Графы Кронрода – Риба функций на некомпактных двумерных поверхностях. I

Розглядаються неперервні Функції на двовимірних поверхнях, які задовольняють таю умови: множина їх локальних екстремумів дискретна; якщо точка не є локальним екстремумом, то існують її окіл i число n∈N такі, що функція в цьому околі топологічно спряжена до Re zⁿ в околі нуля. Нехай для кожної функці...

Full description

Saved in:
Bibliographic Details
Date:2015
Main Author: Полулях, Е.А.
Format: Article
Language:Russian
Published: Інститут математики НАН України 2015
Series:Український математичний журнал
Subjects:
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/165501
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Графы Кронрода – Риба функций на некомпактных двумерных поверхностях. I / Е.А. Полулях // Український математичний журнал. — 2015. — Т. 67, № 3. — С. 375–396. — Бібліогр.: 10 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Розглядаються неперервні Функції на двовимірних поверхнях, які задовольняють таю умови: множина їх локальних екстремумів дискретна; якщо точка не є локальним екстремумом, то існують її окіл i число n∈N такі, що функція в цьому околі топологічно спряжена до Re zⁿ в околі нуля. Нехай для кожної функції f: M²→R ΓK−R(f) — фактор-простір M² по розбиттю, елементами якого є компоненти множин рівня функції f. Відомо, що для компактного M² простір ΓK−R(f) є топологічним графом. У даній роботі введено поняття графа з черенками, яке є узагальненням топологічного графа. Для некомпактного M² наведено три умови, при виконанні яких простір ΓK−R(f) є графом з черенками.