Некоторые вопросы одновременной аппроксимации функций двух переменных и их производных интерполяционными билинейными сплайнами

На деяких класах одержано точні значення оцінок похибок наближення функцій двох змінних та їх похідних інтерполяційними білінійними сплайнами.

Збережено в:
Бібліографічні деталі
Дата:2005
Автори: Вакарчук, С.Б., Мыскин, К.Ю.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут математики НАН України 2005
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/165567
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Некоторые вопросы одновременной аппроксимации функций двух переменных и их производных интерполяционными билинейными сплайнами / С.Б. Вакарчук, К.Ю. Мыскин // Український математичний журнал. — 2005. — Т. 57, № 2. — С. 147–157. — Бібліогр.: 10 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-165567
record_format dspace
spelling irk-123456789-1655672020-02-15T01:26:20Z Некоторые вопросы одновременной аппроксимации функций двух переменных и их производных интерполяционными билинейными сплайнами Вакарчук, С.Б. Мыскин, К.Ю. Статті На деяких класах одержано точні значення оцінок похибок наближення функцій двох змінних та їх похідних інтерполяційними білінійними сплайнами. Exact estimates for the errors of approximation of functions of two variables and their derivatives by interpolation bilinear splines are obtained on certain classes. 2005 Article Некоторые вопросы одновременной аппроксимации функций двух переменных и их производных интерполяционными билинейными сплайнами / С.Б. Вакарчук, К.Ю. Мыскин // Український математичний журнал. — 2005. — Т. 57, № 2. — С. 147–157. — Бібліогр.: 10 назв. — рос. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/165567 517.5 ru Український математичний журнал Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language Russian
topic Статті
Статті
spellingShingle Статті
Статті
Вакарчук, С.Б.
Мыскин, К.Ю.
Некоторые вопросы одновременной аппроксимации функций двух переменных и их производных интерполяционными билинейными сплайнами
Український математичний журнал
description На деяких класах одержано точні значення оцінок похибок наближення функцій двох змінних та їх похідних інтерполяційними білінійними сплайнами.
format Article
author Вакарчук, С.Б.
Мыскин, К.Ю.
author_facet Вакарчук, С.Б.
Мыскин, К.Ю.
author_sort Вакарчук, С.Б.
title Некоторые вопросы одновременной аппроксимации функций двух переменных и их производных интерполяционными билинейными сплайнами
title_short Некоторые вопросы одновременной аппроксимации функций двух переменных и их производных интерполяционными билинейными сплайнами
title_full Некоторые вопросы одновременной аппроксимации функций двух переменных и их производных интерполяционными билинейными сплайнами
title_fullStr Некоторые вопросы одновременной аппроксимации функций двух переменных и их производных интерполяционными билинейными сплайнами
title_full_unstemmed Некоторые вопросы одновременной аппроксимации функций двух переменных и их производных интерполяционными билинейными сплайнами
title_sort некоторые вопросы одновременной аппроксимации функций двух переменных и их производных интерполяционными билинейными сплайнами
publisher Інститут математики НАН України
publishDate 2005
topic_facet Статті
url http://dspace.nbuv.gov.ua/handle/123456789/165567
citation_txt Некоторые вопросы одновременной аппроксимации функций двух переменных и их производных интерполяционными билинейными сплайнами / С.Б. Вакарчук, К.Ю. Мыскин // Український математичний журнал. — 2005. — Т. 57, № 2. — С. 147–157. — Бібліогр.: 10 назв. — рос.
series Український математичний журнал
work_keys_str_mv AT vakarčuksb nekotoryevoprosyodnovremennojapproksimaciifunkcijdvuhperemennyhiihproizvodnyhinterpolâcionnymibilinejnymisplajnami
AT myskinkû nekotoryevoprosyodnovremennojapproksimaciifunkcijdvuhperemennyhiihproizvodnyhinterpolâcionnymibilinejnymisplajnami
first_indexed 2025-07-14T18:57:26Z
last_indexed 2025-07-14T18:57:26Z
_version_ 1837649841320099840
fulltext UDK 517.5 S. B. Vakarçuk, K. G. M¥skyn (Akad. tamoΩen. sluΩb¥ Ukrayn¥, Dnepropetrovsk) NEKOTORÁE VOPROSÁ ODNOVREMENNOJ APPROKSYMACYY FUNKCYJ DVUX PEREMENNÁX Y YX PROYZVODNÁX YNTERPOLQCYONNÁMY BYLYNEJNÁMY SPLAJNAMY Exact estimates of approximation errors for two variable functions and their derivatives by bilinear splines are obtained on some classes. Na deqkyx klasax oderΩano toçni znaçennq ocinok poxybok nablyΩennq funkcij dvox zminnyx ta ]x poxidnyx interpolqcijnymy bilinijnymy splajnamy. 1. Pust\ CD — klass neprer¥vn¥x v oblasty D =df [ 0, 1 ] × [ 0, 1 ] funkcyj f ( x, y ) , a C r sD r s, , ∈( )+Z — klass funkcyj f ( x, y ) ∈ CD , u kotor¥x neprer¥vn¥ proyzvodn¥e f x yi j( , )( , ) =df ∂ ∂ ∂ +i j i j f x y , hde i ≤ r y j ≤ s; f x y( , )( , )0 0 =df f ( x, y ) . Pry πtom polahaem CD 0 0, =df CD . Dlq proyzvol\noj funkcyy f ( x, y ) ∈ CD zapyßem normu || f ||C = max ( , ) : ( , )f x y x y D∈{ } y poln¥j modul\ neprer¥vnosty ω ( f; t, τ ) = f A f A A x y D A x y D( ) ( ) : ( , ) , ( , ) ,1 2 1 1 1 2 2 2−{ ∈ ∈ x x t y y1 2 1 2− ≤ − ≤ }, τ , t, τ ≥ 0. Çerez CD r s, ω( ) r s C CD D, , ; ( ),= ( ) =( )0 1 0 0 ω ωdf oboznaçym klass funkcyj f ( x, y ) ∈ ∈ CD r s, , udovletvorqgwyx uslovyg ω τf tr s( , ); ,( ) ≤ ω ( t, τ ) , 0 ≤ t, τ ≤ 1, hde ω ( t, τ ) — nekotor¥j modul\ neprer¥vnosty. Pust\ Ω ( t ) , t ≥ 0, — proyzvol\n¥j modul\ neprer¥vnosty y ρ ( A 1 , A 2 ) — rasstoqnye meΩdu toçkamy A x y1 1 1( , ) y A x y2 2 2( , ) , prynadleΩawymy D. Oboznaçym çerez CD r s , , ρ Ω( ) r s C CD D, , ; ( ), , ,= ( ) =( )0 1 0 0 ρ ρΩ Ωdf klass funkcyj f ( x, y ) ∈ CD r s, , kotor¥e udovletvorqgt uslovyg ωρ f tr s( , ),( ) =df ω f tr s( , ),( ) = sup ( ) ( ) : , ,( , ) ( , )f A f A A A Dr s r s 1 2 1 2−{ ∈ ρ( , )A A t1 2 ≤ } ≤ Ω ( t ), 0 ≤ t ≤ dρ , hde dρ = max ( , ): ,ρ A A A A D1 2 1 2 ∈{ } . Dalee v kaçestve ρ rassmotrym evklydovo © S. B. VAKARÇUK, K. G. MÁSKYN, 2005 ISSN 0041-6053. Ukr. mat. Ωurn., 2005, t. 57, # 2 147 148 S. B. VAKARÇUK, K. G. MÁSKYN ρe A A( , )1 2 = ( ) ( )x x y y1 2 2 1 2 2− + − y xπmmynhovo ρH A A( , )1 2 = x x y y1 2 1 2− + − rasstoqnyq. Pry πtom d eρ = 2 , a d Hρ = 2. Zadadym v oblasty D setku uzlov δn m =df δ δn x m y× (n, m ≥ 2), hde δn x : x i = = i / n, i = 0, n; δm y : yj = j / m, j = 0, m , y postavym v sootvetstvye kaΩdoj funk- cyy f ( x, y ) ∈ CD funkcyg S1, 1 ( f; x , y ) ∈ CD , opredelennug sledugwym obrazom: 1) na kaΩdom prqmouhol\nyke Dij =df x xi i, +[ ]1 × y yj j, +[ ]1 , i = 0 1, n − , j = 0 1, m − , S1, 1 ( f; x, y ) qvlqetsq alhebrayçeskym mnohoçlenom pervoj stepeny po x y po y; 2) S1, 1 ( f; x i , yj ) = f ( x i, yj ), i = 0, n , j = 0, m . Funkcyy S1, 1 ( f; x, y ) naz¥vagt ynterpolqcyonn¥my splajnamy pervoj ste- peny dvux peremenn¥x ·1, s. 54D–D58‚ yly ynterpolqcyonn¥my bylynejn¥my splajnamy ·2‚. Na mnoΩestve toçek ( x, y ) ∈ Di j , i = 0 1, n − , j = 0 1, m − , ymeet mesto pred- stavlenye S1, 1 ( f; x, y ) = p k i p j k p i k jf x y H x H y = = + +∑ ∑ ( ) 0 1 0 1 , ( ) ( ), , , hde H xi0, ( ) =df n x xi( )+ −1 , p p iH = ∑ 0 1 , ≡ 1, H yj0, ( ) =df m y yj( )+ −1 , k k jH = ∑ 0 1 , ≡ 1. Pry fyksyrovannom znaçenyy odnoj yz peremenn¥x, naprymer x ( y ) , S1, 1 ( f; x, y ) qvlqetsq splajnom pervoj stepeny otnosytel\no druhoj peremennoj y ( x ) . Netrudno ubedyt\sq v tom, çto dlq lgboj funkcyy f ( x, y ) splajn S1, 1 ( f; x, y ) edynstven ·1‚. Oboznaçym F x yi j( , ) =df p k p k i p j kf x y = = + + +∑ ∑ − 0 1 0 1 1( ) ( , ) , F x yj i( , ) =df p k p k j i p j kH y f x y = = + + +∑ ∑ − 0 1 0 1 11( ) ( ) ( , ), , F x yi j( , ) =df p k k p i i p j kH x f x y = = + + +∑ ∑ − 0 1 0 1 11( ) ( ) ( , ), , hde i = 0 1, n − , j = 0 1, m − . ISSN 0041-6053. Ukr. mat. Ωurn., 2005, t. 57, # 2 NEKOTORÁE VOPROSÁ ODNOVREMENNOJ APPROKSYMACYY FUNKCYJ … 149 Napomnym, çto dlq reßenyq sformulyrovannoj v ·3‚ zadaçy polyhonal\noj ynterpolqcyy V. N. Malozemov doopredelyl pervug proyzvodnug lomanoj L n ( f, x ) , 0 ≤ x ≤ 1, v ee verßynax x i = i / n , i = 0, n , sledugwym obrazom: L f xi ( )( , )1 =df n f x f xi i( ) ( )+ −[ ]1 , i = 0 1, n − , L f( )( , )1 1 =df n f f xn( ) ( )1 1−[ ]− , polahaq pry πtom L f x( )( , )1 = n f x f xi i( ) ( )+ −[ ]1 , esly x ∈ [ xi , xi+1 ) , i = 0 2, n − , y L f x( )( , )1 = n f f xn( ) ( )1 1−[ ]− , esly x ∈ [ x n – 1, 1 ] . Pry reßenyy πkstremal\n¥x zadaç, sformulyrovann¥x v teoremax 1 – 3 sle- dugweho punkta, voznykagt analohyçn¥e problem¥, svqzann¥e s doopredeleny- em smeßannoj proyzvodnoj S f x y1 1 1 1 , ( , )( ; , ) y çastn¥x proyzvodn¥x S f x yr s 1 1, ( , )( ; , ) ( r, s = 0, 1; r + s = 1) funkcyy S1, 1 ( f; x, y ) na toçeçn¥x mnoΩestvax A i =df ( , ) : ,x y x x yi= ≤ ≤{ }0 1 , i = 1 1, n − , B j =df ( , ) : ,x y y y xj= ≤ ≤{ }0 1 , j = 1 1, m − , hde proyzvodn¥e preterpevagt razr¥v¥ pervoho roda. Yspol\zuq yzloΩenn¥e v ·3‚ soobraΩenyq, doopredelym S f x y1 1 1 1 , ( , )( ; , ) na mnoΩestve D. V rezul\tate πtoho dlq smeßannoj proyzvodnoj poluçym sle- dugwye v¥raΩenyq ·4‚: 1) esly ( x, y ) ∈ ′Dij =df [ xi , xi+1 ) × [ yj , yj+1 ), i = 0 2, n − , j = 0 2, m − , to S f x y1 1 1 1 , ( , )( ; , ) = n m F ( x i , yj ) ; 2) esly ( x , y ) ∈ ′ −Dn j1, =df [ x n – 1, x n ] × [ y j , y j+1 ), j = 0 2, m − , to S f x y1 1 1 1 , ( , )( ; , ) = n m F ( x n – 1, yj ) ; 3) esly ( x , y ) ∈ ′ −Di m, 1 =df [ xi , x i+1 ) × [ ym – 1, ym ] , i = 0 2, n − , to S f x y1 1 1 1 , ( , )( ; , ) = n m F ( x i, ym – 1 ) ; 4) esly ( x, y ) ∈ ′ − −Dn m1 1, =df [ x n – 1, xn ] × [ ym – 1, ym ] , to S f x y1 1 1 1 , ( , )( ; , ) = = n m F ( x n – 1, ym – 1 ) . Yspol\zuq ukazann¥e v¥ße soobraΩenyq, posle doopredelenyq proyzvodnoj S f x y1 1 1 0 , ( , )( ; , ) na mnoΩestve D poluçym v¥raΩenyq ·5‚: a 1) esly ( x, y ) ∈ ′′Dij =df [ xi , xi+1 ) × [ yj , yj+1 ] , i = 0 2, n − , j = 0 1, m − , to S f x y1 1 1 0 , ( , )( ; , ) = n Fj ( x i, y ) ; b 1) esly ( x, y ) ∈ ′′−Dn j1, =df [ x n – 1, x n ] × [ yj , y j+1 ] , j = 0 1, m − , to S f x y1 1 1 0 , ( , )( ; , ) = n Fj ( x n – 1, y ) . Posle provedennoho sootvetstvugwym obrazom doopredelenyq çastnoj proyzvodnoj S f x y1 1 0 1 , ( , )( ; , ) na D ymeem sledugwye v¥raΩenyq dlq dannoj funkcyy ·5‚: a 2) S f x y1 1 0 1 , ( , )( ; , ) = m Fi ( x, yj ) , esly ( x, y ) ∈ ′′′Dij =df [ xi , xi+1 ] × [ yj , yj+1 ) , i = = 0 1, n − , j = 0 2, m − ; ISSN 0041-6053. Ukr. mat. Ωurn., 2005, t. 57, # 2 150 S. B. VAKARÇUK, K. G. MÁSKYN b 2) S f x y1 1 0 1 , ( , )( ; , ) = m Fi ( x, ym – 1 ) , esly ( x, y ) ∈ ′′′ −Di m, 1 =df [ xi , xi+1 ] × [ ym – 1, ym ] , i = 0 1, n − . Otmetym, çto zapysann¥e s uçetom provedennoho doopredelenyq v¥raΩenyq dlq S f x yr s 1 1, ( , )( ; , ) ( r, s = 0, 1; 1 ≤ r + s ≤ 2) sovpadagt s formulamy dlq soot- vetstvugwyx proyzvodn¥x tam, hde poslednye suwestvugt. 2. V monohrafyy N. P. Kornejçuka ·6, s. 323‚ otmeçalos\, çto po sravnenyg s odnomern¥m sluçaem yssledovanye voprosov pryblyΩenyq funkcyj dvux y bolee peremenn¥x znaçytel\no usloΩnqetsq vvydu poqvlenyq pryncypyal\no nov¥x obstoqtel\stv, svqzann¥x s mnohomernost\g. Poπtomu na sehodnqßnyj den\ ymeetsq nemnoho toçn¥x rezul\tatov, poluçenn¥x v zadaçax ocenky pohreßnosty pryblyΩenyq v mnohomernom sluçae, v tom çysle y v zadaçax mnohomernoj splajn-ynterpolqcyy. Dlq proyzvol\noj funkcyy f ( x, y ) ∈ CD r s, , r, s = 0, 1, oboznaçym �n m r s f x y, , ( ; , ) =df f x y S f x yr s r s( , ) , ( , )( , ) ( ; , )− 1 1 , ( x, y ) ∈ D, hde �n m f x y, , ( ; , )0 0 = �n m f x y, ( ; , ). Dlq lgboho klassa � ⊂ CD r s, zapyßem En m r s , , ( )� =df sup ( ) :, ,� �n m r s C f f ∈{ }. Pry πtom polahaem En m, , ( )0 0 � =df En m, ( )� . Pust\ ω ( t, τ ) y Ω ( t ) — proyzvol\n¥e v¥pukl¥e vverx moduly neprer¥v- nosty. V rabotax ·7, 8‚ pokazano, çto E Cn m D, ( )ω( ) = ω 1 2 1 2n m ,    y E Cn m D e, , ( )ρ Ω( ) = Ω 1 2 1 1 2 2n m +    . Dlq proyzvol\noho modulq neprer¥vnosty ω ( t, τ ) v stat\e ·4‚ pokazano, çto E Cn m D, , , ( )1 1 1 1 ω( ) = nm t dt d n m 0 1 0 1/ / ( , )∫ ∫ ω τ τ . V rabote ·9‚ dokazana spravedlyvost\ sootnoßenyj E Cn m D, , , ( )1 0 1 0 ω( ) = n t m dt n 0 1 1 2 / ,∫    ω , esly ω ( t, τ ) — modul\ neprer¥vnosty, v¥pukl¥j vverx po peremennoj τ; E Cn m D, , , ( )0 1 0 1 ω( ) = m n d m 0 1 1 2 / ,∫    ω τ τ, esly ω ( t, τ ) — modul\ neprer¥vnosty, v¥pukl¥j vverx po peremennoj t; dlq v¥pukloho vverx modulq neprer¥vnosty Ω ( t ) ymegt mesto ravenstva ISSN 0041-6053. Ukr. mat. Ωurn., 2005, t. 57, # 2 NEKOTORÁE VOPROSÁ ODNOVREMENNOJ APPROKSYMACYY FUNKCYJ … 151 E Cn m D e, , , , ( )1 0 1 0 ρ Ω( ) = n t m dt n 0 1 2 2 1 4 / ∫ +   Ω , E Cn m D e, , , , ( )0 1 0 1 ρ Ω( ) = m n d m 0 1 2 21 4 / ∫ +   Ω τ τ , a dlq proyzvol\noho modulq neprer¥vnosty Ω ( t ) E Cn m D e, , , , ( )1 1 1 1 ρ Ω( ) = nm t dt d n m 0 1 0 1 2 2 / / ∫ ∫ +( )Ω τ τ . V ·5‚ poluçen¥ sledugwye rezul\tat¥: esly ω* ( t, τ ) = ω1 ( t ) + ω2 ( τ ) , hde ω i ( ⋅ ) , i = 1, 2, — proyzvol\n¥e moduly neprer¥vnosty, to E Cn m D, , , *( )1 1 1 1 ω( ) = n t dt m d n m 0 1 1 0 1 2 / / ∫ ∫( ) + ( )ω ω τ τ ; esly ˜ ( , )ω τt = ω1 ( t ) + ω2 ( τ ) , hde ω1 ( t ) — proyzvol\n¥j (v¥pukl¥j vverx), a ω2 ( τ ) — v¥pukl¥j vverx (proyzvol\n¥j) moduly neprer¥vnosty, to E Cn m D, , , ( ˜ )1 0 1 0 ω( ) = n t dt m n 0 1 1 2 1 2 / ∫ ( ) +    ω ω E C n m dn m D m , , , / ( ˜ )0 1 0 1 1 0 1 2 1 2 ω ω ω τ τ( ) =     + ( )      ∫ . Dannaq stat\q prodolΩaet ukazannug tematyku y osnovnoe ee soderΩanye sostavlqgt sledugwye teorem¥. Teorema 1. Pust\ Ω ( t ) — proyzvol\n¥j v¥pukl¥j vverx modul\ neprer¥v- nosty. Tohda dlq lgb¥x natural\n¥x çysel n, m ≥ 2 spravedlyv¥ ravenstva E Cn m D H, , ( )ρ Ω( ) = Ω 1 2 1 2n m +    . (1) Teorema 2. Esly uslovyq teorem¥ 1 v¥polnen¥, to E Cn m D H, , , , ( )1 0 1 0 ρ Ω( ) = n t dt m n m 1 2 1 1 2 /( ) / /( )+ ∫ ( )Ω , (2) E Cn m D H, , , , ( )0 1 0 1 ρ Ω( ) = m t dt n n m 1 2 1 2 1 /( ) /( ) /+ ∫ ( )Ω , (3) hde natural\n¥e çysla n, m ≥ 2. Teorema 3. Pust\ Ω ( t ) — proyzvol\n¥j modul\ neprer¥vnosty. Tohda dlq lgb¥x natural\n¥x çysel n, m ≥ 2 ymegt mesto ravenstva E Cn m D H, , , , ( )1 1 1 1 ρ Ω( ) = nm t dt d n m 0 1 0 1/ / ∫ ∫ +( )Ω τ τ = ISSN 0041-6053. Ukr. mat. Ωurn., 2005, t. 57, # 2 152 S. B. VAKARÇUK, K. G. MÁSKYN = nm t t dt n t dt n m t t dt m n t t dt m t dt n m t t dt m n n m m m n m m n n n m 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 / / / / / / / / / / / / , , , ∫ ∫ ∫ ∫ ∫ ∫ ( ) + ( ) + + −    ( ) < ( ) + ( ) + + −    ( ) > + + Ω Ω Ω Ω Ω Ω nn t t dt n t t dt m n n n n , , . / / / 0 1 1 2 2∫ ∫( ) + −    ( ) =           Ω Ω (4) 3. Dokazatel\stvo teorem¥ 1. Uçyt¥vaq yzloΩenn¥e v p. 1 svojstva funkcyj H xp i, ( ) y H yk j, ( ), p , k = 0, 1, hde ( x , y ) ∈ Di j, i = 0 1, n − , j = 0 1, m − , dlq proyzvol\noj funkcyy f ( x, y ) ∈ CD zapys¥vaem �n m f x y, ( ; , ) = p k p i k j i p j kH x H y f x y f x y = = + +∑ ∑ −[ ] 0 1 0 1 , ,( ) ( ) ( , ) ( , ) . Yspol\zuq opredelenye modulq neprer¥vnosty, otsgda ymeem �n m f x y, ( ; , ) ≤ p k p i k j i p j kH x H y f x x y y H = = + +∑ ∑ − + −( ) 0 1 0 1 , ,( ) ( ) ;ωρ . (5) Poskol\ku Ω ( t ) — v¥puklaq vverx funkcyq, ysxodq yz neravenstva (5), zapy- s¥vaem �n m f x y, ( ; , ) ≤ ≤ Ω p k p i k j p i p k j kH x H y x x y y = = + +∑ ∑ − −( ) + − −( )( )      0 1 0 1 1 1, ,( ) ( ) ( ) ( ) , (6) hde ( x, y ) ∈ Di j, i = 0 1, n − , j = 0 1, m − . Yspol\zuq opredelenyq funkcyj H xp i, ( ) y H yp j, ( ), p = 0, 1, yz (6) ymeem �n m f x y, ( ; , ) ≤ Ω p k p i k j p i k jH x H y n H x m H y = = − −∑ ∑ +          0 1 0 1 1 1 1 1 , , , ,( ) ( ) ( ) ( ) = = Ω 1 1 0 1 1 0 1 0 1 1 0 1 n H x H x H y m H y H y H x p p i p i k k j k k j k j p p i = − = = − = ∑ ∑ ∑ ∑+      , , , , , ,( ) ( ) ( ) ( ) ( ) ( ) = = Ω 2 2 0 1 0 1n H x H x m H y H yi i j j, , , ,( ) ( ) ( ) ( )+    , hde ( x, y ) ∈ Di j, i = 0 1, n − , j = 0 1, m − . Poskol\ku max ( ) ( ); ( ) ( ) ( , ) , ; , , , , , x y D i n j m i i j j ij H x H x H y H y ∈ = − = −( ) { } 0 1 0 1 0 1 0 1 = 1 4 , (7) dlq lgboj toçky ( x, y ) ∈ Di j, i = 0 1, n − , j = 0 1, m − , poluçaem �n m f x y, ( ; , ) ≤ Ω 1 2 1 2n m +    y, sledovatel\no, ISSN 0041-6053. Ukr. mat. Ωurn., 2005, t. 57, # 2 NEKOTORÁE VOPROSÁ ODNOVREMENNOJ APPROKSYMACYY FUNKCYJ … 153 E Cn m D H, , ( )ρ Ω( ) ≤ Ω 1 2 1 2n m +    . (8) Dlq poluçenyq ocenky snyzu v kaçestve πkstremal\noj rassmotrym funkcyg f 0( x, y ) = Ω min , min ,x x x x y y y yi i j j− −( ) + − −( )( )+ +1 1 , hde ( x, y ) ∈ Di j, i = 0 1, n − , j = 0 1, m − . Provodq standartn¥e rassuΩdenyq (sm., naprymer, ·4, 5, 8D–D9‚), moΩno ubedyt\sq v prynadleΩnosty f 0( x, y ) klassu CD H, ( )ρ Ω . Poskol\ku f 0( x i , yj ) = 0, i = 0, n , j = 0, m , to E Cn m D H, , ( )ρ Ω( ) ≥ �n m C f, ( )0 = f C0 ≥ ≥ f n m0 1 2 1 2 ,    = Ω 1 2 1 2n m +    . (9) Sravnyvaq ocenky sverxu (8) y snyzu (9), poluçaem ravenstvo (1), çto y zaver- ßaet dokazatel\stvo teorem¥ 1. 4. Dokazatel\stvo teorem¥ 2. Ne umen\ßaq obwnosty, pokaΩem spravedlyvost\ ravenstva (2), poskol\ku vse rassuΩdenyq, svqzann¥e s poluçenyem sootnoßenyq (3), ymegt analohyçn¥j xarakter. Pust\, naprymer, toçka ( x, y ) prynadleΩyt mnoΩestvu ′′Dij , i = 0 2, n − , j = 0 1, m − . Sohlasno vvedenn¥m v p. 1 oboznaçenyqm S f x y1 1 1 0 , ( , )( ; , ) = nF x yj i( , ) = = n H y f x y f x y f x y k k j i j k j k i j k = + + + +∑ ± −[ ] 0 1 1, ( ) ( , ) ( , ) ( , ) = = n H y x x f x x y x x f x x y k k j i i j k i i j k = + + + +∑ − + −[ ] 0 1 1 1, ( ) ( ) ( , ; ) ( ) ( , ; ) = = p k p i k j i p j kH x H y f x x y = = − + +∑ ∑ 0 1 0 1 1, ,( ) ( ) ( , ; ) , (10) hde f x x yi p j k( , ; )− + +1 , p , k = 0, 1, — çastn¥e razdelenn¥e raznosty pervoho porqdka funkcyy f ( x, y ) po peremennoj x pry y = yj k+ . Yspol\zuq v (10) yntehral\noe predstavlenye razdelenn¥x raznostej ·10‚, dlq proyzvol\noj funkcyy f ( x, y ) ∈ CD 1 0, zapys¥vaem �n m f x y, , ( ; , )1 0 = f x y S f x y( , ) , ( , )( , ) ( ; , )1 0 1 1 1 0− = = p k p i k j i p j kH x H y f x y f x x x y d = = − + +∑ ∑ ∫ − + −( )[ ] 0 1 0 1 0 1 1 0 1 0 1, , ( , ) ( , )( ) ( ) ( , ) ( );τ τ , hde ( x, y ) ∈ ′′Dij , i = 0 2, n − , j = 0 1, m − . Otsgda sleduet, çto �n m f x y, , ( ; , )1 0 ≤ ≤ p k p i k j i p j kH x H y f x x y y d H = = − + +∑ ∑ ∫ − + −( ) 0 1 0 1 0 1 1 0 1, , ( , )( ) ( ) ;ω τ τρ . (11) ISSN 0041-6053. Ukr. mat. Ωurn., 2005, t. 57, # 2 154 S. B. VAKARÇUK, K. G. MÁSKYN Yspol\zuq opredelenye klassa CD H, , ( )ρ 1 0 Ω , yz (11) pry ( x, y ) ∈ ′′Dij , i = 0 2, n − , j = 0 1, m − , poluçaem �n m f x y, , ( ; , )1 0 ≤ ≤ p k p i k j p i k jH x H y n H x m H y d = = −∑ ∑ ∫ +    0 1 0 1 0 1 1 1 , , , ,( ) ( ) ( ) ( )Ω τ τ . (12) Uçyt¥vaq v¥puklost\ vverx modulq neprer¥vnosty Ω ( t ) y sootnoßenye (7), yz (12) ymeem �n m f x y, , ( ; , )1 0 ≤ n H y u m H y du p k k j n H x k j p i = = −∑ ∑ ∫ − +    0 1 0 1 0 1 1 1 , ( ) ,( ) ( ) , Ω ≤ ≤ n u m H y H y du p n H x j j p i = ∑ ∫ − +    0 1 0 0 1 1 2 , ( ) , ,( ) ( )Ω ≤ Ψi x( ), (13) hde Ψi x( ) =df n u m du p n H xp i = ∑ ∫ − +    0 1 0 1 1 2 , ( ) Ω . Oçevydno, çto funkcyq Ψi x( ) neprer¥vna na otrezke [ xi , x i+1 ] . Provodq ob¥çn¥m obrazom ee yssledovanye na πkstremum na ukazannom mnoΩestve, po- luçaem max ( ) :Ψi i ix x x x≤ ≤{ }+1 = Ψi i kx( )+ , k = 0, 1. (14) Tohda yz (12)D–D(14) ymeem �n m f x y, , ( ; , )1 0 ≤ n t dt m n m 1 2 1 1 2 /( ) / /( )+ ∫ ( )Ω , (15) hde ( x, y ) ∈ ′′Dij , i = 0 2, n − , j = 0 1, m − . Na osnovanyy podobn¥x rassuΩdenyj moΩno ubedyt\sq v spravedlyvosty ocenok, analohyçn¥x (15), kohda ( x, y ) ∈ ∈ ′′−Dn j1, , j = 0 1, m − . Yz yzloΩennoho v¥ße sleduet ocenka sverxu E Cn m D H, , , , ( )1 0 1 0 ρ Ω( ) = = sup ( ) : ( ), , , ,�n m C Df f C H 1 0 1 0∈{ }ρ Ω ≤ n t dt m n m 1 2 1 1 2 /( ) / /( )+ ∫ ( )Ω . (16) Dlq poluçenyq ocenky snyzu rassmotrym funkcyg γ ( x, y ) , kotoraq za- daetsq na mnoΩestve 0 2, n     × 0 1, m     sledugwym obrazom: γ ( x, y ) =df Ω ( ) ( )− −    + − −       1 1 1 1 2 i j n x m y , esly ( x, y ) ∈ i n i n j m j m , ,+    × +    1 2 1 2 , i, j = 0, 1. Pry πtom ymegt mesto ravenstva ISSN 0041-6053. Ukr. mat. Ωurn., 2005, t. 57, # 2 NEKOTORÁE VOPROSÁ ODNOVREMENNOJ APPROKSYMACYY FUNKCYJ … 155 γ x n y+    2 , = γ x y m , +    1 = γ ( x, y ) , t. e. γ ( x, y ) qvlqetsq 2 n -peryodyçeskoj po peremennoj x y 1 m -peryodyçeskoj po peremennoj y. Polahaq γ* ( x, y ) =df γ( , ) /( ) / /( ) x y n t dt m n m − ( ) + ∫ 1 2 1 1 2 Ω , vvodym funkcyg f1 ( x, y ) =df 0 x t y dt∫ ( )γ * , , ( x, y ) ∈ D. Putem standartn¥x rassuΩdenyj moΩno ubedyt\sq v prynadleΩnosty f1 ( x, y ) klassu CD H, , ( )ρ 1 0 Ω . Posle nesloΩn¥x v¥çyslenyj poluçaem f1 ( xi , yj ) = 0, i = = 0, n , j = 0, m . Znaçyt, S f x y1 1 1, ; ,( ) ≡ 0 dlq lgb¥x toçek ( x, y ) ∈ D. Tohda E Cn m D H, , , , ( )1 0 1 0 ρ Ω( ) ≥ �n m C f, , ( )1 0 1 = f C1 1 0( , ) ≥ ≥ f n m1 1 0 1 1 2 ( , ) ,    = n t dt m n m 1 2 1 1 2 /( ) / /( )+ ∫ ( )Ω . (17) Trebuemoe ravenstvo (2) poluçym, sopostavyv ocenku sverxu (16) y ocenku sny- zuD(17). Teorema 2 dokazana. 5. Dokazatel\stvo teorem¥ 3. Ne umen\ßaq obwnosty, provedem ras- suΩdenyq dlq mnoΩestv ′Dij , i = 0 2, n − , j = 0 2, m − , poskol\ku dlq mnoΩestv ′ −Dn j1, , j = 0 2, m − , ′ −Di m, 1, i = 0 2, n − , y ′ − −Dn m1 1, xod rassuΩdenyj analohy- çen. Yspol\zovav opredelenye y svojstva razdelenn¥x raznostej funkcyy f ( x, y ) ∈ CD 1 1, [10], dlq proyzvol\noj toçky ( x, y ) ∈ ′Dij zapyßem sledugwye ravenstva ·4‚: �n m f x y, , ( ; , )1 1 = f x y S f x y( , ) , ( , )( , ) ; ,1 1 1 1 1 1− ( ) = = f x y nm F x y f x yi j p i p ( , )( , ) ( , ) ( , )1 1 0 1 − ±        = +∑ = f x y( , )( , )1 1 – – n H y f x y y f x y y k k j p p i p j k j k = = − + − + − +∑ ∑ − ±        0 1 0 1 1 1 11, ( ) ( ) ( ; , ) ( ; , ) = = f x y H x H y f x x y y p k p i k j i p j k ( , ) , ,( , ) ( ) ( ) ( , ; , )1 1 0 1 0 1 1 1− = = − + − +∑ ∑ , (18) hde f x y yi p j k( ; , )− + − +1 1 y f x y yj k( ; , )− +1 , k, p = 0, 1 — çastn¥e razdelenn¥e raz- nosty pervoho porqdka po peremennoj y, f x x y yi p j k( , ; , )− + − +1 1 , k , p = 0, 1, — smeßann¥e razdelenn¥e raznosty pervoho porqdka po peremennoj x y po pere- mennoj y. Predstavlqq smeßann¥e razdelenn¥e raznosty v (18) v yntehral\noj forme ·10‚, dlq proyzvol\noj funkcyy f ( x, y ) ∈ CD 1 1, poluçaem ISSN 0041-6053. Ukr. mat. Ωurn., 2005, t. 57, # 2 156 S. B. VAKARÇUK, K. G. MÁSKYN �n m f x y, , ( ; , )1 1 = p k p i k jH x H y = = ∑ ∑ 0 1 0 1 , ,( ) ( ) × × 0 1 0 1 1 1 1 1 1 1∫ ∫ − + − + −( )[ ]− + − +f x y f x t x x y y y dt di p j k ( , ) ( , )( , ) ( ), ( )τ τ. Yspol\zuq opredelenye modulq neprer¥vnosty, zapys¥vaem �n m f x y, , ( ; , )1 1 ≤ ≤ p k p i k j i p j kH x H y f t x x y y dt d H = = − + − +∑ ∑ ∫ ∫ − + −( ) 0 1 0 1 0 1 0 1 1 1 1 1, , ( , )( ) ( ) ;ω τ τρ , (19) hde ( x, y ) ∈ ′Dij , i = 0 2, n − , j = 0 2, m − . Oboznaçym Ψij x y( , ) =df nm u dud p k n H x m H yp i k j = = ∑ ∑ ∫ ∫ − − +( ) 0 1 0 1 0 0 1 1 , ,( ) ( ) Ω v v. (20) Dlq kaΩdoj funkcyy f ( x, y ) ∈ CD H, , ( )ρ 1 1 Ω v sylu (19), (20) ymeem �n m f x y, , ( ; , )1 1 ≤ Ψij x y( , ), (21) hde ( x, y ) ∈ ′Dij , i = 0 2, n − , j = 0 2, m − . Yssleduq funkcyg Ψij x y( , ) na πkstremum na mnoΩestve ′Dij , hde ′Dij — zam¥kanye ′Dij , poluçaem max ( , ) : ( , )Ψij ijx y x y D∈ ′{ } = Ψij i p j kx y( , )+ + = = nm u dud n m 0 1 0 1/ / ∫ ∫ +( )Ω v v , p, k = 0, 1. (22) Uçyt¥vaq (21), (22) y yzloΩennoe v naçale dannoho punkta otnosytel\no analohyçnoho xaraktera rassuΩdenyj na mnoΩestvax ′ −Dn j1, , j = 0 2, m − , ′ −Di m, 1, i = 0 2, n − , y ′ − −Dn m1 1, , zapys¥vaem ocenku sverxu E Cn m D H, , , , ( )1 1 1 1 ρ Ω( ) ≤ nm u dud n m 0 1 0 1/ / ∫ ∫ +( )Ω v v . (23) Prymenqq dlq v¥çyslenyq dvukratnoho yntehrala standartn¥e metod¥ matema- tyçeskoho analyza, yz (23) poluçaem E Cn m D H, , , , ( )1 1 1 1 ρ Ω( ) ≤ ≤ nm 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 / / / / / / / / / / / / , , , n n m m m n m m n n n m t t dt n t dt n m t t dt m n t t dt m t dt n m t t dt m n ∫ ∫ ∫ ∫ ∫ ∫ ( ) + ( ) + + −    ( ) < ( ) + ( ) + + −    ( ) > + + Ω Ω Ω Ω Ω Ω ,, , . / / / 0 1 1 2 2 n n n t t dt n t t dt m n∫ ∫( ) + −    ( ) =           Ω Ω (24) ISSN 0041-6053. Ukr. mat. Ωurn., 2005, t. 57, # 2 NEKOTORÁE VOPROSÁ ODNOVREMENNOJ APPROKSYMACYY FUNKCYJ … 157 Dlq poluçenyq ocenky snyzu rassmotrym funkcyg ϕ ( x, y ) =df Ω ( ) ( )− −    + − −       1 1 1 1i j n x m y , hde ( x, y ) ∈ i n i n j m j m , ,+    × +    1 1 , i, j = 0, 1, y ϕ x n y+    2 , = ϕ x y m , +    2 = ϕ ( x, y ) . Polahaq ϕ* ( x, y ) =df ϕ( , ) / / x y nm u dud n m − +( )∫ ∫ 0 1 0 1 Ω v v, ( x, y ) ∈ D, vvodym funkcyg f2 ( x, y ) =df 0 0 x y t dt d∫ ∫ ( )ϕ τ τ * , , ( x, y ) ∈ D. Netrudno ubedyt\sq v prynadleΩnosty f2 ( x, y ) klassu CD H, , ( )ρ 1 1 Ω . Uçyt¥vaq, çto f2 ( x i, yj ) = 0, i = 0, n , j = 0, n , a znaçyt, S f x y1 1 2, ; ,( ) ≡ 0, zapys¥vaem E Cn m D H, , , , ( )1 1 1 1 ρ Ω( ) ≥ �n m C f, , ( )1 1 2 ≥ f n m2 1 1 1 1( , ) ,    = nm u dud n m 0 1 0 1/ / ∫ ∫ +( )Ω v v . Sravnyvaq poluçennug ocenku snyzu s ocenkoj sverxu (24), poluçaem trebuemoe sootnoßenye (4). Teorema 3 dokazana. 1. Zav\qlov G. S., Kvasov B. Y., Myroßnyçenko V. L. Metod¥ splajn-funkcyj. – M.: Nauka, 1980. –D350 s. 2. Íumylov B. M. O lokal\noj approksymacyy bylynejn¥my splajnamy // Metod¥ splajn- funkcyj (v¥çyslytel\n¥e system¥). – 1979. – V¥p. 81. – S. 42D–D47. 3. Malozemov V. N. K polyhonal\noj ynterpolqcyy // Mat. zametky. –D1967. – 1, # 5. – S. 537D–D540. 4. Vakarçuk S. B. K ynterpolqcyy bylynejn¥my splajnamy // Tam Ωe. –D1990. – 47, # 5. – S. 26D–D30. 5. Íabozov M. Í. Toçn¥e ocenky odnovremennoho pryblyΩenyq funkcyj dvux peremenn¥x y yx proyzvodn¥x bylynejn¥my splajnamy // Tam Ωe. –D1996. – 59, # 1. – S. 142D–D152. 6. Kornejçuk N. P. Splajn¥ v teoryy pryblyΩenyj. – M.: Nauka, 1984. –D352 s. 7. Storçaj V. F. PryblyΩenye neprer¥vn¥x funkcyj dvux peremenn¥x splajn-funkcyqmy v metryke C // Yssledovanyq po sovremenn¥m problemam summyrovanyq y pryblyΩenyq funkcyj y yx pryloΩenyqm. – Dnepropetrovsk: Dnepropetr. un-t, 1972. – S. 66D–D68. 8. Storçaj V. F. PryblyΩenye neprer¥vn¥x funkcyj dvux peremenn¥x mnohohrann¥my funkcyqmy y splajn-funkcyqmy v ravnomernoj metryke // Tam Ωe. – 1975. – S. 82D–D89. 9. Íabozov M. Í. O pohreßnosty ynterpolqcyy bylynejn¥my splajnamy// Ukr. mat. Ωurn. – 1994. – 46, # 11. – S. 1554D–D1560. 10. Mykeladze Í. E. Çyslenn¥e metod¥ matematyçeskoho analyza. – M.: Hostexyzdat, 1953. –D528 s. Poluçeno 17.06.2003 ISSN 0041-6053. Ukr. mat. Ωurn., 2005, t. 57, # 2