On estimate for numerical radius of some contractions

For the numerical radius of an arbitrary nilpotent operator T on a Hilbert space H, Haagerup and de la Harpe proved the inequality w(T)≤||T||cos(π/(n+1)), where n≥2 is the nilpotency order of the operator T. In the present paper, we prove a Haagerup-de la Harpe-type inequality for the numerical radi...

Full description

Saved in:
Bibliographic Details
Date:2006
Main Author: Karaev, M.T.
Format: Article
Language:English
Published: Інститут математики НАН України 2006
Series:Український математичний журнал
Subjects:
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/165421
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:On estimate for numerical radius of some contractions / M.T. Karaev // Український математичний журнал. — 2006. — Т. 58, № 10. — С. 1335–1339. — Бібліогр.: 14 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:For the numerical radius of an arbitrary nilpotent operator T on a Hilbert space H, Haagerup and de la Harpe proved the inequality w(T)≤||T||cos(π/(n+1)), where n≥2 is the nilpotency order of the operator T. In the present paper, we prove a Haagerup-de la Harpe-type inequality for the numerical radius of contractions from more general classes.