O некоторых экстремальных задачах теории аппроксимации функций в пространствах Sp,1≤p<∞

Збережено в:
Бібліографічні деталі
Дата:2006
Автори: Вакарчук, С.Б., Щитов, А.Н.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут математики НАН України 2006
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/164960
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:O некоторых экстремальных задачах теории аппроксимации функций в пространствах Sp,1≤p<∞ / С.Б. Вакарчук, А.Н. Щитов // Український математичний журнал. — 2006. — Т. 58, № 3. — С. 303-316. — Бібліогр.: 15 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-164960
record_format dspace
spelling irk-123456789-1649602020-02-12T01:28:48Z O некоторых экстремальных задачах теории аппроксимации функций в пространствах Sp,1≤p<∞ Вакарчук, С.Б. Щитов, А.Н. Статті 2006 Article O некоторых экстремальных задачах теории аппроксимации функций в пространствах Sp,1≤p<∞ / С.Б. Вакарчук, А.Н. Щитов // Український математичний журнал. — 2006. — Т. 58, № 3. — С. 303-316. — Бібліогр.: 15 назв. — рос. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/164960 517.5 ru Український математичний журнал Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language Russian
topic Статті
Статті
spellingShingle Статті
Статті
Вакарчук, С.Б.
Щитов, А.Н.
O некоторых экстремальных задачах теории аппроксимации функций в пространствах Sp,1≤p<∞
Український математичний журнал
format Article
author Вакарчук, С.Б.
Щитов, А.Н.
author_facet Вакарчук, С.Б.
Щитов, А.Н.
author_sort Вакарчук, С.Б.
title O некоторых экстремальных задачах теории аппроксимации функций в пространствах Sp,1≤p<∞
title_short O некоторых экстремальных задачах теории аппроксимации функций в пространствах Sp,1≤p<∞
title_full O некоторых экстремальных задачах теории аппроксимации функций в пространствах Sp,1≤p<∞
title_fullStr O некоторых экстремальных задачах теории аппроксимации функций в пространствах Sp,1≤p<∞
title_full_unstemmed O некоторых экстремальных задачах теории аппроксимации функций в пространствах Sp,1≤p<∞
title_sort o некоторых экстремальных задачах теории аппроксимации функций в пространствах sp,1≤p<∞
publisher Інститут математики НАН України
publishDate 2006
topic_facet Статті
url http://dspace.nbuv.gov.ua/handle/123456789/164960
citation_txt O некоторых экстремальных задачах теории аппроксимации функций в пространствах Sp,1≤p<∞ / С.Б. Вакарчук, А.Н. Щитов // Український математичний журнал. — 2006. — Т. 58, № 3. — С. 303-316. — Бібліогр.: 15 назв. — рос.
series Український математичний журнал
work_keys_str_mv AT vakarčuksb onekotoryhékstremalʹnyhzadačahteoriiapproksimaciifunkcijvprostranstvahsp1p
AT ŝitovan onekotoryhékstremalʹnyhzadačahteoriiapproksimaciifunkcijvprostranstvahsp1p
first_indexed 2025-07-14T17:42:39Z
last_indexed 2025-07-14T17:42:39Z
_version_ 1837645126255509504
fulltext UDK 517.5 S. B. Vakarçuk, A. N. Wytov (Akad. tamoΩ. sluΩb¥ Ukrayn¥, Dnepropetrovsk) O NEKOTORÁX ∏KSTREMAL|NÁX ZADAÇAX TEORYY APPROKSYMACYY FUNKCYJ V PROSTRANSTVAX Sp , 1 ≤≤≤≤ p < ∞∞∞∞ Properties of smoothness characteristics Ωm S f t p( , ) , m ∈N , t > 0 , of functions f x( ) which belong to the space S p , 1 ≤ < ∞p , introduced by A. I. Stepanets are considered and investigated. Exact Jackson-type inequalities are obtained and exact values of widths of classes of functions defined by means of Ωm S f t p( , ) are computed. Rozhlqnuto ta doslidΩeno vlastyvosti hladkisnyx xarakterystyk Ωm S f t p( , ) , m ∈N , t > 0 , funkcij f x( ), wo naleΩat\ uvedenomu O. I. Stepancem prostoru S p , 1 ≤ < ∞p . OderΩano toçni nerivnosti typu DΩeksona ta obçysleno toçni znaçennq popereçnykiv klasiv funkcij, vy- znaçenyx za dopomohog Ωm S f t p( , ) . 1. Pust\ Lp ≡ Lp ( [ – π, π ] ) , 1 ≤ p < ∞ , — prostranstvo 2π -peryodyçeskyx yzmerym¥x na [ – π, π ] funkcyj f ( x ) , ymegwyx koneçnug normu f p = f x dxp p ( ) / − ∫        π π 1 . Pry reßenyy v Lp mnohyx zadaç teoryy approksymacyy funkcyj v kaçestve xa- rakterystyky skorosty stremlenyq k nulg velyçyn yx nayluçßyx polynomy- al\n¥x pryblyΩenyj yspol\zugt, naprymer, modul\ neprer¥vnosty m-ho po- rqdka ωm pf t( , ) = sup ( ) :∆h m p f h t⋅ ≤ ≤{ }0 , t ≥ 0, (1) hde ∆h m f x( ) = ( ) ( )− +− =∑ 1 0 m j m j j m C f x jh — koneçnaq raznost\ m-ho porqdka funkcyy f v toçke x s ßahom h. Odnako v nekotor¥x zadaçax narqdu s (1) ys- pol\zuetsq velyçyna [1, 2] Ωm pf t( , ) = 1 0 1 t f dh t h m p p p ∫ ⋅       ∆ ( ) / , t > 0. (2) Naprymer, v rabote [1] nayluçßee pryblyΩenye funkcyj polynomamy po syste- me Xaara ocenyvaetsq ne s pomow\g modulq neprer¥vnosty pervoho porqdka, a posredstvom velyçyn¥ Ω1( , )f t p, kotoraq, kak pokazano v [3], πkvyvalentna ω1( , )f t p . Dlq yssledovanyq povedenyq nayluçßeho pryblyΩenyq funkcyj alhebray- çeskymy polynomamy v prostranstve L a bp([ , ]), p ≥ 1, y C a b([ , ]) K. H. Yvanov vvel v rassmotrenye nov¥j vyd m-modulej neprer¥vnosty τ λm p pf w( ; , ) ,′ , a takΩe yzuçyl yx svojstva y vzaymosvqzy s yzvestn¥my dyfferencyal\no-raz- nostn¥my xarakterystykamy funkcyj [4, 5]. Napomnym, çto τ-modulem neprer¥vnosty m-ho porqdka dlq f ( x )8∈ ∈ L p pmax( , )′ , hde p, p ′ ≥ 1, naz¥vagt velyçynu [5, 6] τ λm p pf w( , ; ) ,′ = w fm p p ( ) ( , ; ( ))⋅ ⋅ ⋅ ′ω λ , (3) © S. B. VAKARÇUK, A. N. WYTOV, 2006 ISSN 1027-3190. Ukr. mat. Ωurn., 2006, t. 58, # 3 303 304 S. B. VAKARÇUK, A. N. WYTOV hde λ ( x ) — proyzvol\naq opredelennaq na [ 0, 2π ] poloΩytel\naq 2π-peryo- dyçeskaq funkcyq, w ( x ) — neprer¥vnaq neotrycatel\naq peryoda 2π funk- cyq, ω λm pf x x( , ; ( )) ′ = 1 2 1 λ λ λ ( ) ( ) ( ) ( ) / x f x dh x x h m p p − ′ ′ ∫         ∆ . (4) Esly, naprymer, λ ( x ) ≡ t = const, f ( x ) ∈ Lp , w ( x ) ≡ 1 y p ′ ∈ [ 1, p ] , to τm p pf t( , ; ) ,1 ′ � ωm pf t( , ) , hde symvol � oznaçaet otnoßenye slaboj πkvyva- lentnosty. Otmetym, çto velyçyn¥ τm f t( , ; ) ,1 2 2 b¥ly yspol\zovan¥ v [6] dlq reßenyq rqda πkstremal\n¥x zadaç teoryy approksymacyy v L2 . Yz (3), (4), v çastnosty, sleduet τm p pf t( , ; ) ,1 = 1 2 1 t f dh t t h m p p p − ∫ ⋅         ∆ ( ) / , t > 0. (5) V sylu (2), (5) y toho fakta, çto ∆h m f ( )⋅ 2 2 = 2 12 1 ρk m k f kh( )( cos )− = ∞ ∑ , hde ρk f2( ) = a f b fk k 2 2( ) ( )+ , a a fk ( ) y b fk ( ) — koπffycyent¥ Fur\e funk- cyy f ( x ) , ymeem Ωm f t( , )2 = τm f t( , ; ) ,1 2 2 . Na osnovanyy yzloΩennoho opredelenn¥j ynteres, s naßej toçky zrenyq, predstavlqet yspol\zovanye xarakterystyk vyda (2) dlq reßenyq πkstremal\- n¥x zadaç teoryy approksymacyy v normyrovann¥x prostranstvax S p , vveden- n¥x A. Y. Stepancom v [7, 8]. 2. Napomnym, çto pod prostranstvom S p , 1 ≤ p < ∞ , ponymagt prostran- stvo 2π-peryodyçeskyx funkcyj f ( x ) , dlq kotor¥x f S p = ˆ ( ) / f k p k p ∈ ∑      Z 1 < ∞ , hde ˆ ( )f k = ( ) ( )/2 1 2π π π − − −∫ f x e dxikx (6) — koπffycyent¥ Fur\e funkcyy f ( x ) po tryhonometryçeskoj systeme ( ) exp( )/2 1 2π − ikx , k ∈ Z. Pust\ Ψ ( k ) y β ( k ) = βk , k ∈ N, — suΩenye na N proyzvol\n¥x vewest- venn¥x funkcyj Ψ ( x ) y β ( x ) , opredelenn¥x na polusehmente [ 1, ∞ ) . Pred- poloΩym, çto rqd k k k k kk a f kx b f kx = ∞ ∑ + + +{ } 1 1 2 2 Ψ ( ) ( )cos( ) ( )sin( )/ /β π β π qvlqetsq rqdom Fur\e nekotoroj summyruemoj funkcyy, kotorug, sohlasno [9], oboznaçym symvolom f xβ Ψ( ) y nazovem ( ),Ψ β -proyzvodnoj funkcyy f ( x ) . ISSN 1027-3190. Ukr. mat. Ωurn., 2006, t. 58, # 3 O NEKOTORÁX ∏KSTREMAL|NÁX ZADAÇAX TEORYY APPROKSYMACYY … 305 Pod L S p β Ψ( ), 1 ≤ p < ∞ , ponymaem mnoΩestvo funkcyj f ( x ) ∈ Lβ Ψ , ( ),Ψ β - proyzvodn¥e f xβ Ψ( ) kotor¥x prynadleΩat prostranstvu S p. V çastnosty, esly Ψ( )x x r= − , 0 < r < ∞ , y β ( x ) ≡ r, to yspol\zuem oboznaçenye L Sr p( ) . Dlq proyzvol\noho πlementa f ( x ) ∈ S p , 1 ≤ p < ∞ , po analohyy s (2) ras- smotrym velyçynu Ωm S f t p( , ) = 1 0 1 t f dh t h m S p p p∫ ⋅       ∆ ( ) / , t > 0. (7) S uçetom sootnoßenyq ∆h m S p f p( )⋅ = ˆ ( ) ( )f k m j e p j m m j ijkh k p = − ∈ ∑∑ −    0 1 Z = = 2 12 2mp p k mpf k kh/ /ˆ ( ) ( cos ) ∈ ∑ − Z (8) dlq analoha xarakterystyky (5) v prostranstve S p , a ymenno, τm S f t p( , ; )1 = 1 2 1 t f dh t t h m S p p p − ∫ ⋅         ∆ ( ) / , t > 0, ymeem Ωm S f t p( , ) = τm S f t p( , ; )1 . 3. Otmetym nekotor¥e svojstva velyçyn¥ (7). 1. Esly funkcyy f ( x ) y g ( x ) prynadleΩat prostranstvu S p , 1 ≤ p < < ∞ , to Ωm S f g t p( , )+ ≤ Ω Ωm S m S f t g tp p( , ) ( , )+ , t > 0. 2. Esly ωm S f t p( , ) = sup ( ) :∆h m S f h tp⋅ ≤ ≤{ }0 , to Ωm S f t p( , ) ≤ ≤ ωm S f t p( , ) dlq proyzvol\noho t > 0, hde f ( x ) ∈ S p , 1 ≤ p < ∞ . Dokazatel\stva dann¥x svojstv ne pryvodqtsq, poskol\ku ony oçevydn¥. 3. Dlq lgboho n = 2, 3, … y proyzvol\noho t > 0 v¥polnqetsq neraven- stvo Ωm S f nt p( , ) ≤ n f tm m S pΩ ( , ) , hde f ( x ) ∈ S p , 1 ≤ p < ∞ . Dokazatel\stvo. Nam potrebuetsq sledugwee sootnoßenye, spravedlyvoe dlq lgb¥x natural\n¥x çysel m y n [10, c. 158]: ∆nH m f x( ) = j n j n j n H m m m f x H j 1 20 1 0 1 0 1 1= − = − = − = ∑ ∑ ∑ ∑… +     ∆ ν ν . Otsgda ymeem ∆nH m S f p( )⋅ ≤ j n j n j n H m m Sm p f H j 1 20 1 0 1 0 1 1= − = − = − = ∑ ∑ ∑ ∑… ⋅ +     ∆ ν ν . (9) ISSN 1027-3190. Ukr. mat. Ωurn., 2006, t. 58, # 3 306 S. B. VAKARÇUK, A. N. WYTOV Vvodq mul\tyyndeks j = ( j1 , j2 , … , jm ) , dlq kotoroho j df= j m νν=∑ 1 , y pola- haq F xj ( ) df= f x H j m+( )=∑ νν 1 , zapys¥vaem ∆H m F kj ^ ( ) = ( ) ( )−     + +− = − −∑ ∫1 1 20 m m ikx m f x H H e dxλ λ π π λ π λ j = = ( ) ˆ( )−     − = ∑ 1 0 m m i kH ikH m e f k eλ λ λ λ j . (10) Tohda s uçetom (8) y (10) ymeem ∆H m S F pj ( )⋅ = ∆H m S f p( )⋅ . (11) V sylu (9) y (11) poluçaem ∆nH m S f p( )⋅ ≤ n fm H m S p∆ ( )⋅ . (12) Yspol\zuq formul¥ (7) y (12), zapys¥vaem Ωm S f nt p( , ) = 1 0 1 t f dH t nH m S p p p∫ ⋅       ∆ ( ) / ≤ n f tm m S pΩ ( , ) . Svojstvo 3 dokazano. 4. Dlq proyzvol\n¥x çysel r, m ∈ N, t > 0 y lgboj funkcyy f ( x )8∈ ∈ L Sr p( ), 1 ≤ p < ∞ , v¥polneno neravenstvo Ωr m S f t p+ ( , ) ≤ t f tr m r S pΩ ( , )( ) . Dokazatel\stvo. Dlq provedenyq dal\nejßyx rassuΩdenyj vospol\zuem- sq sledugwej formuloj [10, c. 159]: ∆h r f x( ) = 0 1 0 2 0 1 2 h h h r r rdu du f x u u u du∫ ∫ ∫… + + + …+( )( ) . (13) Uçyt¥vaq, çto ∆h r m f x+ ( ) = ∆ ∆h m h r f x( )( ) , y yspol\zuq (13), poluçaem ∆h r m f x+ ( ) = 0 1 0 2 0 1 2 h h h h m r r rdu du f x u u u du∫ ∫ ∫… + + + …+∆ ( )( ) . (14) Poskol\ku ∆h m r rf x u u u( )( )+ + + …+1 2 = ( ) ( )( )−     + + + + …+− = ∑ 1 0 1 2 m j j m r r m j f x jh u u u , yz (14) ymeem ∆h r m f x+ ( ) = ( ) ( )( )−     … + + + + …+− = ∑ ∫ ∫ ∫1 0 0 1 0 2 0 1 2 m j j m h h h r r r m j du du f x jh u u u du . ISSN 1027-3190. Ukr. mat. Ωurn., 2006, t. 58, # 3 O NEKOTORÁX ∏KSTREMAL|NÁX ZADAÇAX TEORYY APPROKSYMACYY … 307 Tohda s uçetom (6) zapys¥vaem ∆h r m f k+ ^̂ ( ) = ( ) ( ) ( )( )−     −{ }− = ∑ 1 1 1 0 m j j m ijkh ikh r r m j e ik e f k $$ . (15) Netrudno proveryt\, çto v sylu (8), oçevydnoho sootnoßenyq k er ikh r− − 1 = ( / ) sin2 2 k khr r ≤ hr y formul¥ (15) poluçym ∆h r m S f p + ⋅( ) ≤ h fr h m r S p∆ ( )( )⋅ . (16) Yz (7) y (16) ymeem trebuemoe neravenstvo Ωr m S f t p+ ( , ) ≤ 1 0 1 t h f dh t rp h m r S p p p∫ ⋅       ∆ ( ) / ( ) ≤ t f tr m r S pΩ ( , )( ) , t > 0. Svojstvo 4 dokazano. 5. Dlq proyzvol\noj funkcyy f ( x ) ∈ S p , 1 ≤ p < ∞ , y lgb¥x natural\n¥x çysel n < m ymeet mesto neravenstvo Ωm S f t p( , ) ≤ 2m n n S f t p − Ω ( , ) ∀ t > 0 . Dokazatel\stvo. Poskol\ku ∆h m f x( ) = ∆ ∆h m n h n f x− ( ( )) = ( ) ( )− −    +− − = − ∑ 1 0 m n j j m n h n m n j f x jh∆ , to oçevydno, çto ∆h m f k %% ( ) = ( ) ( )− −    − − = − ∑ 1 0 m n j j m n ijkh h n m n j e f k∆ %% . Tohda ∆h m S f p( )⋅ ≤ k h n p j m n m n j ijkh p p f k m n j e ∈ = − − −∑ ∑ − −           Z ∆ %% ( ) ( ) / 0 1 1 ≤ ≤ j m n h n S m n j f p = − ∑ −    ⋅ 0 ∆ ( ) = 2m n h n S f p − ⋅∆ ( ) . (17) Yz (7) y (17) poluçaem neravenstvo Ωm S f t p( , ) ≤ 2m n n S f t p − Ω ( , ) , svqz¥vagwee meΩdu soboj rassmatryvaem¥e xarakterystyky razlyçn¥x porqd- kov. Svojstvo 5 dokazano. 4. Vsgdu v dal\nejßem na opredelennug v p.82 funkcyg Ψ ( x ) , 1 ≤ x < ∞ , nalahaem rqd ohranyçenyj, a ymenno: Ψ ( x ) qvlqetsq poloΩytel\noj, mono- tonno ub¥vagwej k nulg pry vozrastanyy x y takoj, çto dlq vsex x ∈ [ 1, ∞ ) ISSN 1027-3190. Ukr. mat. Ωurn., 2006, t. 58, # 3 308 S. B. VAKARÇUK, A. N. WYTOV suwestvuet pervaq proyzvodnaq Ψ( )( )1 x . Polahaem, çto funkcyq Ψ( )( )1 x v toçkax oblasty opredelenyq udovletvorqet uslovyg px x xΨ Ψ( )( ) ( )1 + ≤ 0. (18) Prymeramy funkcyj, udovletvorqgwyx ukazann¥m trebovanyqm, qvlqgtsq, v çastnosty, x−γ y e x−γ pry 1 / p ≤ γ < ∞ , a takΩe 1 1/( ln( ))x x+ . Yzvestno [10, c. 162], çto v prostranstve C([ , ])− π π dlq funkcyy sin x ee modul\ neprer¥vnosty m-ho porqdka v¥raΩaetsq sootnoßenyem ωm x u(sin , ) = 2 2 0 2m m mu u usin , ; ,( / ) esly esly≤ ≤ ≥{ }π π . Polahaem ωm L tx p (sin , ) ([ , ])⋅ 0 df= 1 0 1 t x u du t m p p ∫       ω (sin , ) / , t > 0. Çerez E fn S p−1( ) oboznaçym nayluçßee pryblyΩenye funkcyy f ( x ) ∈ S p podprostranstvom Tn−1 tryhonometryçeskyx polynomov porqdka n – 1 v met- ryke prostranstva S p , t. e. E fn S p−1( ) = inf : ( )f T T xn S n np− ∈{ }− − −1 1 1T . Dlq proyzvol\noho mnoΩestva M ⊂ S p polahaem En S p−1( )M = sup ( ) : ( )E f f xn S p− ∈{ }1 M . Teorema-1. Pust\ funkcyq Ψ ( x ) udovletvorqet sformulyrovann¥m v p.84 trebovanyqm y ohranyçenyg (18). Tohda dlq proyzvol\n¥x çysel n, m ∈ N , 1 ≤ ≤ p < ∞ y 0 < t ≤ π ymegt mesto ravenstva sup ( ) ( ) ( , )( ) ( ) ( ) /f x L S f x n S m S p p p E f n f t n∈ /≡ − β β Ψ Ψ Ω Ψ const 1 = ωm L tx p (sin , ) ([ , ])⋅ − 0 1 . (19) Pust\ B — edynyçn¥j ßar v S p; F — v¥pukloe central\no-symmetryçnoe podmnoΩestvo v S p; Ln pS⊂ — n-mernoe podprostranstvo; L n pS⊂ — pod- prostranstvo korazmernosty n; V S p n: → L — neprer¥vn¥j lynejn¥j opera- tor, perevodqwyj πlement¥ prostranstva S p v Ln ; V S p n ⊥ →: L — nepre- r¥vn¥j operator lynejnoho proektyrovanyq prostranstva S p na podprostran- stvo Ln . Velyçyn¥ d F Sn p( , ) = inf sup inf L Ln p n p S f F g Sf g ⊂ ∈ ∈ − , δn pF S( , ) = inf inf sup :L Ln p p n p S V S f F Sf Vf ⊂ → ∈ − , b F Sn p( , ) = sup sup { } L Ln p nS F+ +⊂ ⊂ > 1 1 0 ε ε B∩ , ISSN 1027-3190. Ukr. mat. Ωurn., 2006, t. 58, # 3 O NEKOTORÁX ∏KSTREMAL|NÁX ZADAÇAX TEORYY APPROKSYMACYY … 309 d F Sn p( , ) = inf sup L Ln p n p S f F Sf ⊂ ∈ ∩ , pn pF S( , ) = inf inf sup :L Ln p p n p S V S f F S f V f ⊂ → ∈ ⊥ ⊥ − naz¥vagt sootvetstvenno kolmohorovskym, lynejn¥m, bernßtejnovskym, hel\- fandovskym y proekcyonn¥m n-popereçnykamy mnoΩestva F v prostranstve S p. MeΩdu ukazann¥my xarakterystykamy v¥polnqgtsq sledugwye sootno- ßenyq [11]: b F Sn p( , ) ≤ d F S d F S n p n p ( , ) ( , ) ≤ δn pF S( , ) ≤ pn pF S( , ). (20) Vopros¥, svqzann¥e s v¥çyslenyem n-popereçnykov nekotor¥x klassov funkcyj v prostranstvax S p , 1 ≤ p < ∞ , rassmatryvalys\, naprymer, v rabo- tax [12 – 15]. Çerez Φ ( t ) oboznaçym monotonno vozrastagwug neprer¥vnug na poluseh- mente 0 ≤ t < ∞ funkcyg takug, çto Φ ( 0 ) = 0. Pod L S p mβ Ψ Ω Φ( , , ) ponyma- em klass funkcyj f ( x ) ∈ L S p β Ψ( ), ( ),Ψ β -proyzvodn¥e kotor¥x udovletvorqgt pry lgbom t ∈ ( 0, 2π ] uslovyg Ω Ψ m S f t p( , )β ≤ Φ ( t ) . Teorema-2. Pust\ dlq funkcyy Φ ( t ) pry nekotorom n ∈ N v¥polneno us- lovye Φ Φ ( ) ( )/ t nπ 2 ≥ ω ω π m L tn m L x x p p (sin , ) (sin , ) ([ , ]) ([ , / ]) ⋅ ⋅ 0 0 2 , (21) hde 0 < t < ∞ , a funkcyq Ψ ( x ) udovletvorqet trebovanyqm, yzloΩenn¥m v formulyrovke teorem¥ 1. Tohda spravedlyv¥ ravenstva g L S Sn p m p 2 ( )( , , );β Ψ Ω Φ = g L S Sn p m p 2 1− ( )( , , );β Ψ Ω Φ = = E L Sn p m S p−1( )( , , )β Ψ Ω Φ = ω π πm Lx n np (sin , ) ( )([ , / ])⋅     − 0 2 1 2 Ψ Φ , (22) hde gn( )⋅ — lgboj yz rassmotrenn¥x ranee n -popereçnykov. Pry πtom mno- Ωestvo maΩorant, udovletvorqgwyx ohranyçenyg (21), ne pusto. 5. Dokazatel\stvo teorem¥-1. V [7] pokazano, çto prostranstva S p , 1 ≤ ≤ p < ∞ , nasledugt takug vaΩnug osobennost\ hyl\bertova prostranstva, kak mynymal\noe svojstvo çastn¥x summ rqda Fur\e. V çastnosty [15], E fn S p−1( ) = f S fn S p− −1( ) = ˆ ( ) / f k p k n p ≥ ∑         1 = π ρ 2 2 1 2 1          = ∞ ∑ / / ( ) k n k p p f , (23) hde S f xn−1( , ) = k n ikx f k e ≤ − ∑ 1 2 ˆ ( ) π — çastnaq summa rqda Fur\e S ( f , x ) ∼ k ikx f k e ∈ ∑ N ˆ ( ) 2π ISSN 1027-3190. Ukr. mat. Ωurn., 2006, t. 58, # 3 310 S. B. VAKARÇUK, A. N. WYTOV funkcyy f ( x ) ∈ S p ; ρk f( ) df= a f b fk k 2 2( ) ( )+ , a fk ( ) , b fk ( ) — koπffycyent¥ Fur\e funkcyy f ( x ) . Poskol\ku v sylu (8) ∆ Ψ h m S p f pβ ( )⋅ = π ρ β p m p k k p mpf kh/ ( ) / /( )( cos )2 1 1 2 1 22 1+ − = ∞ ∑ −Ψ y ρk f( ) = Ψ Ψ( ) ( )k fkρ β , to, yspol\zuq opredelenye velyçyn¥ Ωm S p( )⋅ , poluçaem Ω Ψ m p S f t n p( , )/β ≥ π ρp m p k n k p p t n mpnt f k kh dh/ ( ) / / /( ) ( ) ( cos )2 1 1 2 1 0 22 1+ − − = ∞ −∑ ∫ −Ψ . Rassmotrym vspomohatel\nug funkcyg γ ( x ) df= Ψ− ∫ −p t n mpx xh dh( ) ( cos ) / / 0 21 , hde 1 ≤ x < ∞ , y yssleduem ee povedenye. Dlq πtoho opredelym pervug pro- yzvodnug funkcyy γ ( x ) , yspol\zuq v xode v¥kladok proceduru v¥çyslenyq opredelennoho yntehrala po çastqm: γ ( )( )1 x = t xn xt n mp 1 2 −   cos / – – 1 11 1 0 2 x x px x x xh dhp t n mp Ψ Ψ Ψ+ + −∫( ) ( ) ( ) ( cos )( )( ) / / . V sylu (18) ymeem γ ( )( )1 x ≥ 0, 1 ≤ x < ∞ , t. e. γ ( x ) qvlqetsq neub¥vagwej funkcyej. Sledovatel\no, min ( ) :{ }γ x n x≤ < ∞ = γ ( )n . Uçyt¥vaq dann¥j fakt y yspol\zuq formulu (23), zapys¥vaem pryvedennug ranee ocenku snyzu velyçyn¥ Ω Ψ m p S f t n p( , )/β v vyde Ω Ψ m p S f t n p( , )/β ≥ π ρp m p p t n mp k n k pn n t nh dh f/ ( ) / / /( ) ( cos ) ( )2 1 1 2 0 22 1+ − − = ∞ ∫ ∑−               Ψ = = Ψ− −⋅p m L t p n p S n x E f p p( ) (sin , ) ( )([ , ])ω 0 1 . Otsgda ymeem ocenku sverxu sup ( ) ( ) ( , )( ) ( ) ( ) /f x L S f x n S m S p p p E f n f t n∈ /≡ − β β Ψ Ψ Ω Ψ const 1 ≤ ωm L tx p (sin , ) ([ , ])⋅ − 0 1 . (24) Rassmotrym funkcyg ˜( )f x df= 2/ cosπ nx , prynadleΩawug klassu L S p β Ψ( ), dlq kotoroj E fn S p−1( ˜ ) = 21/ p , ˜ ( )f xβ Ψ = 2 21/ /( ) cos( )π β πΨ− +n nx n y ∆ Ψ h m S f p ˜ ( )β ⋅ = 2 12 1 1 2m p mn nh/ / /( )( cos )+ − −Ψ . (25) ISSN 1027-3190. Ukr. mat. Ωurn., 2006, t. 58, # 3 O NEKOTORÁX ∏KSTREMAL|NÁX ZADAÇAX TEORYY APPROKSYMACYY … 311 Yspol\zuq opredelenye velyçyn¥ Ωm S p( )⋅ y formulu (25), pry 0 < t ≤ π po- luçaem Ω Ψ( / )˜ ,f t n S pβ = 21 1 0 / ([ , ])( ) (sin , )p m L tn x p Ψ− ⋅ω . Otsgda sleduet ocenka snyzu sup ( ) ( ) ( , )( ) ( ) ( ) /f x L S f x n S m S p p p E f n f t n∈ /≡ − β β Ψ Ψ Ω Ψ const 1 ≥ E f n f t n n S m S p p −1( ) ( / ) ˜ ( ) ˜ ,Ψ Ω Ψ β = ωm L tx p (sin , ) ([ , ])⋅ − 0 1 . (26) Sravnyvaq ocenky (24) y (26), poluçaem ravenstvo (19). Teorema 1 dokazana. 6. Dokazatel\stvo teorem¥-2. Yspol\zuq ravenstvo (19), v kotorom polahaem t = π / 2, a takΩe sootnoßenyq (20) y (23), zapys¥vaem ocenky sverxu g L S Sn p m p 2 ( )( , , );β Ψ Ω Φ ≤ g L S Sn p m p 2 1− ( )( , , );β Ψ Ω Φ ≤ ≤ p2 1n p m pL S S− ( )( , , );β Ψ Ω Φ ≤ E L Sn p m S p−1( )( , , )β Ψ Ω Φ ≤ ≤ ω π πm Lx n np (sin , ) ( )([ , / ])⋅     − 0 2 1 2 Ψ Φ . (27) Dlq poluçenyq ocenok snyzu, sohlasno (20), rassmotrym bernßtejnovskyj 2n-popereçnyk klassa L S p mβ Ψ Ω Φ( , , ) v S p y pokaΩem prynadleΩnost\ danno- mu klassu ßara B̃ df= T x T x n nn n n S m Lp p ( ) : (sin , ) ( )([ , / ])∈ ≤ ⋅    { }−T ω π π0 2 1 2 Ψ Φ . Dlq πtoho nam potrebuetsq neravenstvo [15] ( )Tn S pβ Ψ ≤ Ψ−1( )n Tn S p , (28) qvlqgweesq svoeobrazn¥m analohom neravenstva S. N. Bernßtejna dlq tryho- nometryçeskyx polynomov v prostranstve S p . Oçevydno, çto ∆ Ψ h m n S T p ( )β = 2 2 1 m n p mp k n p T k kh ( ) ( ) sin / β Ψ % ≤ ∑         . (29) Polahaem (sin )t ∗ df= sin , ; ,/ /t t tesly esly0 2 1 2≤ ≤ ≥{ }π π . Uçyt¥vaq, çto dlq proyzvol\noho çysla h y lgboho natural\noho çysla 1 ≤ ≤ k ≤ n v¥polnqetsq neravenstvo sin kh 2 ≤ sin nh 2    ∗ , a takΩe yspol\zuq (28), (29) y opredelenye Ωm S p( )⋅ , zapys¥vaem ocenku sverxu Ω Ψ m n S T t p ( ) ,β( ) ≤ Ψ− ⋅1 0( ) (sin , ) ([ , ])n x Tm L tn n Sp pω . (30) Dlq proyzvol\noho polynoma T xn( ) ˜∈ B v sylu (21) y (30) ymeem ISSN 1027-3190. Ukr. mat. Ωurn., 2006, t. 58, # 3 312 S. B. VAKARÇUK, A. N. WYTOV Ω Ψ m n S T t p ( ) ,β( ) ≤ ω ω π π m L tn m L x x n p p (sin , ) (sin , ) ([ , ]) ([ , / ]) ⋅ ⋅     0 0 2 2 Φ ≤ Φ ( t ) , hde 0 < t ≤ 2π . Sledovatel\no, spravedlyvo vklgçenye ˜ ( , , )B ⊂ L S p mβ Ψ Ω Φ . Yspol\zuq (20), poluçaem g L S Sn p m p 2 ( )( , , );β Ψ Ω Φ ≥ b L S Sn p m p 2 ( )( , , );β Ψ Ω Φ ≥ ≥ b Sn p 2 ( )˜ ,B ≥ ω π πm Lx n np (sin , ) ( )([ , / ])⋅     − 0 2 1 2 Ψ Φ . (31) Sopostavlqq sootnoßenyq (27) y (31), ymeem ravenstvo (22). V zaverßenye dokazatel\stva teorem¥ 2 pokaΩem, çto mnoΩestvo maΩorant Φ ( t ) , udovletvorqgwyx uslovyg (21), ne pusto. Dlq πtoho ubedymsq v tom, çto funkcyq ˜ ( )Φ t df= t pα / , hde α df= 2 12 0 2 mp m L px p / ([ , / ])(sin , )ω π⋅ −− , (32) udovletvorqet uslovyg (21) pry lgbom n. Uçyt¥vaq pryvedenn¥j v p. 4 vyd modulq neprer¥vnosty m-ho porqdka ωm x t(sin , ), perepys¥vaem formulu (32) v vyde α = π π 2 2 11 2 0 2 1 + −             −∫mp mpt dt/ / sin (33) y ocenyvaem velyçynu α sverxu y snyzu. Yspol\zuq sootnoßenye sin( )/t 2 > > 2 t /π , hde 0 < t < π / 2, yz (33) poluçaem neravenstvo α < mp . Dlq ocen- ky snyzu velyçyn¥ α pokaΩem v¥polnenye neravenstva 2 4 sin πu    < uπ/4 , hde 0 < u < 1 . Polahaq G ( u ) df= u uπ π/ sin( )/4 2 4− , vklgçaem v rassmotre- nye dlq udobstva rassuΩdenyj toçky u = 0 y u = 1. Oçevydno, çto v dosta- toçno maloj okrestnosty nulq G ( u ) df= u O uπ π/ /( )4 1 41 −( )− > 0. Dokazatel\stvo provedem metodom ot protyvnoho, polahaq, çto na yntervale ( 0, 1 ) suwestvuet nekotoraq toçka η, v kotoroj G ( u ) menqet znak. Poskol\ku G ( 0 ) = G ( 1 ) = 0, sohlasno teoreme Rollq pervaq proyzvodnaq G u( )( )1 = π π ππ 4 2 4 4 1 3 2u u/ / cos− −     dolΩna ymet\ ne menee dvux razlyçn¥x nulej na mnoΩestve ( 0, 1 ) , a tak kak G( )( )1 1 = 0, v sylu ukazannoj teorem¥ vtoraq proyzvodnaq G u( )( )2 = π π π π π 2 7 2 4 2 2 4 4 1 4/ /sin u u    − −    − takΩe dolΩna ymet\ na yntervale ( 0, 1 ) ne menee dvux razlyçn¥x nulej. Od- nako πto nevozmoΩno v sylu toho, çto G u( )( )2 , kak raznost\ v¥pukloj vverx y v¥pukloj vnyz funkcyj, moΩet ymet\ na ( 0, 1 ) ne bolee odnoho nulq. Polu- ISSN 1027-3190. Ukr. mat. Ωurn., 2006, t. 58, # 3 O NEKOTORÁX ∏KSTREMAL|NÁX ZADAÇAX TEORYY APPROKSYMACYY … 313 çennoe protyvoreçye dokaz¥vaet trebuemoe neravenstvo. Polahaq v nem u = = 2t /π , hde 0 < t < π / 2, ymeem 2 2 sin t    < 2 4t π π    / . Yspol\zuq dannoe sootnoßenye, yz (33) poluçaem α > π mp / 4. Takym obrazom, π mp / 4 < α < mp . (34) Dlq funkcyy ˜ ( )Φ t uslovye (21) prymet vyd 2tn π α    ≥ π τ τ τ τ π2 2 2 0 0 2tn d d mptn mp (sin ) (sin ) / / / ∗∫ ∫ . (35) V¥polnqq v sootnoßenyy (35) zamenu v = 2tn / π, poluçaem neravenstvo vα+1 ≥ (sin ) (sin ) / / / / τ τ τ τ π π 2 2 0 2 0 2 ∗∫ ∫ mp mp d d v , (36) hde 0 < v < ∞ , kotoroe nam y trebuetsq dokazat\. Oboznaçym Q ( v ) df= v v α π π τ τ τ τ + ∗ − ∫ ∫ 1 0 2 0 2 2 2 (sin ) (sin ) / / / / mp mp d d (37) y rassmotrym πtu funkcyg na otrezke [ 0, 1 ] , predvarytel\no doopredelyv ee v toçke v = 0 po neprer¥vnosty sprava nulev¥m znaçenyem. Yz (37) y (34) sle- duet, çto v dostatoçno maloj okrestnosty nulq Q ( v ) = v vα α+ −−1 1( )( )O mp > > 0. RassuΩdaq ot protyvnoho, pokaΩem, çto Q ( v ) > 0 na yntervale 0 < v < < 1 . PredpoloΩym, çto suwestvuet nekotoraq toçka ξ ∈ ( 0, 1 ) , v kotoroj Q ( v ) menqet znak. Poskol\ku Q ( 0 ) = Q ( 1 ) = 0, v sylu teorem¥ Rollq per- vaq proyzvodnaq Q ( )( )1 v dolΩna ymet\ na yntervale ( 0, 1 ) , po krajnej mere, dva razlyçn¥x nulq. Uçyt¥vaq formulu (33), zapys¥vaem Q ( )( )1 v = ( ) sinα πα+ −               1 2 4 v v mp . (38) Yz (38) oçevydno, çto Q( )( )1 0 = Q( )( )1 1 = 0. Sledovatel\no, vtoraq proyzvodnaq Q( )( )2 v = 2 1 2 2 3 1 2 3 mp mpmp mp G/ /( ) ˜ ( )− − −+ −       π α α π αv v , (39) hde ˜ ( )G v df= v v v1 2 2 4 − −        α π π sin sin mp , dolΩna ymet\ na yntervale ( 0, 1 ) ne menee trex razlyçn¥x nulej. Oçevydno, çto kolyçestvo peremen znaka funkcyy (39) opredelqetsq v¥raΩenyem, zapy- sann¥m v fyhurn¥x skobkax. Yssleduem dlq πtoho povedenye funkcyy ˜ ( )G v , v¥çyslyv ee pervug proyzvodnug ISSN 1027-3190. Ukr. mat. Ωurn., 2006, t. 58, # 3 314 S. B. VAKARÇUK, A. N. WYTOV ˜ ( )( )G 1 v = π π πα 2 2 4 1 2 v v v v− −       cos ( )sin mp F , hde F( )v df= 1 2 4 2 1 2 1 4+         − − −    tg ctg tg(π π α π π v v v v mp ( ) )/ . S uçetom (34) ymeem lim ( ) v v → +0 F = mp – α > 0, (40) lim ( ) v v → −1 0 F = 2 4 2 1 π π α πmp − − −    < 0. V sylu (40) y monotonnoho vozrastanyq funkcyj tg ctg( ) ( )/ /π πv v2 4 y tg( ) ( )/ /π πv v4 netrudno vydet\, çto F ( v ) menqet znak s plgsa na mynus pry vozrastanyy v ∈ ( 0, 1 ) . Sledovatel\no, neotrycatel\naq na otrezke [ 0, 1 ] funkcyq ˜ ( )G v qvlqetsq monotonno vozrastagwej pry 0 ≤ v ≤ λ y monoton- no ub¥vagwej pry λ < v ≤ 1 , hde F ( λ ) = 0. No tohda zapysannaq v fyhur- n¥x skobkax formul¥ (39) funkcyq dolΩna ymet\ ne bolee dvux razlyçn¥x nulej na yntervale ( 0, 1 ) . Yz poluçennoho protyvoreçyq sleduet, çto pry 0 < < v < 1 v¥polnqetsq neravenstvo Q( )v > 0. Pust\ v ∈ [ 1, 2 ] . Yz sootnoßenyj (34) y (38) ymeem Q( )( )1 2 = ( )( )/α α+ −1 2 2 2mp > ( )( )/ /α π+ −1 2 24 2mp mp > 0. (41) Na polusehmente 1 ≤ v < 2 zapyßem formulu (38) v vyde Q( )( )1 v = ( ) ( )/α α+ 1 2 2mp v vY , hde Y ( )v df= 2 4 2− −−     mp mp / v vα π sin , (42) y yssleduem povedenye funkcyy (42). Pry πtom Y ( )( )1 v = – π π π α4 4 4 1 v v v vcos sin            −mp X( ), hde X( )v df= mp −     4 4 α π π v v tg . Oçevydno, çto X ( v ) qvlqetsq monotonno ub¥vagwej funkcyej, dlq kotoroj v sylu (34) X ( 1 ) = 4 4( )/ /mpπ α π− < 0. Sledovatel\no, Y ( )( )1 0t > pry 1 ≤ v < < 2 . Poskol\ku Y ( )1 0= , to Y ( )v ≥ 0 , kohda 1 ≤ v < 2 , a πto, s uçetom (41), ravnosyl\no neravenstvu Q( )( )1 0v ≥ dlq 1 ≤ v ≤ 2 . Znaçyt, Q ( v ) qv- lqetsq neub¥vagwej funkcyej na otrezke [ 1, 2 ] . Uçyt¥vaq, çto Q( )1 0= , poluçaem trebuemoe neravenstvo Q( )v ≥ 0 pry 1 ≤ v ≤ 2 . Pust\ teper\ 2 ≤ v < ∞ . Tohda Q( )v = v v α π π τ τ π τ τ + − + −∫ ∫ 1 0 0 2 2 2 2 2 (sin ) ( ) (sin ) / / / / mp mp d d . ISSN 1027-3190. Ukr. mat. Ωurn., 2006, t. 58, # 3 O NEKOTORÁX ∏KSTREMAL|NÁX ZADAÇAX TEORYY APPROKSYMACYY … 315 S uçetom (33), (34) ymeem Q ( )( )1 v = ( )( )/α α+ −1 2 2v mp > 0. (43) Poskol\ku Q( )2 0≥ , v sylu (43) poluçaem Q( )v > 0 pry 2 < v < ∞ . Teorema 2 dokazana. Sledstvye-1. Pust\ funkcyq Ψ ( x ) udovletvorqet trebovanyqm teore- m¥81, a velyçyna α opredelqetsq sootnoßenyem (32). Tohda ymegt mesto sledugwye ravenstva: g L S Sn p m p 2 β Ψ Ω Φ( , , ˜ );( ) = g L S Sn p m p 2 1− ( )β Ψ Ω Φ( , , ˜ ); = = E L Sn p m S p− ( )1 β Ψ Ω Φ( , , ˜ ) = ω π π α m L p x n n p (sin , ) ( )([ , / ]) / ⋅     − 0 2 1 2 Ψ , hde 1 ≤ p < ∞ ; gn( )⋅ — lgboj yz rassmotrenn¥x v teoreme 2 n-popereçny- kov. 7. Vopros¥ naxoΩdenyq toçn¥x verxnyx hranej modulej koπffycyentov Fur\e na razlyçn¥x klassax funkcyj dejstvytel\noho peremennoho yzuçalys\ mnohymy matematykamy (sm., naprymer, [15]). Analohyçnaq zadaça, s naßej toçky zrenyq, predstavlqet opredelenn¥j ynteres y v rassmatryvaemom zdes\ sluçae. PredloΩenye-1. Pust\ v¥polnen¥ uslovyq teorem¥ 2. Tohda ymegt mes- to sledugwye ravenstva: sup ˆ ( ) ( ) ( , , ) ( ) f x L S f x p m f n ∈ /≡ β Ψ Ω Φ const = sup ˆ ( ) ( ) ( , , ) ( ) f x L S f x p m f n ∈ /≡ − β Ψ Ω Φ const = = 2 2 1 0 2 1− −⋅     / ([ , / ])(sin , ) ( )p m Lx n np ω π π Ψ Φ . (44) Dokazatel\stvo. Yz (23) y toho fakta, çto ˆ ( )f n = ˆ ( )f n− , dlq f ( x )8∈ ∈ S p poluçaem E fn S p−1( ) ≥ 21/ ˆ ( )p f n . Yz (22) y dannoho neravenstva sleduet ocenka sverxu sup ˆ ( ) ( ) ( , , ) ( ) f x L S f x p m f n ∈ /≡ β Ψ Ω Φ const ≤ 2 1 1 − − ( )/ ( , , )p n p m S E L S pβ Ψ Ω Φ ≤ ≤ 2 2 1 0 2 1− −⋅     / ([ , / ])(sin , ) ( )p m Lx n np ω π π Ψ Φ . (45) Dlq poluçenyq ocenky snyzu rassmotrym funkcyg f x∗( ) df= 2 2 2 2 1 0 2 1− − − ⋅     +     / ([ , / ])(sin , ) ( )p m L inx inx x n n e e p ω π π ππ Ψ Φ . Poskol\ku f S p∗ = ω π πm Lx n np (sin , ) ( )([ , / ])⋅     − 0 2 1 2 Ψ Φ , f x∗( ) prynadleΩyt ßaru B̃ yz teorem¥ 2, a znaçyt, y klassu L S p mβ Ψ Ω Φ( , , ) . Sledovatel\no, ISSN 1027-3190. Ukr. mat. Ωurn., 2006, t. 58, # 3 316 S. B. VAKARÇUK, A. N. WYTOV sup ˆ ( ) ( ) ( , , ) ( ) f x L S f x p m f n ∈ /≡ β Ψ Ω Φ const ≥ ˆ ( )f n∗ = 2 2 1 0 2 1− −⋅     / ([ , / ])(sin , ) ( )p m Lx n np ω π π Ψ Φ . (46) Sopostavlqq sootnoßenyq (45) y (46), poluçaem formulu (44), çto y zaverßaet dokazatel\stvo predloΩenyq 1. Sledstvye-2. Pust\ v¥polnen¥ uslovyq sledstvyq 1. Tohda dlq lgboho natural\noho çysla n y 1 ≤ p < ∞ spravedlyv¥ ravenstva sup ˆ ( ) ( ) ( , , ˜ ) ( ) f x L S f x p m f n ∈ /≡ β Ψ Ω Φ const = sup ˆ ( ) ( ) ( , , ˜ ) ( ) f x L S f x p m f n ∈ /≡ − β Ψ Ω Φ const = = 2 1 0 2 1− + −⋅     ( )/ ([ , / ]) / (sin , ) ( )α π α ω πp m L p x n np Ψ . 1. StoroΩenko ∏. A., Krotov V. H., Osval\d P. Prqm¥e y obratn¥e teorem¥ typa DΩeksona v8prostranstvax Lp , 0 1< <p // Mat. sb. – 1975. – 98, # 3. – S. 395 – 415. 2. Runovskyj K. V. O pryblyΩenyy semejstvamy lynejn¥x polynomyal\n¥x operatorov v8prostranstvax Lp , 0 1< <p // Tam Ωe. – 1994. – 185, # 8. – S. 81 – 102. 3. Runovskyj K. V. Ob odnoj ocenke dlq yntehral\noho modulq hladkosty // Yzv. vuzov. Mate- matyka. – 1992. – # 1. – S.878 – 80. 4. Ivanov K. G. New estimates of errors of quadrature formulae, formulae of numerical differention and interpolation // Anal. Math. – 1980. – 6, # 4. – P. 281 – 303. 5. Ivanov K. G. On a new characteristic of functions. I // Serdyka Bælh. Mat. spysanye. – 1982. – 8, # 3. – S.8262 – 279. 6. Vakarçuk S. B. O nayluçßyx polynomyal\n¥x pryblyΩenyqx v L2 nekotor¥x klassov 2π- peryodyçeskyx funkcyj y toçn¥x znaçenyqx yx n-popereçnykov // Mat. zametky. – 2001. – 70, # 3. – S. 334 – 345. 7. Stepanec A. Y. Approksymacyonn¥e xarakterystyky prostranstv S p ϕ // Ukr. mat. Ωurn. – 2001. – 53, # 3. – S.8392 – 416. 8. Stepanec A. Y., Serdgk A. S. Prqm¥e y obratn¥e teorem¥ teoryy pryblyΩenyq funkcyj v prostranstve S p // Tam Ωe. – 2002. – 54, # 1. – S.8106 – 124. 9. Stepanec A. Y. Klassyfykacyq y pryblyΩenye peryodyçeskyx funkcyj. – Kyev: Nauk. dumka, 1987. – 2688s. 10. Dzqd¥k V. K. Vvedenye v teoryg ravnomernoho pryblyΩenyq funkcyj polynomamy. – M.: Nauka, 1977. – 5128s. 11. Tyxomyrov V. M. Teoryq pryblyΩenyj // Ytohy nauky y texnyky. Sovr. problem¥ matema- tyky. Fundam. napravlenyq / VYNYTY. – 1987. – 14. – S.8103 – 260. 12. Vojcexovskyj V. R. Popereçnyky deqkyx klasiv z prostoru S p // Ekstremal\ni zadaçi teori] funkcij ta sumiΩni pytannq: Pr. In-tu matematyky NAN Ukra]ny. – 2003. – 46. – S.817 – 26. 13. Serdgk A. S. Popereçnyky v prostori S p klasiv funkcij, wo oznaçagt\sq modulqmy ne- perervnosti ]x ψ-poxidnyx // Tam Ωe. – S.8229 – 248. 14. Vakarçuk S. B. O nekotor¥x πkstremal\n¥x zadaçax teoryy approksymacyy v prostranstvax S p ( )1 ≤ < ∞p // VoroneΩ. zym. mat. ßkola „Sovremenn¥e metod¥ teoryy funkcyj y smeΩn¥e problem¥” (VoroneΩ, 26 qnv. – 82 fevr. 2003 h.). – VoroneΩ: VoroneΩ. un-t, 2003. – S.847 – 48. 15. Vakarçuk S. B. Neravenstva typa DΩeksona y toçn¥e znaçenyq popereçnykov klassov funk- cyj v prostranstvax S p , 1 ≤ < ∞p // Ukr. mat. Ωurn. – 2004. – 56, # 5. – S. 595 – 605. Poluçeno 29.06.2004 ISSN 1027-3190. Ukr. mat. Ωurn., 2006, t. 58, # 3