Topologically mixing maps and the pseudoarc

It is known that the pseudoarc can be constructed as the inverse limit of the copies of [0, 1] with one bonding map f which is topologically exact. On the other hand, the shift homeomorphism σ f is topologically mixing in this case. Thus, it is natural to ask whether f can be only mixing or must be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2014
Hauptverfasser: Drwiega, T., Oprocha, P.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2014
Schriftenreihe:Український математичний журнал
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/165132
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Topologically mixing maps and the pseudoarc / T. Drwiega, P. Oprocha // Український математичний журнал. — 2014. — Т. 66, № 2. — С. 176–186. — Бібліогр.: 16 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:It is known that the pseudoarc can be constructed as the inverse limit of the copies of [0, 1] with one bonding map f which is topologically exact. On the other hand, the shift homeomorphism σ f is topologically mixing in this case. Thus, it is natural to ask whether f can be only mixing or must be exact. It has been recently observed that, in the case of some hereditarily indecomposable continua (e.g., pseudocircles) the property of mixing of a bonding map implies its exactness. The main aim of the present article is to show that the indicated kind of forcing of recurrence is not the case for the bonding map defining the pseudoarc.