On estimate for numerical radius of some contractions
For the numerical radius of an arbitrary nilpotent operator T on a Hilbert space H, Haagerup and de la Harpe proved the inequality w(T)≤||T||cos(π/(n+1)), where n≥2 is the nilpotency order of the operator T. In the present paper, we prove a Haagerup-de la Harpe-type inequality for the numerical radi...
Saved in:
Date: | 2006 |
---|---|
Main Author: | Karaev, M.T. |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2006
|
Series: | Український математичний журнал |
Subjects: | |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/165421 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | On estimate for numerical radius of some contractions / M.T. Karaev // Український математичний журнал. — 2006. — Т. 58, № 10. — С. 1335–1339. — Бібліогр.: 14 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Some refinements of numerical radius inequalities
by: Z. Heydarbeygi, et al.
Published: (2020) -
Common fixed-point theorems for nonlinear weakly contractive mappings
by: Chandok, S., et al.
Published: (2014) -
Estimates for Growth of Derivatives of Analytic Functions Along the Radius
by: O. M. Piddubnyi
Published: (2013) -
A common fixed point for generalized (ψ, φ)f,g-weak contractions
by: Razani, A., et al.
Published: (2011) -
On the Behavior of Solutions of a Third-Order Nonlinear Dynamic Equation on Time Scales
by: Şenel, M.T.
Published: (2013)