New Inequalities for the p-Angular Distance in Normed Spaces with Applications

Збережено в:
Бібліографічні деталі
Дата:2015
Автор: Dragomir, S.S.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2015
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/165398
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:New Inequalities for the p-Angular Distance in Normed Spaces with Applications / S.S. Dragomir // Український математичний журнал. — 2015. — Т. 67, № 1. — С. 19–31. — Бібліогр.: 14 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-165398
record_format dspace
spelling irk-123456789-1653982020-02-14T01:27:11Z New Inequalities for the p-Angular Distance in Normed Spaces with Applications Dragomir, S.S. Статті 2015 Article New Inequalities for the p-Angular Distance in Normed Spaces with Applications / S.S. Dragomir // Український математичний журнал. — 2015. — Т. 67, № 1. — С. 19–31. — Бібліогр.: 14 назв. — англ. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/165398 517.5 en Український математичний журнал Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Статті
Статті
spellingShingle Статті
Статті
Dragomir, S.S.
New Inequalities for the p-Angular Distance in Normed Spaces with Applications
Український математичний журнал
format Article
author Dragomir, S.S.
author_facet Dragomir, S.S.
author_sort Dragomir, S.S.
title New Inequalities for the p-Angular Distance in Normed Spaces with Applications
title_short New Inequalities for the p-Angular Distance in Normed Spaces with Applications
title_full New Inequalities for the p-Angular Distance in Normed Spaces with Applications
title_fullStr New Inequalities for the p-Angular Distance in Normed Spaces with Applications
title_full_unstemmed New Inequalities for the p-Angular Distance in Normed Spaces with Applications
title_sort new inequalities for the p-angular distance in normed spaces with applications
publisher Інститут математики НАН України
publishDate 2015
topic_facet Статті
url http://dspace.nbuv.gov.ua/handle/123456789/165398
citation_txt New Inequalities for the p-Angular Distance in Normed Spaces with Applications / S.S. Dragomir // Український математичний журнал. — 2015. — Т. 67, № 1. — С. 19–31. — Бібліогр.: 14 назв. — англ.
series Український математичний журнал
work_keys_str_mv AT dragomirss newinequalitiesforthepangulardistanceinnormedspaceswithapplications
first_indexed 2025-07-14T18:24:02Z
last_indexed 2025-07-14T18:24:02Z
_version_ 1837647730478940160
fulltext UDC 517.5 S. S. Dragomir (College Eng. and Sci., Victoria Univ., Melbourne City, Australia; School Comput. and Appl. Math., Univ. Witwatersrand, Johannesburg, South Africa) NEW INEQUALITIES FOR THE p-ANGULAR DISTANCE IN NORMED SPACES WITH APPLICATIONS НОВI НЕРIВНОСТI ДЛЯ p-КУТОВОЇ ВIДСТАНI В НОРМОВАНИХ ПРОСТОРАХ ТА ЇХ ЗАСТОСУВАННЯ For nonzero vectors x and y in the normed linear space (X, ‖ · ‖) , we can define the p-angular distance by αp[x, y] := ∥∥‖x‖p−1x− ‖y‖p−1y ∥∥ . We show (among other results) that, for p ≥ 2, αp[x, y] ≤ p‖y − x‖ 1∫ 0 ‖(1− t)x+ ty‖p−1 dt ≤ ≤ p‖y − x‖ [ ‖x‖p−1 + ‖y‖p−1 2 + ∥∥∥x+ y 2 ∥∥∥p−1 ] ≤ ≤ p‖y − x‖‖x‖ p−1 + ‖y‖p−1 2 ≤ p‖y − x‖ [max {‖x‖, ‖y‖}]p−1 , for any x, y ∈ X. This improves a result of Maligranda from [Simple norm inequalities // Amer. Math. Month. – 2006. – 113. – P. 256 – 260] who proved the inequality between the first and last terms in the estimation presented above. The applications to functions f defined by power series in estimating a more general “distance” ‖f (‖x‖)x− f (‖y‖) y‖ for some x, y ∈ X are also presented. Для ненульових векторiв x та y в лiнiйному нормованому просторi (X, ‖ · ‖) можна визначити p-кутову вiдстань таким чином: αp[x, y] := ∥∥‖x‖p−1x− ‖y‖p−1y ∥∥ . У роботi, зокрема, показано, що αp[x, y] ≤ p‖y − x‖ 1∫ 0 ‖(1− t)x+ ty‖p−1 dt ≤ ≤ p‖y − x‖ [ ‖x‖p−1 + ‖y‖p−1 2 + ∥∥∥x+ y 2 ∥∥∥p−1 ] ≤ ≤ p‖y − x‖‖x‖ p−1 + ‖y‖p−1 2 ≤ p‖y − x‖ [max {‖x‖, ‖y‖}]p−1 для p ≥ 2 i будь-яких x, y ∈ X. Це покращує результат Малiгранди [Simple norm inequalities // Amer. Math. Month. – 2006. – 113. – P. 256 – 260], який встановив нерiвнiсть мiж першим та останнiм членами вказаної оцiнки. Також наведено застосування для функцiй f, визначених степеневими рядами при оцiнюваннi бiльш загальної „вiдстанi” ‖f (‖x‖)x− f (‖y‖) y‖ для деяких x, y ∈ X. 1. Introduction. Following [3, p. 403] or [12], for nonzero vectors x and y in the normed linear space (X, ‖ · ‖) we define the angular distance α[x, y] between x and y by α[x, y] := ∥∥∥∥ x ‖x‖ − y ‖y‖ ∥∥∥∥ . c© S. S. DRAGOMIR, 2015 ISSN 1027-3190. Укр. мат. журн., 2015, т. 67, № 1 19 20 S. S. DRAGOMIR In 1958, Massera and Schäffer [12] (Lemma 5.1) showed that α[x, y] ≤ 2‖x− y‖ max {‖x‖, ‖y‖} , (1.1) which is better than the Dunkl – Williams inequality [7] α[x, y] ≤ 4‖x− y‖ ‖x‖+ ‖y‖ . (1.2) We notice that the Massera – Schäffer inequality was rediscovered by Gurarĭı in [8] (see also [13, p. 516]). In [11], Maligranda obtained the double inequality ‖x− y‖ − |‖x‖ − ‖y‖| min {‖x‖, ‖y‖} ≤ α[x, y] ≤ ‖x− y‖+ |‖x‖ − ‖y‖| max {‖x‖, ‖y‖} . (1.3) The second inequality in (1.3) is better than Massera – Schäffer’s inequality (1.1). In the recent paper [11], L. Maligranda has also considered the p-angular distance αp[x, y] := ∥∥‖x‖p−1x− ‖y‖p−1y∥∥ between the vectors x and y in the normed linear space (X, ‖ · ‖) over the real or complex number field K and showed that αp[x, y] ≤ ‖x− y‖  (2− p) max {‖x‖p, ‖y‖p} max {‖x‖ , ‖y‖} if p ∈ (−∞, 0) and x, y 6= 0, (2− p) 1 [max {‖x‖, ‖y‖}]1−p if p ∈ [0, 1] and x, y 6= 0, p [max {‖x‖, ‖y‖}]p−1 if p ∈ (1,∞). (1.4) The constants 2− p and p in (1.1) are best possible in the sense that they cannot be replaced by smaller quantities. As pointed out in [11], the inequality (1.1) for p ∈ [1,∞) is better than the Bourbaki inequality obtained in 1965 [2, p. 257] (see also [13, p. 516]): αp[x, y] ≤ 3p‖x− y‖ [‖x‖+ ‖y‖]p−1 , x, y ∈ X. (1.5) The following results concerning upper bounds for the p-angular distance have been obtained by the author in [5]: αp[x, y] ≤ ≤  ‖x− y‖ [ max{‖x‖, ‖y‖} ]p−1 + ∣∣‖x‖p−1 − ‖y‖p−1∣∣min{‖x‖, ‖y‖} if p ∈ (1,∞), ‖x− y‖ [min {‖x‖ , ‖y‖}]1−p + ∣∣‖x‖1−p − ‖y‖1−p∣∣min { ‖x‖p ‖y‖1−p , ‖y‖p ‖x‖1−p } if p ∈ [0, 1], ‖x− y‖ [min {‖x‖ , ‖y‖}]1−p + ∣∣‖x‖1−p − ‖y‖1−p∣∣ max { ‖x‖−p ‖y‖1−p , ‖y‖−p‖x‖1−p } if p ∈ (−∞, 0), (1.6) ISSN 1027-3190. Укр. мат. журн., 2015, т. 67, № 1 NEW INEQUALITIES FOR THE p-ANGULAR DISTANCE IN NORMED SPACES WITH APPLICATIONS 21 and αp[x, y] ≤ ≤  ‖x− y‖ [ min {‖x‖, ‖y‖} ]p−1 + ∣∣∣‖x‖p−1 − ‖y‖p−1∣∣∣max {‖x‖, ‖y‖} if p ∈ (1,∞), ‖x− y‖ [max {‖x‖ , ‖y‖}]1−p + ∣∣‖x‖1−p − ‖y‖1−p∣∣max { ‖x‖p ‖y‖1−p , ‖y‖p ‖x‖1−p } if p ∈ [0, 1], ‖x− y‖ [max {‖x‖, ‖y‖}]1−p + ∣∣‖x‖1−p − ‖y‖1−p∣∣ min {‖x‖−p‖y‖1−p, ‖y‖−p‖x‖1−p} if p ∈ (−∞, 0), (1.7) for any two nonzero vectors x, y in the normed linear space (X, ‖ · ‖). The upper bounds for αp[x, y] provided by (1.4), (1.6) and (1.7) have been compared in [5] to conclude that some of the later ones are better in certain cases. The details are omitted here. The following result which provides a lower bound for the p-angular distance was stated without a proof by Gurarĭı in [8] (see also [13, p. 516]): 2−p‖x− y‖p ≤ αp[x, y], (1.8) where p ∈ [1,∞) and x, y ∈ X. The proof of the inequality (1.8) is still an open question for the author. Finally, we recall the results of G. N. Hile from [4]: αp[x, y] ≤ ‖x‖ p − ‖y‖p ‖x‖ − ‖y‖ ‖x− y‖, (1.9) for p ∈ [1,∞) and x, y ∈ X with ‖x‖ 6= ‖y‖, and α−p−1[x, y] ≤ ‖x‖ p − ‖y‖p ‖x‖ − ‖y‖ ‖x− y‖ ‖x‖p ‖y‖p , (1.10) for p ∈ [1,∞) and x, y ∈ X \ {0} with ‖x‖ 6= ‖y‖. 2. Integral bounds for p-angular distance. The following result holds. Theorem 2.1. Let (X; ‖ · ‖) be a normed linear space and p ≥ 1. Then for any x, y ∈ X we have the inequality αp[x, y] ≤ p‖y − x‖ 1∫ 0 ‖(1− t)x+ ty‖p−1 dt. (2.1) If the vectors x, y ∈ X are linearly independent and p < 1, then we have the inequality αp[x, y] ≤ (2− p) ‖y − x‖ 1∫ 0 ‖(1− t)x+ ty‖p−1 dt. (2.2) ISSN 1027-3190. Укр. мат. журн., 2015, т. 67, № 1 22 S. S. DRAGOMIR Proof. Assume that x 6= y. For p ≥ 2, consider the function fp : [0, 1] → [0,∞) given by fp(t) = ‖(1− t)x+ ty‖p−1 . The function fp is convex on the interval [0, 1] for all p ≥ 2. Therefore the lateral derivatives f ′p+ and f ′p− exist on each point of the interval [0, 1) and (0, 1], respectively, and they are equal except a countably number of points in the interval (0, 1). The function fp is absolutely continuos on [0, 1], the derivative f ′p exists almost everywhere on [0, 1] and (see, for instance, [14], Chapter IV) f ′p(t) = (p− 1) ‖(1− t)x+ ty‖p−2 τ+(−) ((1− t)x+ ty, y − x) (2.3) almost everywhere on [0, 1], where the tangent functional τ+(−) is defined by τ+(−) (u, v) :=  lims→0+(−) ‖u+ sv‖ − ‖u‖ s if u 6= 0, + (−) ‖v‖ if u = 0. (2.4) Now, if we consider the vector valued function gp : [0, 1]→ X given by gp(t) := fp(t) [(1− t)x+ ty] then we observe that gp is strongly differentiable almost everywhere on [0, 1] and (see, for instance, [1], Chapter 1) g′p(t) = f ′p(t) [(1− t)x+ ty] + fp(t) (y − x) = = (p− 1) ‖(1− t)x+ ty‖p−2 τ+(−) ((1− t)x+ ty, y − x)× × [(1− t)x+ ty] + ‖(1− t)x+ ty‖p−1 (y − x) for almost every t ∈ [0, 1]. Since for any u, v ∈ H with u 6= 0 we have∣∣τ+(−) (u, v) ∣∣ ≤ ‖v‖ , then ∥∥g′p(t)∥∥ ≤ (p− 1) ‖(1− t)x+ ty‖p−1 ∣∣τ+(−) ((1− t)x+ ty, y − x) ∣∣+ + ‖(1− t)x+ ty‖p−1 ‖y − x‖ ≤ ≤ (p− 1) ‖(1− t)x+ ty‖p−1 ‖y − x‖+ ‖(1− t)x+ ty‖p−1 ‖y − x‖ = = p ‖(1− t)x+ ty‖p−1 ‖y − x‖ for almost every t ∈ [0, 1]. By the norm inequality for the vector-valued integral we have (see, for instance, [1], Chapter 1)∥∥‖y‖p−1y − ‖x‖p−1x∥∥ = ‖gp (1)− gp (0)‖ = ISSN 1027-3190. Укр. мат. журн., 2015, т. 67, № 1 NEW INEQUALITIES FOR THE p-ANGULAR DISTANCE IN NORMED SPACES WITH APPLICATIONS 23 = ∥∥∥∥∥∥ 1∫ 0 g′p(t)dt ∥∥∥∥∥∥ ≤ 1∫ 0 ∥∥g′p(t)∥∥ dt ≤ ≤ p‖y − x‖ 1∫ 0 ‖(1− t)x+ ty‖p−1 dt and the proof of (2.1) is complete. Let p ∈ (1, 2). The function fp : [0, 1] → [0,∞) given by fp(t) = ‖(1− t)x+ ty‖p−1 is absolutely continuous on [0, 1] and the equality (2.3) also holds almost everywhere on [0, 1]. The above argument can then be extended to this case as well and the inequality (2.1) also holds. If the vectors x, y ∈ X are linearly independent and p < 1, then ‖(1− t)x+ ty‖ > 0 for any t ∈ [0, 1] and the function hp : [0, 1] → [0,∞) given by hp(t) = ‖(1− t)x+ ty‖p−1 is absolutely continuous on [0, 1] and h′p(t) = (p− 1) ‖(1− t)x+ ty‖p−2 τ+(−) ((1− t)x+ ty, y − x) (2.5) almost everywhere on [0, 1]. If we consider the vector valued function mp : [0, 1]→ X given by mp(t) := hp(t) [ (1− t)x+ ty ] , then we observe that mp is strongly differentiable almost everywhere on [0, 1] and m′p(t) = h′p(t) [(1− t)x+ ty] + hp(t) (y − x) = = (p− 1) ‖(1− t)x+ ty‖p−2 τ+(−) ((1− t)x+ ty, y − x)× × [(1− t)x+ ty] + ‖(1− t)x+ ty‖p−1 (y − x) for almost every t ∈ [0, 1]. As above we have∥∥m′p(t)∥∥ ≤ (1− p) ‖(1− t)x+ ty‖p−1 ‖y − x‖+ ‖(1− t)x+ ty‖p−1 ‖y − x‖ = = (2− p) ‖(1− t)x+ ty‖p−1 ‖y − x‖ for almost every t ∈ [0, 1], which implies the desired inequality (2.2). Theorem 2.1 is proved. Remark 2.1. If the vectors x and y are linearly dependent and y = λx with λ ∈ K, then the p-angular distance between x and y reduces to αp[x, y] = ‖x‖p ∣∣∣1− |λ|p−1 λ∣∣∣ = ‖x‖pβp [1, λ] . The study of βp [1, λ] = ∣∣1− |λ∣∣p−1λ∣∣ with λ ∈ K may be done in a similar way, however the details are omitted. ISSN 1027-3190. Укр. мат. журн., 2015, т. 67, № 1 24 S. S. DRAGOMIR Remark 2.2. If p ≥ 2, then the function fp : [0, 1]→ [0,∞) given by fp(t) = ‖(1− t)x+ ty‖p−1 is convex and by the Hermite – Hadamard type inequality for the convex function g : [a, b]→ R 1 b− a b∫ a g (s) ds ≤ 1 2 [ g (a) + g (b) 2 + g ( a+ b 2 )] ≤ ≤ g (a) + g (b) 2 ≤ max {g (a) , g (b)} (2.6) we have the following chain of inequalities: αp[x, y] ≤ p‖y − x‖ 1∫ 0 ‖(1− t)x+ ty‖p−1 dt ≤ ≤ p‖y − x‖ [ ‖x‖p−1 + ‖y‖p−1 2 + ∥∥∥∥x+ y 2 ∥∥∥∥p−1 ] ≤ ≤ p‖y − x‖‖x‖ p−1 + ‖y‖p−1 2 ≤ p‖y − x‖ [max {‖x‖, ‖y‖}]p−1 , (2.7) which provides a refinement of Maligranda’s inequality (1.4). If p ≥ 1 and since, by the triangle inequality we have ‖(1− t)x+ ty‖ ≤ (1− t)‖x‖+ t‖y‖, then ‖(1− t)x+ ty‖p−1 ≤ [(1− t)‖x‖+ t‖y‖]p−1 for any t ∈ [0, 1]. Integrating on [0, 1] we get 1∫ 0 ‖(1− t)x+ ty‖p−1 dt ≤ 1∫ 0 [(1− t)‖x‖+ t ‖y‖]p−1 dt = 1 p ‖y‖p − ‖x‖p ‖y‖ − ‖x‖ if ‖y‖ 6= ‖x‖, and by (2.1) we obtain the chain of inequalities αp[x, y] ≤ p‖y − x‖ 1∫ 0 ‖(1− t)x+ ty‖p−1 dt ≤ ‖y‖ p − ‖x‖p ‖y‖ − ‖x‖ ‖y − x‖, (2.8) which provides a refinement of Hile’s inequality (1.9). For p ≥ 2, by the Hermite – Hadamard’s type inequalities (2.6) we also have 1 p ‖y‖p − ‖x‖p ‖y‖ − ‖x‖ = 1∫ 0 [(1− t)‖x‖+ t‖y‖]p−1 dt ≤ ISSN 1027-3190. Укр. мат. журн., 2015, т. 67, № 1 NEW INEQUALITIES FOR THE p-ANGULAR DISTANCE IN NORMED SPACES WITH APPLICATIONS 25 ≤ 1 2 [( ‖x‖+ ‖y‖ 2 )p−1 + ‖x‖p−1 + ‖y‖p−1 2 ] ≤ ≤ ‖x‖ p−1 + ‖y‖p−1 2 ≤ [max {‖x‖, ‖y‖}]p−1 which implies the following sequence of inequalities: αp[x, y] ≤ p‖y − x‖ 1∫ 0 ‖(1− t)x+ ty‖p−1 dt ≤ ≤ ‖y‖ p − ‖x‖p ‖y‖ − ‖x‖ ‖y − x‖ ≤ ≤ 1 2 p‖y − x‖ [( ‖x‖+ ‖y‖ 2 )p−1 + ‖x‖p−1 + ‖y‖p−1 2 ] ≤ ≤ p‖y − x‖‖x‖ p−1 + ‖y‖p−1 2 ≤ p‖y − x‖[max {‖x‖, ‖y‖}]p−1 (2.9) for ‖y‖ 6= ‖x‖ and p ≥ 2. In particular, the inequality (2.9) shows that in the case p ≥ 2, Hile’s inequality (1.9) is better than Maligranda’s inequality (1.4). Remark 2.3. The case p = 0 is of interest, since by (2.2) we have the following upper bound for the angular distance α[x, y]: α[x, y] ≤ 2‖y − x‖ 1∫ 0 ‖(1− t)x+ ty‖−1 dt, (2.10) provided the vectors x and y are linearly independent. Since for any t ∈ [0, 1] ‖(1− t)x+ ty‖ = ‖x− t (x− y)‖ ≥ |‖x‖ − t ‖x− y‖| ≥ ‖x‖ − t‖x− y‖ ≥ ‖x‖ and similarly ‖(1− t)x+ ty‖ ≥ ‖y‖, then we have ‖(1− t)x+ ty‖ ≥ max {‖x‖, ‖y‖} , which implies that 1∫ 0 ‖(1− t)x+ ty‖−1 dt ≤ 1 max {‖x‖, ‖y‖} . (2.11) Therefore, we have the following refinement of the Massera – Schäffer’s inequality (1.1): α[x, y] ≤ 2‖y − x‖ 1∫ 0 ‖(1− t)x+ ty‖−1 dt ≤ 2‖y − x‖ max {‖x‖, ‖y‖} . ISSN 1027-3190. Укр. мат. журн., 2015, т. 67, № 1 26 S. S. DRAGOMIR Remark 2.4. In [9], the authors introduced the concept of p-HH-norm on the Cartesian product of two copies of a normed space, namely ‖(x, y)‖p−HH :=  1∫ 0 ‖(1− t)x+ ty‖p dt 1/p , where (x, y) ∈ X ×X := X2 and p ≥ 1. They showed that ‖ · ‖p−HH is a norm on X2 equivalent with the usual p-norms ‖(x, y)‖p := (‖x‖p + ‖y‖p)1/p . They also showed that completeness, reflexivity, smoothness, strict convexity etc. is inherited by X2 with this norm. In [10] the authors proved the following interesting lower bound for ‖(x, y)‖p−HH : ( ‖x‖p + ‖y‖p 2(p+ 1) )1/p ≤ ‖(x, y)‖p−HH (2.12) for any (x, y) ∈ X2 and p ≥ 1. Now, we observe that, by (2.1) we also have αp+1[x, y] ≤ (p+ 1) ‖y − x‖ ‖(x, y)‖pp−HH (2.13) for any (x, y) ∈ X2 and p ≥ 1. For x 6= y this is equivalent with ( ‖‖x‖px− ‖y‖p y‖ (p+ 1)‖y − x‖ )1/p ≤ ‖(x, y)‖p−HH , (2.14) where p ≥ 1. It is natural to ask which lower bound from (2.12) and (2.14) for the p-HH-norm is better? If we take X = C, ‖ · ‖ = |·| and p = 2, then by plotting the difference d given by d(x, y) :=  ∣∣∣|x|2 x− |y|2 y∣∣∣ 3 |y − x| 1/2 −( |x|2 + |y|2 6 )1/2 for x, y ∈ R and x 6= y, we observe that d is nonnegative, showing that the new bound (2.14) is better than (2.12). The plot is depicted in Figure as follows: ISSN 1027-3190. Укр. мат. журн., 2015, т. 67, № 1 NEW INEQUALITIES FOR THE p-ANGULAR DISTANCE IN NORMED SPACES WITH APPLICATIONS 27 8 S.S. DRAGOMIR 1;2 y 0.0-2-4 -2 -4 0 0 x 4 42 2 z 1.0 0.5 1.5 2.0 Figure 1: The variation of d in the box (x; y) 2 [4; 4] [4; 4] : Problem 1. Is the inequality (2.15) kxkp + kykp 2  kkxkp x kykp yk ky  xk true for any (x; y) 2 X2 with x 6= y and p  1? 3. Applications for Power Series For power series f (z) = P1 n=0 anz n with complex coe¢cients we can naturally construct another power series which have as coe¢cients the absolute values of the coe¢cient of the original series, namely, fa (z) := P1 n=0 janj z n . It is obvious that this new power series have the same radius of convergence as the original series, and that if all coe¢cients an  0; then fa = f . As some natural examples that are useful for applications, we can point out that, if f (z) = 1X n=1 (1)n n zn = ln 1 1 + z ; z 2 D (0; 1) ;(3.1) g (z) = 1X n=0 (1)n (2n)! z2n = cos z; z 2 C; h (z) = 1X n=0 (1)n (2n+ 1)! z2n+1 = sin z; z 2 C; l (z) = 1X n=0 (1)n zn = 1 1 + z ; z 2 D (0; 1) ; The variation of d in the box (x, y) ∈ [−4, 4]× [−4, 4]. Problem 2.1. Is the inequality ‖x‖p + ‖y‖p 2 ≤ ∥∥‖x‖px− ‖y‖py∥∥ ‖y − x‖ (2.15) true for any (x, y) ∈ X2 with x 6= y and p ≥ 1? 3. Applications for power series. For power series f(z) = ∑∞ n=0 anz n with complex coefficients we can naturally construct another power series which have as coefficients the absolute values of the coefficient of the original series, namely, fa(z) := ∑∞ n=0 |an| zn. It is obvious that this new power series have the same radius of convergence as the original series, and that if all coefficients an ≥ 0, then fa = f . As some natural examples that are useful for applications, we can point out that, if f(z) = ∞∑ n=1 (−1)n n zn = ln 1 1 + z , z ∈ D(0, 1), g(z) = ∞∑ n=0 (−1)n (2n)! z2n = cos z, z ∈ C, h(z) = ∞∑ n=0 (−1)n (2n+ 1)! z2n+1 = sin z, z ∈ C, l(z) = ∞∑ n=0 (−1)nzn = 1 1 + z , z ∈ D(0, 1), (3.1) then the corresponding functions constructed by the use of the absolute values of the coefficients are ISSN 1027-3190. Укр. мат. журн., 2015, т. 67, № 1 28 S. S. DRAGOMIR fa(z) = ∞∑ n=1 1 n zn = ln 1 1− z , z ∈ D(0, 1), ga(z) = ∞∑ n=0 1 (2n)! z2n = cosh z, z ∈ C, ha(z) = ∞∑ n=0 1 (2n+ 1)! z2n+1 = sinh z, z ∈ C, la(z) = ∞∑ n=0 zn = 1 1− z , z ∈ D(0, 1). (3.2) Other important examples of functions as power series representations with nonnegative coefficients are: exp(z) = ∞∑ n=0 1 n! zn, z ∈ C, 1 2 ln ( 1 + z 1− z ) = ∞∑ n=1 1 2n− 1 z2n−1, z ∈ D(0, 1), sin−1(z) = ∞∑ n=0 Γ ( n+ 1 2 ) √ π(2n+ 1)n! z2n+1, z ∈ D (0, 1) , tanh−1(z) = ∞∑ n=1 1 2n− 1 z2n−1, z ∈ D(0, 1), 2F1(α, β, γ, z) = ∞∑ n=0 Γ (n+ α) Γ(n+ β)Γ(γ) n!Γ(α)Γ(β)Γ(n+ γ) zn, α, β, γ > 0, z ∈ D(0, 1), (3.3) where Γ is Gamma function. Theorem 3.1. Let f(z) = ∑∞ n=0 anz n be a function defined by power series with complex coefficients and convergent on the open disk D(0, R) ⊂ C, R > 0. If (X; ‖ · ‖) is a normed linear space and x, y ∈ X with ‖x‖, ‖y‖ < R, then ‖f (‖x‖)x− f (‖y‖) y‖ ≤ ≤ ‖y − x‖ 1∫ 0 [ fa (‖(1− t)x+ ty‖) + ‖(1− t)x+ ty‖ f ′a (‖(1− t)x+ ty‖) ] dt. (3.4) Proof. From the inequality (2.1) for p = n+ 1, n a natural number with n ≥ 1, we have ‖‖x‖nx− ‖y‖ny‖ ≤ (n+ 1)‖y − x‖ 1∫ 0 ‖(1− t)x+ ty‖n dt. (3.5) ISSN 1027-3190. Укр. мат. журн., 2015, т. 67, № 1 NEW INEQUALITIES FOR THE p-ANGULAR DISTANCE IN NORMED SPACES WITH APPLICATIONS 29 We notice that the above inequality also holds for n = 0, reducing to an equality. Let m ≥ 1. Then we have, by the generalized triangle inequality and by (3.5), that∥∥∥∥∥ ( m∑ n=0 an‖x‖n ) x− ( m∑ n=0 an‖y‖n ) y ∥∥∥∥∥ ≤ ≤ m∑ n=0 |an| ‖‖x‖n x− ‖y‖ny‖ ≤ ≤ ‖y − x‖ m∑ n=0 (n+ 1) |an| 1∫ 0 ‖(1− t)x+ ty‖n dt = = ‖y − x‖ 1∫ 0 ( m∑ n=0 (n+ 1) |an| ‖(1− t)x+ ty‖n ) dt. (3.6) Since ‖x‖, ‖y‖ < R the series ∞∑ n=0 an‖x‖n, ∞∑ n=0 an‖y‖n and ∞∑ n=0 (n+ 1) |an| ‖(1− t)x+ ty‖n are convergent. Moreover, we obtain ∞∑ n=0 an‖x‖n = f (‖x‖) , ∞∑ n=0 an‖y‖n = f (‖y‖) and ∞∑ n=0 (n+ 1) |an| ‖(1− t)x+ ty‖n = = ∞∑ n=0 |an| ‖(1− t)x+ ty‖n + ∞∑ n=0 n |an| ‖(1− t)x+ ty‖n = = fa (‖(1− t)x+ ty‖) + ‖(1− t)x+ ty‖ f ′a (‖(1− t)x+ ty‖) for any ‖x‖, ‖y‖ < R. Taking the limit over m→∞ in (3.6) we get the desired result (3.4). Theorem 3.1 is proved. Remark 3.1. If we take f(z) := exp(z) = ∑∞ n=0 1 n! zn then we have from (3.4) the following inequality: ISSN 1027-3190. Укр. мат. журн., 2015, т. 67, № 1 30 S. S. DRAGOMIR ‖exp (‖x‖)x− exp (‖y‖)y‖ ≤ ≤ ‖y − x‖ 1∫ 0 exp (‖(1− t)x+ ty‖) (1 + ‖(1− t)x+ ty‖) dt (3.7) for any x, y ∈ X. If we apply the inequality (3.4) for the functions f(z) := 1 1− z = ∑∞ n=0 zn and f(z) := := 1 1 + z = ∑∞ n=0 (−1)nzn, then we have ∥∥∥∥ x 1± ‖x‖ − y 1± ‖y‖ ∥∥∥∥ ≤ ‖y − x‖ 1∫ 0 dt (1− ‖(1− t)x+ ty‖)2 (3.8) for any x, y ∈ X with ‖x‖, ‖y‖ < 1. Utilising the Hile’s inequality, we can also prove the following divided difference inequality: Proposition 3.1. Let f(z) = ∑∞ n=0 anz n be a function defined by power series with complex coefficients and convergent on the open disk D(0, R) ⊂ C, R > 0. If (X; ‖ · ‖) is a normed linear space and x, y ∈ X with ‖x‖, ‖y‖ < R and ‖x‖ 6= ‖y‖, then ‖f (‖x‖)x− f (‖y‖) y‖ ‖y − x‖ ≤ fa (‖x‖) ‖x‖ − fa (‖y‖) ‖y‖ ‖x‖ − ‖y‖ . (3.9) Proof. The proof goes along the line of the one from Theorem 3.1 by utilizing Hile’s inequal- ity (1.9) ‖‖x‖nx− ‖y‖ny‖ ‖y − x‖ ≤ ‖x‖ n+1 − ‖y‖n+1 ‖x‖ − ‖y‖ for any n a natural number. Remark 3.2. If we write the inequality (3.9) for the exponential function, then we get ‖exp (‖x‖)x− exp (‖y‖) y‖ ‖y − x‖ ≤ exp (‖x‖) ‖x‖ − exp (‖y‖) ‖y‖ ‖x‖ − ‖y‖ for any x, y ∈ X with ‖x‖ 6= ‖y‖ . If we apply the inequality (3.9) for the functions f(z) := 1 1− z and f(z) := 1 1 + z , then we get∥∥∥∥ x 1± ‖x‖ − y 1± ‖y‖ ∥∥∥∥ ≤ ‖y − x‖ (1− ‖x‖) (1− ‖y‖) for any x, y ∈ X with ‖x‖ 6= ‖y‖ and ‖x‖, ‖y‖ < 1. 1. Arendt W., Batty C. J. K., Hieber M., Neubrander F. Vector-valued Laplace transforms and Cauchy problems. – Second ed. // Monogr. Math. – Basel: Birkhäuser / Springer Basel AG, 2011. – 96. – xii+539 p. 2. Bourbaki N. Integration. – Paris: Herman, 1965. 3. Clarkson J. A. Uniform convex spaces // Trans. Amer. Math. Soc. – 1936. – 40. – P. 396 – 414. 4. Hile G. N. Entire solutions of linear elliptic equations with Laplacian principal part // Pacif. J. Math. – 1976. – 62. – P. 124 – 140. ISSN 1027-3190. Укр. мат. журн., 2015, т. 67, № 1 NEW INEQUALITIES FOR THE p-ANGULAR DISTANCE IN NORMED SPACES WITH APPLICATIONS 31 5. Dragomir S. S. Inequalities for the p-angular distance in normed linear spaces // Math. Inequal. Appl. – 2009. – 12, № 2. – P. 391 – 401. 6. Dragomir S. S., Pearce C. E. M. Selected topics on Hermite – Hadamard inequalities and applications // RGMIA Monogr. – 2000. [Online http://rgmia.org/monographs/hermite_hadamard.html]. 7. Dunkl C. F., Williams K. S. A simple norm inequality // Amer. Math. Month. – 1964. – 71. – P. 53 – 54. 8. Gurariı̆ V. I. Strengthening the Dunkl – Williams inequality on the norms of elements of Banach spaces (in Ukrainian) // Dop. Akad. Nauk Ukrain. RSR. – 1966. – 1966. – P. 35 – 38. 9. Kikianty E., Dragomir S. S. Hermite – Hadamard’s inequality and the p-HH-norm on the Cartesian product of two copies of a normed space // Math. Inequal. Appl. – 2010. – 13, № 1. – P. 1 – 32. 10. Kikianty E., Sinnamon G. The p-HH norms on Cartesian powers and sequence spaces // J. Math. Anal. and Appl. – 2009. – 359, № 2. – P. 765 – 779. 11. Maligranda L. Simple norm inequalities // Amer. Math. Month. – 2006. – 113. – P. 256 – 260. 12. Massera J. L., Schäffer J. J. Linear differential equations and functional analysis. I // Ann. Math. – 1958. – 67. – P. 517 – 573. 13. Mitrinović D. S., Pečarić J. E., Fink A. M. Classical and new inequalities in analysis. – Dordrecht: Kluwer, 1993. 14. Roberts A. W., Varberg D. E. Convex functions // Pure and Appl. Math. – 1973. – 57. – xx+300 p. Received 20.11.13 ISSN 1027-3190. Укр. мат. журн., 2015, т. 67, № 1