O сходимости решений стохастических дифференциальных уравнений к потоку Арратья

Gespeichert in:
Bibliographische Detailangaben
Datum:2008
1. Verfasser: Маловичко, Т.В.
Format: Artikel
Sprache:Russian
Veröffentlicht: Інститут математики НАН України 2008
Schriftenreihe:Український математичний журнал
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/164775
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:O сходимости решений стохастических дифференциальных уравнений к потоку Арратья / Т.В. Маловичко // Український математичний журнал. — 2008. — Т. 60, № 11. — С. 1529–1538. — Бібліогр.: 5 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-164775
record_format dspace
spelling irk-123456789-1647752020-02-11T01:28:29Z O сходимости решений стохастических дифференциальных уравнений к потоку Арратья Маловичко, Т.В. Статті 2008 Article O сходимости решений стохастических дифференциальных уравнений к потоку Арратья / Т.В. Маловичко // Український математичний журнал. — 2008. — Т. 60, № 11. — С. 1529–1538. — Бібліогр.: 5 назв. — рос. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/164775 519.21 ru Український математичний журнал Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language Russian
topic Статті
Статті
spellingShingle Статті
Статті
Маловичко, Т.В.
O сходимости решений стохастических дифференциальных уравнений к потоку Арратья
Український математичний журнал
format Article
author Маловичко, Т.В.
author_facet Маловичко, Т.В.
author_sort Маловичко, Т.В.
title O сходимости решений стохастических дифференциальных уравнений к потоку Арратья
title_short O сходимости решений стохастических дифференциальных уравнений к потоку Арратья
title_full O сходимости решений стохастических дифференциальных уравнений к потоку Арратья
title_fullStr O сходимости решений стохастических дифференциальных уравнений к потоку Арратья
title_full_unstemmed O сходимости решений стохастических дифференциальных уравнений к потоку Арратья
title_sort o сходимости решений стохастических дифференциальных уравнений к потоку арратья
publisher Інститут математики НАН України
publishDate 2008
topic_facet Статті
url http://dspace.nbuv.gov.ua/handle/123456789/164775
citation_txt O сходимости решений стохастических дифференциальных уравнений к потоку Арратья / Т.В. Маловичко // Український математичний журнал. — 2008. — Т. 60, № 11. — С. 1529–1538. — Бібліогр.: 5 назв. — рос.
series Український математичний журнал
work_keys_str_mv AT malovičkotv oshodimostirešenijstohastičeskihdifferencialʹnyhuravnenijkpotokuarratʹâ
first_indexed 2025-07-14T17:21:40Z
last_indexed 2025-07-14T17:21:40Z
_version_ 1837643807049383936
fulltext UDK 519.21 T. V. Malovyçko (Nac. texn. un-t Ukrayn¥ „KPY”, Kyev) O SXODYMOSTY REÍENYJ STOXASTYÇESKYX DYFFERENCYAL|NÁX URAVNENYJ K POTOKU ARRAT|Q We consider the solution xε of the equation dx u tε ( , ) = R ∫ ( )ϕε εx u t r W dr dt( , ) – ( , ), x uε ( , )0 = u, where W is a Wiener sheet on R × 0 1;[ ]. For the case where ϕε 2 converges to p aδ( – )⋅ 1 + + q aδ( – )⋅ 2 , i.e., where a boundary function describing the influence of a random medium is singular more than at one point, we prove that the weak convergence of x uε ( , )1 ⋅( , … , x udε ( , )⋅ ) to X u( , )1 ⋅( , … , X ud( , )⋅ ) takes place as ε → 0+ (here, X is the Arratia flow). Rozhlqnuto rozv’qzok xε rivnqnnq dx u tε ( , ) = R ∫ ( )ϕε εx u t r W dr dt( , ) – ( , ), x uε ( , )0 = u, de W — vineriv lyst na R × 0 1;[ ]. Dovedeno, wo u vypadku, koly ϕε 2 zbiha[t\sq do p aδ( – )⋅ 1 + + q aδ( – )⋅ 2 , tobto hranyçna funkciq, wo opysu[ vplyv vypadkovoho serydovywa, synhulqrna bil\ß niΩ u odnij toçci, ma[ misce slabka zbiΩnist\ x uε ( , )1 ⋅( , … , x udε ( , )⋅ ) do X u( , )1 ⋅( , … … , X ud( , )⋅ ) , de X— potik Arrat\q, pry ε → 0+ . Odnym yz osnovn¥x obæektov, rassmatryvaem¥x v dannoj rabote, qvlqetsq po- tok Arrat\q [1]. Na yntuytyvnom urovne on moΩet b¥t\ opysan kak semejstvo vynerovskyx çastyc, startugwyx yz kaΩdoj toçky R, dvyΩuwyxsq nezavysymo vplot\ do momenta vstreçy, pry kotoroj ony skleyvagtsq y dalee dvyΩutsq vmeste, takΩe soverßaq brounovskoe dvyΩenye. M¥ Ωe budem pol\zovat\sq sledugwym eho opredelenyem. Potokom Arrat\q naz¥vaetsq sluçajn¥j process X u( ){ ; u ∈ }R so znaçe- nyqmy v C 0 1;[ ]( ) takoj, çto dlq lgb¥x u1 < … < un : 1) X uk( , )⋅ — vynerovskyj process, startugwyj yz toçky uk , 2) dlq lgboho t ∈ 0 1;[ ] X u t( , )1 ≤ … ≤ X u tn( , ), 3) na mnoΩestve f C f un k k∈ [ ]( ){ =0 1 0; , : ( )R , k = 1, … , n, f t f t tn1 0 1( ) ( ), ;<…< ∈[ ]} raspredelenye X u( , )1 ⋅( ,<… , X un( , )⋅ ) sovpadaet s raspredelenyem n-mernoho vy- nerovskoho processa, startugweho yz toçky (u1, … , un) . Pust\ W — R-znaçn¥j vynerovskyj lyst na R × 0 1;[ ]. Rassmotrym uravnenye © T. V. MALOVYÇKO, 2008 ISSN 1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 11 1529 1530 T. V. MALOVYÇKO dx u tε( , ) = R ∫ ( )ϕε εx u t r W dr dt( , ) – ( , ), (1) x uε( , )0 = u. V rabote [2] pokazano, çto dlq del\taobraznoj posledovatel\nosty funkcyj ϕε 2 ymeet mesto slabaq sxodymost\ x uε( , )1 ⋅( ,<… , x udε( , )⋅ ) pry ε → 0 + v pro- stranstve C d0 1; ,[ ]( )R k � X( )⋅ = X u( , )1 ⋅( ,<… , X ud( , )⋅ ). Naßa cel\ sostoyt v tom, çtob¥ pokazat\, çto analohyçn¥j rezul\tat ymeet mesto y v tom sluçae, kohda ϕε 2 sxodytsq v prostranstve ′D k obobwennoj funkcyy p aδ( – )⋅ 1 + + q aδ( – )⋅ 2 , t.<e. kohda predel\naq funkcyq, opys¥vagwaq vlyqnye sluçajnoj sred¥, synhulqrna bolee çem v odnoj toçke. Pryçyna, po kotoroj dannoe utver- Ωdenye budet ymet\ mesto, zaklgçaetsq v tom, çto matryc¥ dyffuzyy budut sxodyt\sq k edynyçnoj matryce, esly rasstoqnye meΩdu lgb¥my dvumq koordy- natamy otlyçno ot nulq y ot a2 – a1. Tohda predel\n¥j process budet vesty se- bq kak vynerovskyj do tex por, poka rasstoqnye meΩdu kakymy-lybo eho koor- dynatamy ne budet ravno nulg yly a2 – a1. Kak tol\ko nekotor¥e dve koordy- nat¥ stanut ravn¥my meΩdu soboj, dyffuzyq v¥rodytsq y πty koordynat¥ skleqtsq. A yz-za nev¥roΩdennosty dyffuzyy na mnoΩestve v ∈{ Rd : ∃i0 , j i j0 0 0 v v– = a2 – a1, ∀ i j, v vi j≠ } predel\n¥j process budet provodyt\ na nem nulevoe vremq, a potomu budet sovpadat\ po raspredelenyg s koneçnomern¥m suΩenyem potoka Arrat\q. Rassmotrym ϕ ∈ C0 ∞( )R , qvlqgwugsq symmetryçnoj neotrycatel\noj funkcyej s tem svojstvom, çto R ∫ ϕ( )u du = 1. Dlq kaΩdoho ε > 0 poloΩym ϕε( )u = p u a ε ϕ ε – 1    + q u a ε ϕ ε – 2    , hde p + q = 1, 0 < p < 1, a1 < a2. Dlq ukazannoj funkcyy ϕε reßenye xε uravnenyq (1) suwestvuet, edyn- stvenno y qvlqetsq potokom homeomorfyzmov (sm. [3], teorema 4.5.1). Obozna- çym çerez Ft{ ; t ≥ }0 potok σ-alhebr, poroΩdenn¥x W. Tohda pry kaΩdom u ∈R x u tε( , ){ ; t ≥ }0 — neprer¥vn¥j Ft -martynhal, pryçem sovmestnaq xa- rakterystyka πtyx processov s naçal\n¥my toçkamy u1 y u2 ymeet vyd x u x u tε ε( , ), ( , )1 2⋅ ⋅ = 0 1 2 t x u s r x u s r dr ds∫ ∫ ( ) ( ) R ϕ ϕε ε ε ε( , ) – ( , ) – , a pry u1 = u2 = u x u tε( , )⋅ = 0 2 t x u s r dr ds∫ ∫ ( ) R ϕε ε( , ) – = t. Sledovatel\no, sohlasno teorem¥ Levy (sm. [4], hl. II, teorema 6.1) process x u tε( , ){ ; t ≥ }0 qvlqetsq vynerovskym. Yssleduem povedenye processov � x tε( ){ = x u t x u tdε ε( , ), , ( , )1 …( ); t ∈[ ]}0 1; , hde naçal\naq toçka � u = (u1, … , ud ) fyksyrovana, pry ε → 0 +. ISSN 1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 11 O SXODYMOSTY REÍENYJ STOXASTYÇESKYX DYFFERENCYAL|NÁX … 1531 Lemma 1. Semejstvo � xε{ ; ε > }0 slabo otnosytel\no kompaktno v C d0 1; ,[ ]( )R . Dokazatel\stvo. Dlq proyzvol\noho ε > 0 E � xε( )0 = E � u = � u < + ∞, E � � x t x tε ε( ) – ( )2 1 4 ∞ = E max ( , ) – ( , ) 1 2 1 4 ≤ ≤k d k kx u t x u tε ε ≤ ≤ k d k kx u t x u t = ∑ 1 2 1 4E ε ε( , ) – ( , ) = 3 2 1 2d t t( – ) . Sledovatel\no, semejstvo � xε{ ; ε > }0 slabo otnosytel\no kompaktno (sm. [4], hl. I, teorema 4.3). Lemma dokazana. Takym obrazom, yz lgboj posledovatel\nosty � x nε{ } moΩno v¥delyt\ slabo sxodqwugsq podposledovatel\nost\. Pust\ � x nε fi � y , n → ∞, hde � x nε{ } — nekotoraq slabo sxodqwaqsq posledovatel\nost\, pryçem εn → 0, n → ∞. Naßa cel\ sostoyt v tom, çtob¥ pokazat\, çto predel\n¥j process � y sovpa- daet po raspredelenyg s koneçnomern¥m suΩenyem � X potoka Arrat\q. Otmetym, çto process¥ yi qvlqgtsq odnomern¥my vynerovskymy processa- my kak slab¥e predel¥ odnomern¥x vynerovskyx processov � x n i ε . Lemma 2. Sluçajn¥j process � y qvlqetsq martynhalom. Dokazatel\stvo. PokaΩem snaçala, çto dlq proyzvol\noj ohranyçennoj neprer¥vnoj funkcyy ψ : Rdm → R E x t x r x r n n n i mε ε εψ( ) ( ), , ( ) � � 1 …( ) → E y t y r y ri m( ) ( ), , ( )ψ � � 1 …( ) , n → ∞. Oboznaçym ξn = x t x r x r n n n i mε ε εψ( ) ( ), , ( ) � � 1 …( ), ξ = y t y r y ri m( ) ( ), , ( )ψ � � 1 …( ) . Poskol\ku sup n nE ξ2 < + ∞, ξn fi ξ, n → ∞, to ξn , n ≥ 1, ravnomerno yntehryruem¥ y (sm. [5], teorema 5.4) Eξn → Eξ , n → ∞. Dalee, tak kak � x nε — martynhal, to dlq lgb¥x neprer¥vn¥x ohranyçenn¥x funkcyj ψ i : R dm → R y dlq proyzvol\n¥x 0 < r1 < … < rm ≤ s < t E Ey t y r y r y t y r y rm d d m 1 1 1 1( ) ( ), , ( ) , , ( ) ( ), , ( )ψ ψ � � � � …( ) … …( )( ) = = lim ( ) ( ), , ( ) , , ( ) ( ), , ( ) n m d d mx t x r x r x t x r x r n n n n n n→∞ …( ) … …( )( )E Eε ε ε ε ε εψ ψ1 1 1 1 � � � � = ISSN 1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 11 1532 T. V. MALOVYÇKO = lim ( ) ( ), , ( ) , , ( ) ( ), , ( ) n m d d mx s x r x r x s x r x r n n n n n n→∞ …( ) … …( )( )E Eε ε ε ε ε εψ ψ1 1 1 1 � � � � = = E Ey s y r y r y s y r y rm d d m 1 1 1 1( ) ( ), , ( ) , , ( ) ( ), , ( )ψ ψ � � � � …( ) … …( )( ). Sledovatel\no, E � � y t y r r s( ) ( ), ≤{ } = � y s( ) , t.<e. � y — martynhal. Lemma dokazana. Lemma 3. Ymeet mesto y yi j t , ≤ λ s t y s y si j≤ ={ }: ( ) ( ) + λ s t y s y s a ai j≤ ={ }: ( ) – ( ) –2 1 , hde λ — mera Lebeha. Dokazatel\stvo. Pust\ � ξn( )⋅ = x u x u x u s r x u s r dr ds n n n n n nd i jε ε ε ε ε εϕ ϕ( , ), , ( , ), ( , ) – ( , ) –1 0 ⋅ … ⋅ ( ) ( )      ⋅ ∫ ∫ R = = x x x s r x s r dr ds n n n n n n d i j ε ε ε ε ε εϕ ϕ1 0 ( ), , ( ), ( ) – ( ) –⋅ … ⋅ ( ) ( )      ⋅ ∫ ∫ R . Poskol\ku E � ξn( )0 = E ( , , , )u ud1 0… = ( , , , )u ud1 0… < + ∞, E � � ξ ξn nt t( ) – ( )2 1 4 ∞ = = E max max ( ) – ( ) ; ( ) – ( ) – 1 2 1 4 4 1 2 ≤ ≤ ∫ ∫ ( ) ( )               k d k k t t i jx t x t x s r x s r dr ds n n n n n nε ε ε ε ε εϕ ϕ R ≤ ≤ k d k kx t x t n n = ∑ 1 2 1 4 E ε ε( ) – ( ) + ( – )t t2 1 4 = 3 2 1 2d t t( – ) + ( – )t t2 1 4 ≤ ≤ ( )( – )3 1 2 1 2d t t+ , t1, t2 0 1∈[ ]; , semejstvo � ξn n; ≥{ }1 slabo otnosytel\no kompaktno v prostranstve C 0 1;[ ]( , R d + )1 . Sledovatel\no, yz posledovatel\nosty � ξn n; ≥{ }1 moΩno v¥brat\ ta- kug podposledovatel\nost\ (dlq udobstva oboznaçenyj otoΩdestvym ee s ys- xodnoj), çto � ξn fi y yd1, , ,…( )θ , n → ∞, hde θ — slab¥j predel 0 ⋅ ∫ ∫ ( ) ( ) R ϕ ϕε ε ε εn n n n x s r x s r drdsi j( ) – ( ) – . Dlq lgboho poloΩytel\noho δ < 1 4 2 1( – )a a , naçynaq s nekotoroho nomera, supp R ∫ ⋅ϕ ϕε εn n r r dr( – ) ( ) � a a a a1 2 1 2– – ; –δ δ+[ ] ∪ – ;δ δ[ ] ∪ ∪ a a a a2 1 2 1– – ; –δ δ+[ ], ISSN 1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 11 O SXODYMOSTY REÍENYJ STOXASTYÇESKYX DYFFERENCYAL|NÁX … 1533 a znaçyt, dlq lgboho s ∈[ ]0 1; R ∫ ( ) ( )ϕ ϕε ε ε εn n n n x s r x s r dri j( ) – ( ) – ≤ h x s x s n n i j δ ε ε( ) – ( )( ) y dlq lgboho t ∈[ ]0 1; 0 t i j n n n n x s r x s r drds∫ ∫ ( ) ( ) R ϕ ϕε ε ε ε( ) – ( ) – ≤ 0 t i jh x s x s ds n n∫ ( )δ ε ε( ) – ( ) , hde h u u a a a a a a a a u a a a a a a a a u δ δ δ δ δ δ δ δ δ δ δ δ δ ( ) , – – ; – – ; – – ; – , , – ; – – – ; – ; – – – ; , = ∈ +[ ] [ ] +[ ] ∈ ∞( ] +[ ] [ ] + ∞[ ) + 1 0 2 2 2 2 2 2 1 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1 ∪ ∪ ∪ ∪ ∪ ∪ ∪ aa a u a a a a u a a u a a a a u u u u u a a u a a 2 1 1 2 1 2 2 1 1 2 1 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 – , – – ; – – , – – , – ; – , , – ; – , – , ; , – , – – ; δ δ δ δ δ δ δ δ δ δ δ δ δ δ + ∈[ ] + + ∈ + +[ ] + ∈[ ] + ∈[ ] + + ∈ aa a u a a u a a a a 2 1 1 2 2 1 2 12 2 – – , – – , – ; – . δ δ δ δ [ ] + + ∈ + +[ ]                         Poskol\ku funkcyq hδ lypßyceva s konstantoj 1/δ , otobraΩenye C zd0 1; ,[ ]( )R ' → 0 ⋅ ∫ ( ) ∈ [ ]( )h z s z s ds Ci j δ ( ) – ( ) ; ,0 1 R takΩe lypßecevo s konstantoj 2/δ , a znaçyt, neprer¥vno. Poπtomu 0 ⋅ ⋅ ∫ ∫ ∫( ) ( ) ( )     h x s x s ds x s r x s r drds n n n n n n i j i j δ ε ε ε ε ε εϕ ϕ( ) – ( ) , ( ) – ( ) – 0 R fi fi 0 ⋅ ∫ ( )     h y s y s dsi j δ θ( ) – ( ) , , n → ∞. Vsledstvye toho, çto f C t f ft t∈ [ ]( ) ∀ ∈[ ] ≤{ }0 1 0 1 02 2 1; , : ; –R zamknuto, ymeem P θ δt i j t h y s y s ds t– ( ) – ( ) , ;( ) ≤ ∈[ ]         ∫ 0 0 1 0 ≥ ≥ lim P n t i j n n n n x s r x s r dr ds →∞ ∫ ∫ ( ) ( )   0 R ϕ ϕε ε ε ε( ) – ( ) – – ISSN 1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 11 1534 T. V. MALOVYÇKO – 0 0 0 1 t i jh x s x s ds t n n∫ ( ) ≤ ∈[ ]     δ ε ε( ) – ( ) , ; = 1, t.<e. s veroqtnost\g 1 dlq vsex t ∈[ ]0 1; θt ≤ h y s y s dsi j t δ ( ) – ( )( )∫ 0 . Perexodq k predelu pry δ → 0, v sylu teorem¥ Lebeha o maΩoryruemoj sxody- mosty poluçaem, çto s veroqtnost\g 1 dlq vsex t ∈[ ]0 1; θt ≤ λ s t y s y si j≤ ={ }: ( ) ( ) + λ s t y s y s a ai j≤ ={ }: ( ) – ( ) –2 1 . PokaΩem, çto θ — xarakterystyka y. Lehko vydet\, çto θ — vozrastagwyj process. Kak y pry dokazatel\stve lemm¥<2, nesloΩno proveryt\, çto process m y yij i j=def – θ qvlqetsq martynhalom, a tak kak y t y ti j( ) ( ) = m tij ( ) + θt , to y yi j t , = θt ≤ λ s t y s y si j≤ ={ }: ( ) ( ) + λ s t y s y s a ai j≤ ={ }: ( ) – ( ) –2 1 . Lemma dokazana. Rassmotrym sluçajn¥j process � � � z t y t t t( ) ( ) ( – ) ; ;= ∧ + ∨( ) ∈[ ]{ }σ ω σ 0 0 1 , hde σ — moment pervoho v¥xoda � y yz mnoΩestva G = R d d i ju u i j u u\ ( , , ):1 … ∃ ≠ ={ } yly 1, esly dlq vsex t ∈[ ]0 1; � y t G( ) ∈ , a � ω — nezavysym¥j ot � y d-mern¥j vynerovskyj process, startugwyj yz 0. M¥ xotym pokazat\, çto � z qvlqetsq d-mern¥m vynerovskym processom, ot- kuda budet sledovat\, çto � y do v¥xoda yz G vedet sebq tak Ωe, kak vynerov- skyj process. Snaçala dokaΩem sledugwee vspomohatel\noe utverΩdenye. Lemma 4. Pust\ 0 ≤ s < t ≤ 1. Tohda E y t t z r r si j( ) ( – ) ( );∧ ∨( ) ≤{ }σ ω σ 0 � = y s si j( ) ( – )∧ ∨( )σ ω σ 0 p.n. Dokazatel\stvo. Yzmerymost\ y s si j( ) ( – )∧ ( )σ ω σ ⁄ 0 otnosytel\no σ � z r( ){ ; r s≤ } oçevydna. Ostalos\ pokazat\ tol\ko, çto ∀m1, m2 ∈N , 0 < t1 < … < tm1 ≤ s, 0 < r1 < … < rm2 ≤ s, ∀ …A Am1 1 , , , B Bm d 1 2 , , ( )… ∈B R : E y t ti j( ) ( – )∧ ∨( )σ ω σ 0 1 � � y t A y t Am m( ) , , ( )1 1 1 1 ∧ ∈ … ∧ ∈{ }σ σ × × 1 � � ω σ ω σ( – ) , , ( – )r B r Bm m1 10 0 2 2 ∨( ) ∈ … ∨( ) ∈{ } = = E y s si j y t A y t Am m ( ) ( – ) ( ) , , ( ) ∧ ∨( ) ∧ ∈ … ∧ ∈{ }σ ω σ σ σ0 1 1 1 1 1 � � × × 1 � � ω σ ω σ( – ) , , ( – )r B r Bm m1 10 0 2 2 ∨( ) ∈ … ∨( ) ∈{ }. ISSN 1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 11 O SXODYMOSTY REÍENYJ STOXASTYÇESKYX DYFFERENCYAL|NÁX … 1535 V kaçestve mnoΩestv Bi dostatoçno rassmotret\ tol\ko mnoΩestva, mera Lebeha hranyc¥ kotor¥x ravna 0. Budem pryblyΩat\ σ markovskymy momenta- my σk , hde σ ωk ( ) = l k2 , esly l k – 1 2 < σ ω( ) ≤ l k2 , l = 1 2; k , ω ∈Ω . Tohda po teoreme Duba (sm. [4], hlava I, teorema 6.11) l s j k r l Bk k t l ∈ [ )     ∈  ∑            N∩ � 1 2 2 2 1 1; – –E ω ω 1 × × E 1 1 σ σσ k k l i y t Ay t =  ∧ ∈{ }∧        2 1 1 ( ) ( ) � = = l s j k r l Bk k s l ∈ [ )     ∈  ∑            N∩ � 1 2 2 2 1 1; – –E ω ω 1 E 1 1 σ σσ k k l i y t Ay s =  ∧ ∈{ }∧        2 1 1 ( ) ( ) � . Perexodq k predelu po k, poluçaem trebuemoe ravenstvo dlq m1 = m2 = 1. Obwyj sluçaj dokaz¥vaetsq analohyçno. Lemma dokazana. Lemma 5. Sluçajn¥j process � z qvlqetsq martynhalom. Dokazatel\stvo. Analohyçno dokazatel\stvu pred¥duwej lemm¥ poluça- em, çto E � � y t z r r s( ) ( );∧ ≤{ }σ = � y s( )∧ σ p.n., E � � ω σ( ) ( );t z r r s∧ ∨( ) ≤{ }0 = � ω σ( – )s ∨( )0 p.n. Sledovatel\no, � z( )⋅ — martynhal. Lemma dokazana. Lemma 6. Dlq lgb¥x i, j λ s t y s y s a ai j≤ ={ }: ( ) – ( ) –2 1 = 0 p.n., hde λ — mera Lebeha. Dokazatel\stvo. Oboznaçym α = a2 – a1, l = ( , ): –v v v v1 2 2 1 ={ }α , lh = ( , ): – ( – ; )v v v v1 2 2 1 ∈ +{ }α αh h , h > 0. Tohda dlq lgboho h > 0 Eλ s t y s y s a ai j≤ ={ }: ( ) – ( ) –2 1 = Eλ s t y s y s li j≤ ( ) ∈{ }: ( ), ( ) ≤ ≤ Eλ s t y s y s li j h≤ ( ) ∈{ }: ( ), ( ) = E 0 t y s y s li j h dt∫ ( ) ∈{ }1 ( ), ( ) = = 0 t i j hy s y s l dt∫ ( ) ∈{ }P ( ), ( ) ≤ 0 t n i j hx s x s l dt n n∫ →∞ ( ) ∈{ }lim P ε ε( ), ( ) . Pust\ ISSN 1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 11 1536 T. V. MALOVYÇKO f ( , )v v1 2 = 0 1 2 2 1 2 1 2 2 1 2 1 2 1 2 , – – , – – , – ( – ; ), ( – – ), – . v v v v v v v v v v ≤ +( ) ∈ + ≥ +        α α α α α α h h h h h h Po formule Yto E( , ) ( ), ( )u u i j i j n n f x t x tε ε( ) = f u u( , )1 2 + E( , ) ( – ; ) ( ) – ( )u u t h h i j i j n n x s x s ds 0 ∫ + ( )1 α α ε ε – – E( , ) ( – ; ) ( ) – ( ) ( ) – ( ) –u u t h h i j i j i j n n n n n n x s x s x s r x s r drds 0 ∫ ∫+ ( ) ( ) ( )1 α α ε ε ε ε ε εϕ ϕ R . Budem rassmatryvat\ tol\ko ε < α 2D , hde D = diam supp ϕ. Tohda pry h < α / 2 y x si ε( ) – x sj ε ( ) ∈ (α – h; α + h) R ∫ ( ) ( )ϕ ϕε ε ε εx s r x s r dri j( ) – ( ) – ≤ 1 2 . Dejstvytel\no, poskol\ku ϕε( )u = p u a ε ϕ ε – 1    + q u a ε ϕ ε – 2    , to R ∫ ( ) ( )ϕ ϕε ε ε εx s r x s r dri j( ) – ( ) – = = pq r x s x s a a r dr i j R ∫ +    ϕ ε ϕε ε– ( ) – ( ) – ( )1 2 ≤ pq ≤ 1 2 vsledstvye toho, çto x s x si j ε ε ε ( ) – ( ) > α ε2 > D, x s x si j ε ε α ε ( ) – ( ) + > 2α ε – h > 3 2 α ε > 3D. Tohda E( , ) ( ), ( )u u i j i j n n f x t x tε ε( ) – f u u( – )1 2 = E( , ) ( – ; ) ( ) – ( )u u t h h i j i j n n x s x s ds 0 ∫ + ( )1 α α ε ε – – E( , ) ( – ; ) ( ) – ( ) ( ) – ( ) –u u t h h i j i j i j n n n n n n x s x s x s r x s r drds 0 ∫ ∫+ ( ) ( ) ( )1 α α ε ε ε ε ε εϕ ϕ R ≥ ≥ 1 2 0 E( , ) ( – ; ) ( ) – ( )u u t h h i j i j n n x s x s ds∫ + ( )1 α α ε ε = = 1 2 0 t u u i j i j n n x s x s h h ds∫ ∈ +{ }P( , ) ( ) – ( ) ( – ; )ε ε α α = ISSN 1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 11 O SXODYMOSTY REÍENYJ STOXASTYÇESKYX DYFFERENCYAL|NÁX … 1537 = 1 2 0 t u u i j hi j n n x s x s l ds∫ ( ) ∈{ }P( , ) ( ), ( ) )ε ε . Poskol\ku funkcyq f neotrycatel\na, to 1 2 0 t u u i j hi j n n x s x s l ds∫ ∈{ }P( , ) ( ) – ( ) )ε ε ≤ E( , ) ( ), ( )u u i j i j n n f x t x tε ε( ) = = E( , ) ( ) – ( ) ( – ; ) ( ) – ( ) –u u i j x t x t h hi j n n i jx t x t h n n 1 2 2 ε ε α α α ε ε +( ) ∈ +{ }1 + + E( , ) ( ) – ( ) ( ) – ( ) –u u i j x t x t hi j n n i jh x t x t n n 2 ε ε α α ε ε ( ) ≥ +{ }1 ≤ ≤ 2 2h <+< 4 2 2 2h x t x tu u i j i j n n E( , ) ( ) ( )ε ε α( ) + ( ) +( ) = 2 2h <+< 4 2 2h t + α . Sledovatel\no, Eλ s t y s y s a ai j≤ ={ }: ( ) – ( ) –2 1 ≤ ≤ 0 t n i j hx s x s l dt n n∫ →∞ ( ) ∈{ }lim ( ), ( )P ε ε ≤ lim sup ( ), ( ) n t i j hx s x s l dt n n→∞ ∫ ( ) ∈{ } 0 P ε ε ≤ ≤ 2 2h <+< 4 2 2h t + α → 0, h → 0 +. Takym obrazom, λ s t y s y s a ai j≤ ={ }: ( ) – ( ) –2 1 = 0 p.n. Lemma dokazana. Sledstvye. Ymeet mesto y yi j t , ≤ λ s t y s y si j≤ ={ }: ( ) ( ) . Lemma 7. Process � z qvlqetsq vynerovskym. Dokazatel\stvo. Najdem xarakterystyku � z : z t z ti j( ) ( ) = y t t y t ti i j j( ) ( – ) ( ) ( – )∧ + ∨( )( ) ∧ + ∨( )( )σ ω σ σ ω σ0 0 = = y t y ti j( ) ( )∧ ∧σ σ <+< ω σ ω σi jt t( – ) ( – )∨( ) ∨( )0 0 + + y t ti j( ) ( – )∧ ∨( )σ ω σ 0 <+< y t tj i( ) ( – )∧ ∨( )σ ω σ 0 = = y yi j t , ∧σ <+< ( – )t ijσ δ∨( )0 <+< θij t( ) = = ( )t ij∧ σ δ <+< ( – )t ijσ δ∨( )0 <+< θij t( ) = t ijδ <+< θij t( ) , tak kak pry i = j y yi j t , = t v sylu toho, çto yi — vynerovskyj process, a pry i ≠ j y yi j t , ∧σ ≤ λ σs t y s y si j≤ ∧ ={ }: ( ) ( ) = 0. PokaΩem, çto θij ( )⋅ — martynhal otnosytel\no potoka σ-alhebr Fs{ = = σ � z r( ){ ; r ≤ s ∧ }σ ; s ≥ }0 . Po postroenyg θij t( ) = y t ti j( ) ( – )∧ ∨( )σ ω σ 0 <+< y t tj i( ) ( – )∧ ∨( )σ ω σ 0 <+ ISSN 1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 11 1538 T. V. MALOVYÇKO +< m tij ( )∧ σ + ˆ ( – )m tij σ ∨( )0 , hde m tij ( ) = y t y ti j( ) ( ) – y yi j t , , ˆ ( )m tij = ω ωi jt t( ) ( ) – t ijδ . Process¥ mij ( )⋅ y ˆ ( )mij ⋅ — neprer¥vn¥e martynhal¥ otnosytel\no potokov σ-alhebr σ � y r( ){{ ; r ≤ s}; s ≥ 0} y σ ω � ( )r{{ ; r ≤ s}; s ≥ 0} sootvetstvenno. Po lemme<4 yi( )⋅ ∧ σ ω σj ( – )⋅ ∨( )0 qvlqetsq martynhalom otnosytel\no Fs{ ; s ≥ ≥ 0} . Sledovatel\no, θij ( )⋅ — martynhal. Takym obrazom, � z t = t I, y sohlasno teoreme Levy (sm. [4], hlava II, teorema 6.1) � z — d-mern¥j vynerov- skyj process. Lemma dokazana. Teorema. Semejstvo � xε{ ⋅( ) = x uε( , )1 ⋅( , … , x udε( , )⋅ )} slabo sxodytsq pry ε → 0 + v prostranstve C d0 1; ,[ ]( )R k � X( )⋅ = X u( , )1 ⋅( , … , X ud( , )⋅ ), hde X— potok Arrat\q. Dokazatel\stvo. Ostalos\ pokazat\, çto lgbaq predel\naq v slabom sm¥sle toçka � y semejstva � xε{ ; ε > 0} ravna po raspredelenyg � X( )⋅ . Kak uΩe otmeçalos\, yi — odnomern¥j vynerovskyj process dlq lgboho i. Poskol\ku dlq vsex ε > 0 P � xε ∈{ }G = 1, hde G = Rd d i ju u i j u u\ ( , , ):1 … ∃ ≠ ={ }, G = � � f C f u i d f t G td i i∈ [ ]( ) = = ∈ ∈[ ]{ }0 1 0 1 0 1; , : ( ) , , , ( ) , ;R , a mnoΩestvo G zamknuto, to v sylu xarakteryzacyy slaboj sxodymosty P � y ∈{ }G = 1. Tak kak do momenta pervoho v¥xoda yz mnoΩestva G process � y sovpadaet s vynerovskym processom � z , ohranyçenye raspredelenyq � y na G sovpadaet s ohranyçenyem vynerovskoj mer¥ na πto Ωe mnoΩestvo. Sledovatel\no, � � y Xd= . Teorema dokazana. 1. Arratia R. A. Brownian motion on the line: PhD dissertation. – Univ. Wisconsin, Madison, 1984. 2. Dorogovtsev A. A. One Brownian stochastic flow // Theory Stochast. Process. – 2004. – 10, # 3-4. – P. 21-25. 3. Kunita H. Stochastic flows and stochastic differential equations // Text. Monogr. Cambridge Stud. Adv. Math. – 1990. – 24. – 346 p. 4. Vatanabπ S., Ykπda N. Stoxastyçeskye dyfferencyal\n¥e uravnenyq y dyffuzyonn¥e process¥. – M.: Nauka, 1986. – 448 s. 5. Byllynhsly P. Sxodymost\ veroqtnostn¥x mer. – M.: Nauka, 1977. – 352 s. Poluçeno 22.05.07, posle dorabotky — 07.09.07 ISSN 1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 11