Одноточкові розриви нарізно неперервних функцій на добутку двох компактних просторів
Досліджується існування нарізно неперервної функції f : X × Y→ ℝ з одноточковою множиною точок розриву, коли X і Y задовольняють умови типу компактності. Зокрема, показано, що для компактних просторів X і Y і неізольованих точок x₀∈X і y₀∈Y існує нарізно неперервна функція f : X × Y→ ℝ з множиною {(...
Gespeichert in:
Datum: | 2005 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | Ukrainian |
Veröffentlicht: |
Інститут математики НАН України
2005
|
Schriftenreihe: | Український математичний журнал |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/165560 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Одноточкові розриви нарізно неперервних функцій на добутку двох компактних просторів / В.В. Михайлюк // Український математичний журнал. — 2005. — Т. 57, № 1. — С. 94–101. — Бібліогр.: 10 назв. — укр. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineZusammenfassung: | Досліджується існування нарізно неперервної функції f : X × Y→ ℝ з одноточковою множиною точок розриву, коли X і Y задовольняють умови типу компактності. Зокрема, показано, що для компактних просторів X і Y і неізольованих точок x₀∈X і y₀∈Y існує нарізно неперервна функція f : X × Y→ ℝ з множиною {(x₀,y₀)} точок розриву тоді і тільки тоді, коли в X і Y існують послідовності непорожніх функціонально відкритих множин, які збігаються до x₀ і y₀ відповідно. |
---|