Some moment results about the limit of a martingale related to the supercritical branching random walk and perpetuities

Let M(n),n=1,2,..., be the supercritical branching random walk in which the family sizes may be infinite with positive probability. Assume that a natural martingale related to M(n), converges almost surely and in the mean to a random variable W. For a large subclass of nonnegative and concave functi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2006
1. Verfasser: Iksanov, О.М.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2006
Schriftenreihe:Український математичний журнал
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/164970
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Some moment results about the limit of a martingale related to the supercritical branching random walk and perpetuities / О.М. Iksanov // Український математичний журнал. — 2006. — Т. 58, № 4. — С. 451–471. — Бібліогр.: 23 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Let M(n),n=1,2,..., be the supercritical branching random walk in which the family sizes may be infinite with positive probability. Assume that a natural martingale related to M(n), converges almost surely and in the mean to a random variable W. For a large subclass of nonnegative and concave functions f , we provide a criterion for the finiteness of EWf(W). The main assertions of the present paper generalize some results obtained recently in Kuhlbusch’s Ph.D. thesis as well as previously known results for the Galton-Watson processes. In the process of the proof, we study the existence of the f-moments of perpetuities.