Bogolyubov averaging and normalization procedures in nonlinear mechanics. II

By using a new method suggested in the first part of the present work, we study systems which become linear in the zero approximation and have perturbations in the form of polynomials. This class of systems has numerous applications. The following fact is even more important: Our technique demonstra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:1994
Hauptverfasser: Mitropolsky, Yu.A., Lopatin, A.K.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 1994
Schriftenreihe:Український математичний журнал
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/164800
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Bogolyubov averaging and normalization procedures in nonlinear mechanics. II / Yu.A. Mitropolsky, A.K. Lopatin // Український математичний журнал. — 1994. — Т. 46, № 11. — С. 1509–1526. — Бібліогр.: 6 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:By using a new method suggested in the first part of the present work, we study systems which become linear in the zero approximation and have perturbations in the form of polynomials. This class of systems has numerous applications. The following fact is even more important: Our technique demonstrates how to generalize the classical method of Poincaré-Birkhoff normal forms and obtain new results by using group-theoretic methods. After a short exposition of the general theory of the method of asymptotic decomposition, we illustrate the new normalization technique as applied to models based on the Lotka-Volterra equations.