θ-centralizers on semiprime Banach *-algebras

We generalize the celebrated theorem of Johnson and prove that every left θ -centralizer on a semisimple Banach algebra with left approximate identity is continuous. We also investigate the generalized Hyers–Ulam–Rassias stability and the superstability of θ -centralizers on semiprime Banach *-algeb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2014
Hauptverfasser: Nikoufar, I., Rassias, Th.M.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2014
Schriftenreihe:Український математичний журнал
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/165306
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:θ-centralizers on semiprime Banach *-algebras / I. Nikoufar, Th.M. Rassias // Український математичний журнал. — 2014. — Т. 66, № 2. — С. 269–278. — Бібліогр.: 23 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-165306
record_format dspace
spelling irk-123456789-1653062020-02-14T01:26:25Z θ-centralizers on semiprime Banach *-algebras Nikoufar, I. Rassias, Th.M. Статті We generalize the celebrated theorem of Johnson and prove that every left θ -centralizer on a semisimple Banach algebra with left approximate identity is continuous. We also investigate the generalized Hyers–Ulam–Rassias stability and the superstability of θ -centralizers on semiprime Banach *-algebras. Шляхом узагальнення відомої теореми Джонсона доведено, що кожний лівий 0-централізатор на напівпростій банаховій алгебрі з лівою наближеною одиницею є неперервним. Також досліджено узагальнену стійкість Хайерса-Улама-Рассіаса та надстійкість θ-централізаторів на напівпростих *-алгебрах. 2014 Article θ-centralizers on semiprime Banach *-algebras / I. Nikoufar, Th.M. Rassias // Український математичний журнал. — 2014. — Т. 66, № 2. — С. 269–278. — Бібліогр.: 23 назв. — англ. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/165306 517.9 en Український математичний журнал Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Статті
Статті
spellingShingle Статті
Статті
Nikoufar, I.
Rassias, Th.M.
θ-centralizers on semiprime Banach *-algebras
Український математичний журнал
description We generalize the celebrated theorem of Johnson and prove that every left θ -centralizer on a semisimple Banach algebra with left approximate identity is continuous. We also investigate the generalized Hyers–Ulam–Rassias stability and the superstability of θ -centralizers on semiprime Banach *-algebras.
format Article
author Nikoufar, I.
Rassias, Th.M.
author_facet Nikoufar, I.
Rassias, Th.M.
author_sort Nikoufar, I.
title θ-centralizers on semiprime Banach *-algebras
title_short θ-centralizers on semiprime Banach *-algebras
title_full θ-centralizers on semiprime Banach *-algebras
title_fullStr θ-centralizers on semiprime Banach *-algebras
title_full_unstemmed θ-centralizers on semiprime Banach *-algebras
title_sort θ-centralizers on semiprime banach *-algebras
publisher Інститут математики НАН України
publishDate 2014
topic_facet Статті
url http://dspace.nbuv.gov.ua/handle/123456789/165306
citation_txt θ-centralizers on semiprime Banach *-algebras / I. Nikoufar, Th.M. Rassias // Український математичний журнал. — 2014. — Т. 66, № 2. — С. 269–278. — Бібліогр.: 23 назв. — англ.
series Український математичний журнал
work_keys_str_mv AT nikoufari thcentralizersonsemiprimebanachalgebras
AT rassiasthm thcentralizersonsemiprimebanachalgebras
first_indexed 2025-07-14T18:18:34Z
last_indexed 2025-07-14T18:18:34Z
_version_ 1837647386367754240
fulltext UDC 517.9 I. Nikoufar (Payame Noor Univ., Iran), Th. M. Rassias (Nat. Techn. Univ. Athens, Greece) θ-CENTRALIZERS ON SEMIPRIME BANACH ∗-ALGEBRAS θ-ЦЕНТРАЛIЗАТОРИ НА НАПIВПРОСТИХ БАНАХОВИХ ∗-АЛГЕБРАХ By generalizing the celebrated theorem of Johnson, we prove that every left θ-centralizer on a semisimple Banach algebra with left approximate identity is continuous. We also investigate the generalized Hyers – Ulam – Rassias stability and the superstability of θ-centralizers on semiprime Banach ∗-algebras. Шляхом узагальнення вiдомої теореми Джонсона доведено, що кожний лiвий θ-централiзатор на напiвпростiй банаховiй алгебрi з лiвою наближеною одиницею є неперервним. Також дослiджено узагальнену стiйкiсть Хайерса – Улама – Рассiаса та надстiйкiсть θ-централiзаторiв на напiвпростих ∗-алгебрах. 1. Introduction. The notion of centralizers has been generalized as θ-centralizer by Albas [1]. Let A be a ∗-algebra and θ be an algebra automorphism of A. A mapping T : A −→ A is called a left (right) θ-centralizer on A if T (xy) = T (x)θ(y) ( T (xy) = θ(x)T (y) ) holds for all x, y ∈ A. T is called a θ-centralizer if it is a left as well as a right θ-centralizer. The concept of left and right θ- centralizer covers the concept of left and right centralizer (in case θ = id, the identity automorphism on A). The properties of θ-centralizers have been studied by Albas [1], Ali and Haetinger [2], Cortis and Haetinger [7], Daif [8] and Ullah and Chaudhry [22]. A classical question in the theory of functional equations is the following: When is it true that a function which approximately satisfies a functional equation ζ must be close to an exact solution of ζ ? If the problem accepts a solution, we say that the equation ζ is stable. There are cases in which each approximate solution is actually a true solution. In such cases, we call the equation ζ superstable. The first stability problem concerning group homomorphisms was raised by Ulam [23] in 1940. Ulam problem was partially solved by Hyers [12] for Banach spaces. Hyers’ theorem was generalized by Aoki [3] for additive mappings and by Th. M. Rassias [21] for linear mappings by considering an unbounded Cauchy difference. The paper of Th. M. Rassias [21] has provided a lot of influence in the development of what is called the generalized Hyers – Ulam stability or the Hyers – Ulam – Rassias stability of functional equations. A generalization of the Th. M. Rassias theorem was obtained by Gavruta [11] in 1994 by replacing the unbounded Cauchy difference by a general control function in the spirit of Th. M. Rassias’ approach. Badora [5] proved the generalized Hyers – Ulam stability of ring homomorphisms, which generalizes the result of D. G. Bourgin. Miura [18] proved the generalized Hyers – Ulam stability of Jordan homomorphisms. For more details about the stability of functional equations see [9 – 14]. In Section 2, by generalizing the celebrated theorem of Johnson [17], we prove that every left θ-centralizer on a semisimple Banach algebra with a left approximate identity is continuous. In Section 3, we prove the superstability of θ-centralizers on semiprime Banach ∗-algebras and we provide conditions for which a given mapping f is a left (right) θ-centralizer. In Section 4, we investigate the generalized Hyers – Ulam stability of θ-centralizers on semiprime Banach ∗-algebras. Throughout this paper, it is assumed that A is a semiprime Banach (complex) ∗-algebra. c© I. NIKOUFAR, TH. M. RASSIAS, 2014 ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 2 269 270 I. NIKOUFAR, TH. M. RASSIAS 2. Automatic continuity of θ-centralizers. In this section, we show that every left (right) θ- centralizer is homogenous. Also, we apply a classical theorem of B. E. Johnson to prove that every left θ-centralizer on a semisimple Banach algebra with a left approximate identity is continuous. Following [6], a Banach algebra B is said to have a left approximate identity (in Cohen’s sense), if there exists a constant C, such that given ε > 0, and xi ∈ B, 1 ≤ i ≤ m, there exists an e ∈ B, satisfying ‖e‖ < C, ‖exi − xi‖ < ε. Proposition 2.1. Let B be a semiprime algebra. If T : B −→ B is a left (right) θ-centralizer, then T is homogenous. Proof. Set a := T (µx)− µT (x) for every x ∈ B and every µ ∈ C. Let y ∈ B. Then there exists a z ∈ B such that y = θ(z). Therefore, aya = ( T (µx)− µT (x) ) θ(z)a = ( T (µx)θ(z)− µT (x)θ(z) ) a = = ( T (µxz)− T (x)θ(µz) ) a = ( T (µxz)− T (xµz) ) a = 0. From the semiprimeness of B it follows that a = 0. Thus, T is homogenous. Proposition 2.1 is proved. We now generalize the result of [17] for continuity of θ-centralizers on Banach algebras. Theorem 2.1. Let B be a semisimple Banach algebra with a left approximate identity (in Cohen’s sense). If T : B −→ B is a left θ-centralizer, then T is linear and continuous. Proof. If x1, x2 ∈ B, then by Johnson’s Theorem (see [17]) one can find y1, y2, z ∈ B such that x1 = zy1 and x2 = zy2. Thus, T (x1 + x2) = T ( z(y1 + y2) ) = T (z)θ(y1 + y2) = = T (z)θ(y1) + T (z)θ(y2) = T (zy1) + T (zy2) = T (x1) + T (x2). Now, Proposition 2.1 implies T is linear. If xm ∈ B and xm → 0, then by Johnson’s Theorem (see [17]) it follows that there exists a z ∈ B and a sequence ym in B with ym → 0 such that xm = zym, m = 1, 2, . . . . Hence, T (xm) = T (zym) = T (z)θ(ym). But a classical theorem of B. E. Johnson (see [4]) yields θ(ym) → 0 as m → ∞. Therefore, T is continuous. Theorem 2.1 is proved. 3. Superstability. In this section, we prove the superstability of θ-centralizers on semiprime Banach ∗-algebras. Note that throughout this section n > 4 is a fixed integer. We first summarize the following corollaries from [22]. Corollary 3.1. If T : A −→ A is an additive mapping such that T (xx∗) = T (x)θ(x∗) holds for all x ∈ A, then T is a left θ-centralizer. Proof. The result follows from Theorem 2.2 of [22] and the fact that every complex ∗-algebra is a 2-torsion free ring. Corollary 3.2. If T : A −→ A is an additive mapping such that T (xx∗) = θ(x∗)T (x) holds for all x ∈ A, then T is a right θ-centralizer. ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 2 θ-CENTRALIZERS ON SEMIPRIME BANACH ∗-ALGEBRAS 271 Corollary 3.3. If T : A −→ A is an additive mapping such that T (xx∗) = T (x)θ(x∗) = = θ(x∗)T (x) holds for all x ∈ A, then T is a θ-centralizer. We now provide conditions which imply the superstability of θ-centralizers on semiprime Banach ∗-algebras. Theorem 3.1. Let p 6= 2 and α be nonnegative real numbers and f : A −→ A be a mapping such that ∥∥∥∥∥∥ 1 n− 2 n∑ i=1 f ( − xi + n∑ j=1,j 6=i xj ) − n−1∑ i=1 f(xi) ∥∥∥∥∥∥ ≤ ∥∥f(xn)∥∥, (3.1) ∥∥f(aa∗)− f(a)θ(a∗)∥∥ ≤ α‖a‖p (3.2) for all a, xi ∈ A, 1 ≤ i ≤ n. Then the mapping f : A −→ A is a linear left θ-centralizer. Moreover, if A is a semisimple Banach ∗-algebra with a left approximate identity (in Cohen’s sense), then f is continuous. Proof. Letting x1 = . . . = xn = 0 and using n > 4 we conclude that f(0) = 0. Letting x1 = x and x2 = . . . = xn = 0 we infer that f is odd for all x ∈ A. Setting x3 = . . . = xn = 0, we get 1 n− 2 ( f(−x1 + x2) + f(−x2 + x1) ) + f(x1 + x2) = f(x1) + f(x2) for all x1, x2 ∈ A. From the oddness of f it follows that f is additive. Assume that p < 2. By using the inequality (3.2), we have∥∥f(aa∗)− f(a)θ(a∗)∥∥ = 1 n2 ∥∥∥f((na)(na)∗)− f(na)θ((na)∗)∥∥∥ ≤ 1 n2 αnp‖a‖p for all a ∈ A. Thus, by letting n tend to ∞ in the last inequality, we obtain f(aa∗) = f(a)θ(a∗) for all a ∈ A. Hence Corollary 3.1 implies f is a left θ-centralizer. The additivity of f together with Proposition 2.1 yield f is linear. Moreover, the continuity of f follows from Theorem 2.1. Similarly, one can obtain the result for the case p > 2. Theorem 3.1 is proved. Theorem 3.2. Let p 6= 2 and α be nonnegative real numbers and f : A −→ A be a mapping satisfying the inequality (3.1) and∥∥f(aa∗)− θ(a∗)f(a)∥∥ ≤ α‖a‖p (3.3) for all a ∈ A. Then the mapping f : A −→ A is a linear right θ-centralizer. Proof. The proof is similar to the proof of Theorem 3.1 and the result follows from Corollary 3.2. Theorem 3.3. Let p 6= 2 and α be nonnegative real numbers and f : A −→ A be a mapping satisfying the inequality (3.1) and∥∥f(aa∗ + bb∗)− f(a)θ(a∗)− θ(b∗)f(b) ∥∥ ≤ α(‖a‖p + ‖b‖p) (3.4) for all a, b ∈ A. Then the mapping f : A −→ A is a linear θ-centralizer. Moreover, if A is a semi- simple Banach ∗-algebra with a left approximate identity (in Cohen’s sense), then f is continuous. Proof. Setting b = 0 in (3.4) and applying Theorem 3.1, we conclude that f is a linear left θ-centralizer. Letting a = 0 in (3.4) and using Theorem 3.2, we deduce that f is a right θ-centralizer. Theorem 3.3 is proved. ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 2 272 I. NIKOUFAR, TH. M. RASSIAS 4. Stability. In this section we prove the generalized Hyers – Ulam stability of θ-centralizers on semiprime Banach ∗-algebras. Throughout this section n > 3 is a fixed integer. The following lemma (see [19]) is needed in the rest of the paper. Lemma 4.1. Let X and Y be linear spaces. A mapping f : X −→ Y satisfies n∑ i=1 f ( − xi + n∑ j=1,j 6=i xj ) = (n− 2) n∑ i=1 f(xi) (4.1) for x1, . . . , xn ∈ X, if and only if f is additive. Theorem 4.1. Let f : A −→ A be a mapping for which f(0) = 0 and there exists a control function ϕ : An+1 −→ [0,∞) such that ϕ̃(x) := ∞∑ i=1 1 2i ϕ ( 2i−1x, 2i−1x, 0, . . . , 0 ) <∞, (4.2) lim k→∞ 1 2k ϕ ( 2kx1, . . . , 2 kxn, 2 ka ) = 0, (4.3) ∥∥∥∥∥ n∑ i=1 f ( − xi + n∑ j=1,j 6=i xj ) − (n− 2) n∑ i=1 f(xi) + f(aa∗)− f(a)θ(a∗) ∥∥∥∥∥ ≤ ≤ ϕ(x1, . . . , xn, a) (4.4) for all a, x1, . . . , xn ∈ A. Then there exists a unique linear left θ-centralizer T : A −→ A such that∥∥T (x)− f(x)∥∥ ≤ 1 n− 2 ϕ̃(x) (4.5) for all x ∈ A. Proof. Setting x1 = x2 = x, a = x3 = . . . = xn = 0 in (4.4) and using f(0) = 0, we obtain∥∥∥∥12f(2x)− f(x) ∥∥∥∥ ≤ 1 2(n− 2) ϕ(x, x, 0, . . . , 0) (4.6) for all x ∈ A. Applying induction method on m, we have∥∥∥∥ 1 2m f(2mx)− f(x) ∥∥∥∥ ≤ 1 n− 2 m∑ i=1 1 2i ϕ ( 2i−1x, 2i−1x, 0, . . . , 0 ) (4.7) for all x ∈ A. In order to show that the functions Tm(x) = 1 2m f(2mx) form a convergent sequence, we use the Cauchy convergence criterion. Replace x by 2lx and divide by 2l in (4.7), where l is an arbitrary positive integer, to find that∥∥∥∥ 1 2m+l f(2m+lx)− 1 2l f(2lx) ∥∥∥∥ ≤ 1 n− 2 m+l∑ i=1+l 1 2i ϕ ( 2i−1x, 2i−1x, 0, . . . , 0 ) ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 2 θ-CENTRALIZERS ON SEMIPRIME BANACH ∗-ALGEBRAS 273 for all positive integers m ≥ l and all x ∈ A. Hence by the Cauchy criterion the limit T (x) := := limm→∞ Tm(x) exists for each x ∈ A. By taking the limit as m → ∞ in (4.7) we see that the inequality (4.5) holds for all x ∈ A. Setting a = 0 in (4.4), we get∥∥∥∥∥ n∑ i=1 f ( − xi + n∑ j=1,j 6=i xj ) − (n− 2) n∑ i=1 f(xi) ∥∥∥∥∥ ≤ ϕ(x1, . . . , xn, 0) for all xi ∈ A, 1 ≤ i ≤ n. Replacing xi by 2mxi, 1 ≤ i ≤ n and dividing both sides by 2m and taking the limit as m → ∞ and using (4.3) we deduce that T satisfies (4.1). Thus, it follows from Lemma 4.1 that T is additive. Setting x1 = . . . = xn = 0 in (4.4), we get∥∥f(aa∗)− f(a)θ(a∗)∥∥ ≤ ϕ(0, . . . , 0, a) (4.8) for all a ∈ A. Replacing a by 2ma in (4.8) and dividing its both sides by 22m, we obtain∥∥∥∥ 1 22m f(22maa∗)− 1 2m f(2ma)θ(a∗) ∥∥∥∥ ≤ 1 22m ϕ ( 0, . . . , 0, 2ma ) for all a ∈ A. Taking the limit as m → ∞ and using (4.3), we conclude that T (aa∗) = T (a)θ(a∗). So Corollary 3.1 implies T is a left θ-centralizer. Now, let T ′ : A −→ A be another additive mapping satisfying (4.5). Consequently, we have∥∥T (x)− T ′(x)∥∥ = 1 2m ∥∥T (2mx)− T ′(2mx)∥∥ ≤ ≤ 1 2m (∥∥T (2mx)− f(2mx)∥∥+ ∥∥T ′(2mx)− f(2mx)∥∥) ≤ 2 2m(n− 2) ϕ̃(2mx) = = 2 n− 2 ∞∑ i=m+1 1 2i ϕ ( 2i−1x, 2i−1x, 0, . . . , 0 ) for all x ∈ A. The right-hand side tends to zero as m → ∞. This proves the uniqueness of T. The linearity of T follows from Proposition 2.1. Theorem 4.1 is proved. Theorem 4.2. Let f : A −→ A be a mapping for which f(0) = 0 and there exists a control function ϕ : An+1 −→ [0,∞) that satisfies (4.2), (4.3) and∥∥∥∥∥ n∑ i=1 f ( − xi + n∑ j=1,j 6=i xj ) − (n− 2) n∑ i=1 f(xi) + f(aa∗)− θ(a∗)f(a) ∥∥∥∥∥ ≤ ≤ ϕ(x1, . . . , xn, a) (4.9) for all a, x1, . . . , xn ∈ A. Then there exists a unique linear right θ-centralizer T : A −→ A such that, ∥∥T (x)− f(x)∥∥ ≤ 1 n− 2 ϕ̃(x) (4.10) for all x ∈ A. ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 2 274 I. NIKOUFAR, TH. M. RASSIAS Proof. The proof is similar to the proof of Theorem 4.1. Theorem 4.3. Let f : A −→ A be a mapping for which f(0) = 0 and there exists a control function φ : An+2 −→ [0,∞) such that φ̃(x) := ∞∑ i=1 1 2i φ ( 2i−1x, 2i−1x, 0, . . . , 0 ) <∞, (4.11) lim k→∞ 1 2k φ ( 2kx1, . . . , 2 kxn, 2 ka, 2kb ) = 0, (4.12) ∥∥∥∥∥ n∑ i=1 f ( − xi + n∑ j=1,j 6=i xj ) − (n− 2) n∑ i=1 f(xi)+ +f(aa∗ + bb∗)− f(a)θ(a∗)− θ(b∗)f(b) ∥∥∥∥∥ ≤ φ(x1, . . . , xn, a, b) (4.13) for all a, b, x1, . . . , xn ∈ A. Then there exists a unique linear θ-centralizer T : A −→ A such that ∥∥T (x)− f(x)∥∥ ≤ 1 n− 2 φ̃(x) (4.14) for all x ∈ A. Proof. Setting b = 0 in (4.13), we obtain∥∥∥∥∥ n∑ i=1 f ( − xi + n∑ j=1,j 6=i xj ) − (n− 2) n∑ i=1 f(xi) + f(aa∗)− f(a)θ(a∗) ∥∥∥∥∥ ≤ φ(x1, . . . , xn, a, 0) for all a, x1, . . . , xn ∈ A. By taking ϕ(x1, . . . , xn, a) := φ(x1, . . . , xn, a, 0) for all a, x1, . . . , xn ∈ A and applying the same method as in the proof of Theorem 4.1, we obtain the Cauchy sequence{ 1 2m f(2mx) } for all x ∈ A. Completeness of A gives a unique mapping T : A −→ A which is a linear left θ-centralizer and ∥∥T (x)− f(x)∥∥ ≤ 1 n− 2 ϕ̃(x) = 1 n− 2 φ̃(x). (4.15) Setting a = 0 in (4.13), we obtain∥∥∥∥∥ n∑ i=1 f ( − xi + n∑ j=1,j 6=i xj ) − (n− 2) n∑ i=1 f(xi) + f(bb∗)− θ(b∗)f(b) ∥∥∥∥∥ ≤ φ(x1, . . . , xn, 0, b) for all b, x1, . . . , xn ∈ A. By taking ϕ(x1, . . . , xn, b) := φ(x1, . . . , xn, 0, b) for all b, x1, . . . , xn ∈ A and applying the same method as in the proof of Theorem 4.2, we obtain the above Cauchy sequence which converges to the mapping T : A −→ A. Now, Theorem 4.2 implies the mapping T is a linear right θ-centralizer and satisfies (4.15). Therefore, T is a unique linear θ-centralizer satisfying (4.14). Theorem 4.3 is proved. ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 2 θ-CENTRALIZERS ON SEMIPRIME BANACH ∗-ALGEBRAS 275 Corollary 4.1. Let α and rj , 1 ≤ j ≤ n+2, be nonnegative real numbers such that 0 < rj < 1. Suppose that a mapping f : A −→ A with f(0) = 0 satisfies∥∥∥∥∥ n∑ i=1 f ( − xi + n∑ j=1,j 6=i xj ) − (n− 2) n∑ i=1 f(xi) + f(xn+1x ∗ n+1 + xn+2x ∗ n+2)− −f(xn+1)θ(x ∗ n+1)− θ(x∗n+2)f(xn+2) ∥∥∥∥∥ ≤ α n+2∑ j=1 ‖xj‖rj (4.16) for all x1, . . . , xn+2 ∈ A. Then there exists a unique linear θ-centralizer T : A −→ A such that∥∥T (x)− f(x)∥∥ ≤ α n− 2 ( ‖x‖r1 2− 2r1 + ‖x‖r2 2− 2r2 ) for all x ∈ A. Proof. It is an immediate consequence of Theorem 4.3 by taking φ(x1, . . . , xn+2) := α n+2∑ j=1 ‖xj‖rj for all x1, . . . , xn+2 ∈ A. The following Corollary is Isac – Rassias type stability (see [15, 16]) for θ-centralizers on semiprime Banach ∗-algebras. Corollary 4.2. Let ψ : R+ ∪ {0} −→ R+ ∪ {0} be a function with ψ(0) = 0 such that lim t→∞ ψ(t) t = 0, ψ(ts) ≤ ψ(t)ψ(s) for t, s ∈ R+, and ψ(t) < t for t > 1. Suppose that α is a nonnegative real number and f : A −→ A is a mapping with f(0) = 0 satisfies∥∥∥∥∥ n∑ i=1 f ( − xi + n∑ j=1,j 6=i xj ) − (n− 2) n∑ i=1 f(xi) + f(xn+1x ∗ n+1 + xn+2x ∗ n+2)− −f(xn+1)θ(x ∗ n+1)− θ(x∗n+2)f(xn+2) ∥∥∥∥∥ ≤ α n+2∑ j=1 ψ ( ‖xj‖ ) for all x1, . . . , xn+2 ∈ A. Then there exists a unique linear θ-centralizer T : A −→ A such that∥∥T (x)− f(x)∥∥ ≤ 2αψ(2)ψ(2−1) (n− 2)(2− ψ(2)) ψ ( ‖x‖ ) for all x ∈ A. Proof. The result follows from Theorem 4.3 by letting φ(x1, . . . , xn+2) := α n+2∑ j=1 ψ ( ‖xj‖ ) for all x1, . . . , xn+2 ∈ A. ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 2 276 I. NIKOUFAR, TH. M. RASSIAS Theorem 4.4. Let f : A −→ A be a mapping for which there exists a control function ϕ : An+1 −→ −→ [0,∞) that satisfies (4.4) and ϕ̃(x) := ∞∑ i=1 2iϕ ( 1 2i−1 x, 1 2i−1 x, 0, . . . , 0 ) <∞, (4.17) lim k→∞ 4kϕ (x1 2k , . . . , xn 2k , a 2k ) = 0 (4.18) for all a, x1, . . . , xn ∈ A. Then there exists a unique linear left θ-centralizer T : A −→ A such that∥∥T (x)− f(x)∥∥ ≤ 1 n− 2 ϕ̃(x) (4.19) for all x ∈ A. Proof. Setting a = x1 = . . . = xn = 0 in (4.18) we conclude that ϕ(0, . . . , 0) = 0. Setting a = x1 = . . . = xn = 0 in (4.4) and using n > 3 we see that f(0) = 0. Therefore by a similar calculation as in the proof of Theorem 4.1 we can obtain (4.6). Now, replace x by x 2 and multiply both sides by 2 in (4.6), to get∥∥∥f(x)− 2f (x 2 )∥∥∥ ≤ 1 n− 2 ϕ (x 2 , x 2 , 0, . . . , 0 ) for all x ∈ A. Using induction method on m, we have∥∥∥f(x)− 2mf ( x 2m )∥∥∥ ≤ 1 n− 2 m∑ i=1 2i−1ϕ ( x 2i , x 2i , 0, . . . , 0 ) (4.20) for all x ∈ A. Replacing x by x 2l and multiplying by 2l in (4.20), where l is an arbitrary positive integer, we get ∥∥∥2lf ( x 2l ) − 2m+lf ( x 2m+l )∥∥∥ ≤ 1 n− 2 m+l∑ i=1+l 2i−1ϕ ( x 2i , x 2i , 0, . . . , 0 ) (4.21) for all positive integers m ≥ l. Due to completeness of A the sequence { 2mf ( x 2m )} converges for all x ∈ A. Hence we can define the mapping T : A −→ A by T (x) := limn→∞ 2mf ( x 2m ) . By taking the limit as m→∞ in (4.20) we obtain the desired inequality (4.19). The rest of the proof is similar to the proof of Theorem 4.1 and we omit it. Theorem 4.5. Let f : A −→ A be a mapping for which there exists a control function ϕ : An+1 −→ [0,∞) that satisfies (4.9), (4.17) and (4.18). Then there exists a unique linear right θ-centralizer T : A −→ A that satisfies the inequality (4.19). Theorem 4.6. Let f : A −→ A be a mapping for which there exists a control function φ : An+2 −→ [0,∞) that satisfies (4.13) and φ̃(x) := ∞∑ i=1 2iφ ( 1 2i−1 x, 1 2i−1 x, 0, . . . , 0 ) <∞, (4.22) ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 2 θ-CENTRALIZERS ON SEMIPRIME BANACH ∗-ALGEBRAS 277 lim k→∞ 4kφ ( x1 2k , . . . , xn 2k , a 2k , b 2k ) = 0 (4.23) for all a, b, x1, . . . , xn ∈ A. Then there exists a unique linear θ-centralizer T : A −→ A such that∥∥T (x)− f(x)∥∥ ≤ 1 n− 2 φ̃(x) (4.24) for all x ∈ A. Corollary 4.3. Let α and rj , 1 ≤ j ≤ n + 2, be nonnegative real numbers such that rj > 1. Suppose that a mapping f : A −→ A satisfies (4.16). Then there exists a unique linear θ-centralizer T : A −→ A such that∥∥T (x)− f(x)∥∥ ≤ 2α n− 2 ( 2r1 2r1 − 2 ‖x‖r1 + 2r2 2r2 − 2 ‖x‖r2 ) for all x ∈ A. Proof. It is enough to define φ(x1, . . . , xn+2) := α n+2∑ j=1 ‖xj‖rj for all x1, . . . , xn+2 ∈ A and apply Theorem 4.6. Remark 4.1. In Theorems 4.3, 4.4, and 4.6 and Corollaries 4.1, 4.2, and 4.3 if A is replaced by a semisimple Banach ∗-algebra with a left approximate identity (in Cohen’s sense), then T is continuous. Note that in this case the result follows from Theorem 2.1. 1. Albas E. On T -centralizers of semiprime rings // Sib. Math. J. – 2007. – 48, № 2. – P. 191 – 196. 2. Ali S., Haetinger C. Jordan α-centralizers in rings and some applications // Bol. Soc. paran. mat. – 2008. – 26, № 1 – 2. – P. 71 – 80. 3. Aoki T. On the stability of the linear transformation in Banach spaces // J. Math. Soc. Jap. – 1950. – 2. – P. 64 – 66. 4. Aupetit B. A primer on spectral theory. – New York, Inc.: Springer-Verlag, 1991. 5. Badora R. On approximate derivations // Math. Inequal. and Appl. – 2006. – 9. – P. 167 – 173. 6. Cohen P. J. Factorization in group algebras // Duke Math. J. – 1959. – 26. – P. 199 – 205. 7. Cortis W., Haetinger C. On Lie ideals and left Jordan σ-centralizers of 2-torsion free rings // Math. J. Okayama Univ. – 2009. – 51. – P. 111 – 119. 8. Daif M. N., Al-Sayiad M. S. T., Muthana N. M. An identity on θ-centralizers of semiprime rings // Int. Math. Forum. – 2008. – 3, № 19. – P. 937 – 944. 9. Nikoufar I. Generalized Jordan derivations on Frechet algebras // Function. Anal., Approxim. and Comp. – 2013. – 5, № 2. – P. 59 – 66. 10. Faizev V. A., Rassias Th. M., Sahoo P. K. The space of (ψ, γ)-additive mappings on semigroups // Trans. Amer. Math. Soc. – 2002. – 354, № 11. – P. 4455 – 4472. 11. Gavruta P. A generalization of the Hyers – Ulam – Rassias stability of approximately additive mappings // J. Math. Anal. and Appl. – 1994. – 184. – P. 431 – 436. 12. Hyers D. H. On the stability of the linear functional equation // Proc. Nat. Acad. Sci. USA. – 1941. – 27. – P. 222 – 224. 13. Hyers D. H., Isac G., Rassias Th. M. Stability of functional equations in several variables. – Boston: Birkhäuser, 1998. 14. Hyers D. H., Rassias Th. M. Approximate homomorphisms // Aequat. math. – 1992. – 44. – P. 125 – 153. 15. Isac G., Rassias Th. M. On the Hyers – Ulam stability of ψ-additive mappings // J. Approxim. Theory. – 1993. – 72. – P. 131 – 137. ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 2 278 I. NIKOUFAR, TH. M. RASSIAS 16. Isac G., Rassias Th. M. Stability of ψ-additive mappings // Appl. Nonlinear Anal., Int. J. Math. and Math. Sci. – 1996. – 19, № 2. – P. 219 – 228. 17. Johnson B. E. Continuity of centralizers on Banach algebras // J. London Math. Soc. – 1966. – 41. – P. 639 – 640. 18. Miura T., Takahashi S. E., Hirasawa G. Hyers – Ulam – Rassias stability of Jordan homomorphisms on Banach algebras // J. Inequal. and Appl. – 2004. – 1. – P. 435 – 441. 19. Najati A., Rassias Th. M. Stability of homomorphisms and (θ, φ)-derivations // Appl. Anal. Discrete Math. – 2009. – 3. – P. 264 – 281. 20. Park C. Homomorphisms between Poisson JC∗-algebras // Bull. Bras. Math. Soc. – 2005. – 36. – P. 79 – 97. 21. Rassias Th. M. On the stability of the linear mapping in Banach spaces // Proc. Amer. Math. Soc. – 1978. – 72. – P. 297 – 300. 22. Ullah Z., Chaudhry M. A. θ-centralizers of rings with involution // Int. J. Algebra. – 2010. – 4, № 17. – P. 843 – 850. 23. Ulam S. M. A collection of mathematical problems // Intersci. Tracts Pure and Appl. Math. – New York: Intersci. Publ., 1960. Received 09.12.11 ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 2