I x df p R − − −>{ }∫1 1 1 0 ( ) : ( ) ε µ λ λ λVol + + ε µ λ λ λ ε − −>{ }∫p f p R x M x dVol : ( ) 1 0 . If µ is compactly supported, then all the integrals are finite. Choose ε so small that b g− −1 1( )ε ≤ a p− 2 . Then ISSN 1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 11 1528 V. KNOPOVA a x I x dp f p aR − −>{ }∫ Vol : ( )µ λ λ λ1 0 ≤ ≤ 2 1 0 ε µ ελ λ λ ε − −>{ }∫p f p R x M x dVol : ( ) , and letting R → ∞ we get a I x dxp f p n − ∫ µ( ) R ≤ 2ε µ λ− ∫p f p M x d n ( ) R . If µ has no compact support, approximate with µ µn B n= ( , )0 , n = 1, … . Then I f n p µ ≤ C M f p µ , and we get the statement of Theorem 1 by letting n → ∞ . Acknowledgment. I am very grateful to Niels Jacob, University of Swansea, for useful remarks. I also thank the referee for useful suggestions. The INTAS Grant YSF 06-1000019-6024 is gratefully acknowledged. 1. Muckenhoupt B., Wheeden R. Weighted norm inequalities for fractional integrals // Trans. Amer. Math. Soc. – 1974. – 192. – P. 261 – 274. 2. Adams D. R.,Hedberg L. I. Function spaces and potential theory. – Berlin: Springer Verlag, 1996. – 362 p. 3. Farkas W., Jacob N., Schilling R. Function spaces related to continuous negative definite functions: Ψ-Bessel potential spaces // Diss. Math. – 2001. – 393. – P. 1 – 62. 4. Jacob N. Pseudo-differential operators and Markov processes. Vol. 1. Fourier analysis and semi- groups. – London: Imper. Coll. Press, 2001. – 494 p.; Vol. 2. Generators and their potential theory. – London: Imper. Coll. Press, 2002. – 453 p. 5. Zähle M. Potential spaces and traces of Lévy processes on h-sets. – Preprint 2007, available at http://www.minet.uni-jena.de/geometrie/publicat.html 6. Jawerth B., Pérez C., Welland G. The positive cone in Triebel – Lizorkin spaces and the relation among potential and maximal operators // Harmonic analysis and partial differential equations: Proc. Conf. Boca Raton 1988 / Eds M. Milman, T. Schonbek. Contemp. Math. – 1989. – 107. – P. 71 – 91. 7. Schechter M. The spectrum of the Schrödinger operator // Trans. Amer. Math. Soc. – 1989. – 312, # 1. – P. 115 – 128. 8. Pérez C. On a theorem of Muckenhoupt – Wheeden and a weighted inequality related to Schrödinger operator // Trans. Amer. Math. Soc. – 1993. – 340, # 2. – P. 549 – 562. 9. Jacob N., Schilling R. L. Function spaces as Dirichlet spaces (about a paper by W. Maz’ya and J. Nagel) // Z. Anal. Anwend. – 2005. – 24, # 1. – P. 3 – 28. 10. Watson G. N. A treatise on the theory of Bessel functions. – Second edition. – Cambridge: Cambridge Univ. Press., 1966. – 362 p. 11. Knopova V., Zähle M. Spaces of generalized smoothness on h-sets and related Dirichlet forms // Studia Math. – 2006. – 174, # 3. – P. 277 – 308. Received 26.09.07, after revision — 12.02.08 ISSN 1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 11