Fixed-Point Results on Complete G-Metric Spaces for Mappings Satisfying an Implicit relation of New Type

We prove general fixed-point theorems (generalizing some recent results) in a complete G-metric space.

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Popa, V., Patriciu, A.-M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2013
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/165572
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Fixed-Point Results on Complete G-Metric Spaces for Mappings Satisfying an Implicit relation of New Type / V. Popa, A.-M. Patriciu // Український математичний журнал. — 2013. — Т. 65, № 6. — С. 814–821. — Бібліогр.: 15 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-165572
record_format dspace
spelling irk-123456789-1655722020-02-15T01:27:00Z Fixed-Point Results on Complete G-Metric Spaces for Mappings Satisfying an Implicit relation of New Type Popa, V. Patriciu, A.-M. Статті We prove general fixed-point theorems (generalizing some recent results) in a complete G-metric space. Доведено загальні теореми про нерухому точку у повних G-метричних просторах, що узагальнюють дєякі результати, отримані нещодавно. 2013 Article Fixed-Point Results on Complete G-Metric Spaces for Mappings Satisfying an Implicit relation of New Type / V. Popa, A.-M. Patriciu // Український математичний журнал. — 2013. — Т. 65, № 6. — С. 814–821. — Бібліогр.: 15 назв. — англ. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/165572 517.91 en Український математичний журнал Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Статті
Статті
spellingShingle Статті
Статті
Popa, V.
Patriciu, A.-M.
Fixed-Point Results on Complete G-Metric Spaces for Mappings Satisfying an Implicit relation of New Type
Український математичний журнал
description We prove general fixed-point theorems (generalizing some recent results) in a complete G-metric space.
format Article
author Popa, V.
Patriciu, A.-M.
author_facet Popa, V.
Patriciu, A.-M.
author_sort Popa, V.
title Fixed-Point Results on Complete G-Metric Spaces for Mappings Satisfying an Implicit relation of New Type
title_short Fixed-Point Results on Complete G-Metric Spaces for Mappings Satisfying an Implicit relation of New Type
title_full Fixed-Point Results on Complete G-Metric Spaces for Mappings Satisfying an Implicit relation of New Type
title_fullStr Fixed-Point Results on Complete G-Metric Spaces for Mappings Satisfying an Implicit relation of New Type
title_full_unstemmed Fixed-Point Results on Complete G-Metric Spaces for Mappings Satisfying an Implicit relation of New Type
title_sort fixed-point results on complete g-metric spaces for mappings satisfying an implicit relation of new type
publisher Інститут математики НАН України
publishDate 2013
topic_facet Статті
url http://dspace.nbuv.gov.ua/handle/123456789/165572
citation_txt Fixed-Point Results on Complete G-Metric Spaces for Mappings Satisfying an Implicit relation of New Type / V. Popa, A.-M. Patriciu // Український математичний журнал. — 2013. — Т. 65, № 6. — С. 814–821. — Бібліогр.: 15 назв. — англ.
series Український математичний журнал
work_keys_str_mv AT popav fixedpointresultsoncompletegmetricspacesformappingssatisfyinganimplicitrelationofnewtype
AT patriciuam fixedpointresultsoncompletegmetricspacesformappingssatisfyinganimplicitrelationofnewtype
first_indexed 2025-07-14T18:58:52Z
last_indexed 2025-07-14T18:58:52Z
_version_ 1837649923316645888
fulltext UDC 517.91 V. Popa, A.-M. Patriciu (“Vasile Alecsandri” Univ. Bacău, Romania) FIXED-POINT RESULTS ON COMPLETE G-METRIC SPACES FOR MAPPINGS SATISFYING AN IMPLICIT RELATION OF A NEW TYPE РЕЗУЛЬТАТИ ПРО НЕРУХОМУ ТОЧКУ НА ПОВНИХ G-МЕТРИЧНИХ ПРОСТОРАХ ДЛЯ ВIДОБРАЖЕНЬ, ЩО ЗАДОВОЛЬНЯЮТЬ НЕЯВНЕ СПIВВIДНОШЕННЯ НОВОГО ТИПУ We prove some general fixed-point theorems in complete G-metric space that generalize some recent results. Доведено загальнi теореми про нерухому точку у повних G-метричних просторах, що узагальнюють деякi резуль- тати, отриманi нещодавно. 1. Introduction. In [3, 4] Dhage introduced a new class of generalized metric space, named D-metric space. Mustafa and Sims [7, 8] proved that most of the claims concerning the fundamental topological structures on D-metric spaces are incorrect and introduced appropriate notion of generalized metric space, named G-metric space. In fact, Mustafa, Sims and other authors [2, 9 – 11] studied many fixed-point results for self mappings in G-metric spaces under certain conditions. Quite recently [12], Mustafa et al. obtained new results for mappings in G-metric spaces. In [13, 14], Popa initiated the study of fixed points in metric spaces for mappings satisfying an implicit relation. Let T be a self mapping of a metric space (X, d). We denote by Fix (T ) the set of all fixed points of T. T is said to satisfy property (P ) if Fix (T ) = Fix (Tn) for each n ∈ N. An interesting fact about mappings satisfying property (P ) is that they have not nontrivial periodic points. Papers dealing with property (P ) are, between others, [2, 13 – 15]. The purpose of this paper is to prove a general fixed-point theorem in complete G-metric space which generalize the results from [1, 10 – 12] for mappings satisfying a new form of implicit relation. In the last part of this paper is proved a general theorem for mappings in G-metric space satisfying property (P ), which generalize some results from [1]. 2. Preliminaries. Definition 2.1 [8]. Let X be a nonempty set and G : X3 → R+ be a function satisfying the following properties: (G1) G(x, y, z) = 0 if x = y = z; (G2) 0 < G(x, x, y) for all x, y ∈ X with x 6= y; (G3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with z 6= y; (G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = . . . (symmetry in all three variables); (G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X (rectangle inequality). Then the function G is called a G-metric and the pair (X,G) is called a G-metric space. Note that if G(x, y, z) = 0 then x = y = z [8]. Lemma 2.1 [8]. G(x, y, y) ≤ 2G(x, x, y) for all x, y ∈ X. Definition 2.2 [8]. Let (X,G) be a metric space. A sequence (xn) in X is said to be: a) G-convergent to x ∈ X if for any ε > 0 there exists k ∈ N such that G(x, xn, xm) < ε for all m,n ≥ k; c© V. POPA, A.-M. PATRICIU, 2013 814 ISSN 1027-3190. Укр. мат. журн., 2013, т. 65, № 6 FIXED-POINT RESULTS ON COMPLETE G-METRIC SPACES FOR MAPPINGS . . . 815 b) G-Cauchy if for ε > 0, there exists k ∈ N such that for all n,m, p ≥ k, G(xn, xm, xp) < ε that is G(xn, xm, xp)→ 0 as m,n, p→∞. A G-metric space is said to be G-complete if every G-Cauchy sequence in X is G-convergent. Lemma 2.2 [8]. Let (X,G) be a G-metric space. Then, the following properties are equivalent: 1) (xn) is G-convergent to x; 2) G(x, xn, xn)→ 0 as n→∞; 3) G(xn, x, x)→ 0 as n→∞. Lemma 2.3 [8]. Let (X,G) be a G-metric space. Then the following properties are equivalent: 1) The sequence (xn) is G-Cauchy. 2) For every ε > 0, there exists k ∈ N such that G(xn, xm, xm) < ε for n,m > k. Definition 2.3 [8]. Let (X,G) and (X ′, G′) be two G-metric spaces and f : (X,G)→ (X ′, G′). Then, f is said to be G-continuous at x ∈ X if for ε > 0, there exists δ > 0 such that for all x, y ∈ X and G(a, x, y) < δ, then G′(fa, fx, fy) < ε. f is G-continuous if it is G-continuous at each a ∈ X. Lemma 2.4 [8]. Let (X,G) and (X ′, G′) be twoG-metric spaces. Then, a function f : (X,G)→ → (X ′, G′) is G-continuous at a point x ∈ X if and only if f is sequentially continuous, that is, whenever (xn) is G-convergent to x we have that f(xn) is G-convergent to fx. Lemma 2.5 [8]. Let (X,G) be a G-metric space. Then, the function G(x, y, z) is continuous in all three of its variables. Quite recently, the following theorem is proved in [12]. Theorem 2.1. Let (X,G) be a complete G-metric space and T : X → X be a mapping which satisfies the following condition, for all x, y ∈ X G(Tx, Ty, Ty) ≤ max{aG(x, y, y), b[G(x, Tx, Tx) + 2G(y, Ty, Ty)], b[G(x, Ty, Ty) +G(y, Ty, Ty) +G(y, Tx, Tx)]}, (2.1) where a ∈ [0, 1) and b ∈ [ 0, 1 3 ) . Then T has a unique fixed point. The purpose of this paper is to prove a general fixed point theorem in G-metric space for map- pings satisfying a new type of implicit relation which generalize Theorem 2.1 and other results from [1, 2, 10 – 12]. 3. Implicit relations. Definition 3.1. Let Fu be the set of all continuous functions F (t1, . . . , t6) : R6 + → R such that (F1) F is nonincreasing in variables t5 and t6; (F2) there exists h ∈ [0, 1) such that for each u, v ≥ 0 and F (u, v, v, u, u + v, 0) ≤ 0, then u ≤ hv; (F3) F (t, t, 0, 0, t, 2t) > 0 ∀t > 0. Example 3.1. F (t1, . . . , t6) = t1−max{at2, b(t3+2t4), b(t4+ t5+ t6)}, where a ∈ [0, 1) and b ∈ [ 0, 1 3 ) . (F1) Obviously. (F2) Let u, v ≥ 0 be and F (u, v, v, u, u + v, 0) = u − max{av, b(v + 2u)} ≤ 0. If u > v, then u[1 − max{a, 3b}] ≤ 0, a contradiction. Hence u ≤ v, which implies u ≤ hv, where h = = max{a, 3b} < 1. (F3) F (t, t, 0, 0, t, 2t) = t(1−max{a, 3b}) > 0 ∀t > 0. ISSN 1027-3190. Укр. мат. журн., 2013, т. 65, № 6 816 V. POPA, A.-M. PATRICIU Example 3.2. F (t1, . . . , t6) = t1−at2−b(t3+2t4)−c(t5+t6), where a, b, c ≥ 0, a+3b+2c < 1 and a+ 3c < 1. (F1) Obviously. (F2) Let u, v ≥ 0 be and F (u, v, v, u, u + v, 0) = u − av − b(v + 2u) − c(u + v) ≤ 0. Then u ≤ hv, where h = a+ b+ c 1− 2b− c < 1. (F3) F (t, t, 0, 0, t, 2t) = t[1− (a+ 3c)] > 0 ∀t > 0. Example 3.3. F (t1, . . . , t6) = t1 − at2 − bmax{t3, t4} − cmax{t5, t6}, where a, b, c ≥ 0, a+ b+ 2c < 1. (F1) Obviously. (F2) Let u, v ≥ 0 be and F (u, v, v, u, u + v, 0) = u − av − bmax{u, v} − c(u + v) ≤ 0. If u > v, then u[1 − (a + b + 2c)] ≤ 0, a contradiction. Hence, u ≤ v which implies u ≤ hv, where h = a+ b+ c 1− c < 1. (F3) F (t, t, 0, 0, t, 2t) = t[1− (a+ 2c)] > 0 ∀t > 0. Example 3.4. F (t1, . . . , t6) = t1 − kmax{t2, t3, . . . , t6}, where k ∈ [ 0, 1 2 ) . (F1) Obviously. (F2) Let u, v ≥ 0 be and F (u, v, v, u, u + v, 0) = u − k(u + v) ≤ 0 which implies u ≤ hv, where h = k k − 1 < 1. (F3) F (t, t, 0, 0, t, 2t) = t(1− 2k) > 0 ∀t > 0. Example 3.5. F (t1, . . . , t6) = t1−at2−bt3−cmax{t4+t5, 2t6}, where a, b, c ≥ 0, a+b+3c < < 1, a+ 4c < 1. (F1) Obviously. (F2) Let u, v ≥ 0 be and F (u, v, v, u, u+ v, 0) = u− av − bv − c(2u+ v) ≤ 0. Then u ≤ hv, where h = a+ b+ c 1− 2c < 1. (F3) F (t, t, 0, 0, t, 2t) = t[1− (a+ 4c)] > 0 ∀t > 0. Example 3.6. F (t1, . . . , t6) = t1 − kmax { t2, t3, t4, 2t4 + t6 3 , 2t4 + t3 3 , t5 + t6 3 } ≤ 0, where k ∈ [0, 1). (F1) Obviously. (F2) Let u, v ≥ 0 be and F (u, v, v, u, u+ v, 0) = u− kmax { u, v, 2u 3 , 2u+ v 3 , u+ v 3 ≤ 0 } . If u > v, then u(1− k) ≤ 0, a contradiction. Hence, u ≤ v which implies u ≤ hv, where h = k < 1. (F3) F (t, t, 0, 0, t, 2t) = t(1− k) > 0 ∀t > 0. Example 3.7. F (t1, . . . , t6) = t1 − kmax { t2, t3, t4, t5 + t6 2 } , where k ∈ [ 0, 2 3 ) . (F1) Obviously. (F2) Let u, v ≥ 0 be and F (u, v, v, u, u+ v, 0) = u− kmax { u, v, u+ v 2 } ≤ 0. If u > v, then u(1− k) ≤ 0, a contradiction. Hence, u ≤ v which implies u ≤ hv, where h = k < 1. (F3) F (t, t, 0, 0, t, 2t) = t− kmax { t, 3t 2 } = t [ 1− 3k 2 ] > 0 ∀t > 0. ISSN 1027-3190. Укр. мат. журн., 2013, т. 65, № 6 FIXED-POINT RESULTS ON COMPLETE G-METRIC SPACES FOR MAPPINGS . . . 817 Example 3.8. F (t1, . . . , t6) = t21− t1(at2+ bt3+ ct4)−dt5t6, where a, b, c ≥ 0, a+ b+ c < 1, a+ 2d < 1. (F1) Obviously. (F2) Let u, v ≥ 0 be and F (u, v, v, u, u + v, 0) = u2 − u(av + bv + cu) ≤ 0. If u > 0, then u− av − bv − cu ≤ 0 which implies u ≤ hv, where h = a+ b 1− c < 1. If u = 0, then u ≤ hv. (F3) F (t, t, 0, 0, t, 2t) = t2[1− (a+ 2d)] > 0 ∀t > 0. Example 3.9. F (t1, . . . , t6) = t1 − kmax { t2, t3 + t4 2 , t5 + t6 2 } , where k ∈ [ 0, 2 3 ) . (F1) Obviously. (F2) Let u, v ≥ 0 be and F (u, v, v, u, u + v, 0) = u − kmax { v, u+ v 2 } ≤ 0. If u > 0, then u(1− k) ≤ 0, a contradiction. Hence u ≤ v which implies u ≤ hv, where h = k < 1. (F3) F (t, t, 0, 0, t, 2t) = t [ 1− 3k 2 ] > 0 ∀t > 0. Example 3.10. F (t1, . . . , t6) = t1 − kmax { t2, √ t3t4, √ t5t6 } , where k ∈ [ 0, 2 3 ) . (F1) Obviously. (F2) Let u, v ≥ 0 be and F (u, v, v, u, u + v, 0) = u − kmax {v, √ uv} ≤ 0. If u > v, then u(1− k) ≤ 0, a contradiction. Hence, u ≤ v which implies u ≤ hv, where 0 ≤ h = k < 1. (F3) F (t, t, 0, 0, t, 2t) = t(1− √ 2k) > 0 ∀t > 0. 4. Main results. Theorem 4.1. Let (X,G) be a G-metric space and T : (X,G) → (X,G) be a mapping such that F (G(Tx, Ty, Ty), G(x, y, y), G(x, Tx, Tx), G(y, Ty, Ty), G(x, Ty, Ty), G(y, Tx, Tx)) ≤ 0 (4.1) for all x, y ∈ X, where F satisfies property (F3). Then T has at most a fixed point. Proof. Suppose that T has two distinct fixed points u and v. Then by (4.1) we have successively F (G(Tu, Tv, Tv), G(u, v, v), G(u, Tu, Tu), G(v, Tv, Tv), G(u, Tv, Tv), G(v, Tu, Tu)) ≤ 0, F (G(u, v, v), G(u, v, v), 0, 0, G(u, v, v), G(v, u, u)) ≤ 0. By Lemma 2.1 G(v, u, u) ≤ 2G(u, v, v). Since F is nonincreasing in variable t6 we obtain F (G(u, v, v), G(u, v, v), 0, 0, G(u, v, v), 2G(u, v, v)) ≤ 0, a contradiction of (F3). Hence u = v. Theorem 4.1 is proved. Theorem 4.2. Let (X,G) be a complete G-metric space and T : (X,G) → (X,G) satisfying inequality (4.1) for all x, y ∈ X, where F ∈ Fu. Then T has a unique fixed point. Proof. Let x0 ∈ X be an arbitrary point in X. We define xn = Txn−1, n = 1, 2, . . . . Then by (4.1) we have successively F (G(Txn−1, Txn, Txn), G(xn−1, xn, xn), G(xn−1, Txn−1, Txn−1), ISSN 1027-3190. Укр. мат. журн., 2013, т. 65, № 6 818 V. POPA, A.-M. PATRICIU G(xn, Txn, Txn), G(xn−1, Txn, Txn), G(xn, Txn−1, Txn−1)) ≤ 0, F (G(xn, xn+1, xn+1), G(xn−1, xn, xn), G(xn−1, xn, xn), G(xn, xn+1, xn+1), G(xn−1, xn+1, xn+1), 0) ≤ 0. By (G5), G(xn−1, xn+1, xn+1) ≤ G(xn−1, xn, xn)+G(xn, xn+1, xn+1). Since F is nonincreas- ing in variable t5 we obtain F (G(xn, xn+1, xn+1), G(xn−1, xn, xn), G(xn−1, xn, xn), G(xn, xn+1, xn+1), G(xn−1, xn, xn) +G(xn, xn+1, xn+1, 0) ≤ 0 which implies by (F2) that G(xn, xn+1, xn+1) ≤ hG(xn−1, xn, xn). Then G(xn, xn+1, xn+1) ≤ hG(xn−1, xn, xn) ≤ . . . ≤ hnG(x0, x1, x1). Moreover, for all m,n ∈ N, m > n, we have repeated use the rectangle inequality G(xn, xm, xm) ≤ G(xn, xn+1, xn+1) +G(xn+1, xn+2, xn+2) + . . .+G(xm−1, xm, xm) ≤ ≤ (hn + hn+1 + . . .+ hm−1)G(x0, x1, x1) ≤ hn 1− h G(x0, x1, x1), which implies limn,m→∞G(xn, xm, xm) = 0. Hence, (xn) is a G-Cauchy sequence. Since (X,G) is G-complete, there exists u ∈ X such that limn→∞ xn = u. We prove that u = Tu. By (F1) we have successively F (G(Txn−1, Tu, Tu), G(xn−1, u, u), G(xn−1, Txn−1, Txn−1), G(u, Tu, Tu), G(xn−1, Tu, Tu), G(u, Txn−1, Txn−1)) ≤ 0, F (G(xn, Tu, Tu), G(xn−1, u, u), G(xn−1, xn, xn), G(u, Tu, Tu), G(xn−1, Tu, Tu), G(u, xn, xn)) ≤ 0. By continuity of F and G, letting n tend to infinity, we obtain F (G(u, Tu, Tu), 0, 0, G(u, Tu, Tu), G(u, Tu, Tu), 0) ≤ 0. By (F2) we obtain G(u, Tu, Tu) = 0, hence u = Tu and u is a fixed point of T. By Theorem 4.1 u is the unique fixed point of T. Theorem 4.2 is proved. Corollary 4.1. Theorem 2.1. Proof. The proof follows from Theorem 4.2 and Example 3.1. ISSN 1027-3190. Укр. мат. журн., 2013, т. 65, № 6 FIXED-POINT RESULTS ON COMPLETE G-METRIC SPACES FOR MAPPINGS . . . 819 Corollary 4.2 (Theorem 2.2 [11]). Let (X,G) be a G-complete metric space and T : (X,G)→ → (X,G) be a mapping satisfying the following condition: G(Tx, Ty, Tz) ≤ αG(x, y, z) + β[G(x, Tx, Tx) +G(y, Ty, Ty) +G(z, Tz, Tz)], (4.2) for all x, y, z ∈ X and 0 ≤ α+ 3β < 1. Then T has a unique fixed point. Proof. By (4.2) for z = y we obtain G(Tx, Ty, Ty) ≤ αG(x, y, y) + β[G(x, Tx, Tx) + 2G(y, Ty, Ty)], for all x, y ∈ X. By Theorem 4.2 and Example 3.2 for α = a, β = b and c = 0 it follows that T has a unique fixed point. Corollary 4.3 (Theorem 2.3 [11]). Let (X,G) be a G-complete metric space and T : (X,G)→ → (X,G) be a mapping satisfying the condition G(Tx, Ty, Tz) ≤ αG(x, y, z) + βmax{G(x, Tx, Tx), G(y, Ty, Ty), G(z, Tz, Tz)}, (4.3) for all x, y, z ∈ X and 0 ≤ α+ β < 1. Then T has a unique fixed point. Proof. By (4.3) for z = y we obtain G(Tx, Ty, Ty) ≤ αG(x, y, y) + βmax{G(x, Tx, Tx), G(y, Ty, Ty)}, for all x, y ∈ X. By Theorem 4.2 and Example 3.3 for α = a, β = b and c = 0 it follows that T has a unique fixed point. Corollary 4.4 (Theorem 2.1 [10]). Let (X,G) be a G-complete metric space and T : (X,G)→ → (X,G) be a mapping satisfying the condition G(Tx, Ty, Tz) ≤ kmax{G(x, y, z), G(x, Tx, Tx), G(y, Ty, Ty), G(y, Tz, Tz), G(x, Ty, Ty), G(y, Tz, Tz), G(z, Tx, Tx)}, (4.4) for all x, y, z ∈ X, where k ∈ [ 0, 1 2 ) . Then T has a unique fixed point. Proof. By (4.4) for z = y we obtain G(Tx, Ty, Ty) ≤ kmax{G(x, y, y), G(x, Tx, Tx), G(y, Ty, Ty), G(x, Ty, Ty), G(y, Tx, Tx)}. By Theorem 4.2 and Example 3.4, T has a unique fixed point. Corollary 4.5. Let (X,G) be a G-complete metric space and T : (X,G) → (X,G) be a map- ping which satisfy the following inequality for all x, y ∈ X, G(Tx, Ty, Ty) ≤ kmax{G(y, Ty, Ty) +G(x, Ty, Ty), 2G(y, Tx, Tx)}, (4.5) where k ∈ [ 0, 1 3 ) . Then T has a unique fixed point. Proof. By Theorem 4.2 and Example 3.5 for a = b = 0 and c = k, T has a unique fixed point. Remark 4.1. In Theorem 2.8 [10], k ∈ [ 0, 1 2 ) . ISSN 1027-3190. Укр. мат. журн., 2013, т. 65, № 6 820 V. POPA, A.-M. PATRICIU Corollary 4.6. Let (X,G) be a G-metric space and T : (X,G) → (X,G) be a mapping satis- fying the following inequality for all x, y, z ∈ X, G(Tx, Ty, Tz) ≤ hmax { G(x, y, z), G(x, Tx, Tx), G(y, Ty, Ty), G(z, Tz, Tz), G(y, Tx, Tx) +G(y, Ty, Ty) +G(y, Tz, Tz) 3 , G(x, Tx, Tx) +G(y, Ty, Ty) +G(z, Tz, Tz) 3 } , (4.6) where k ∈ [0, 1) . Then T has a unique fixed point. Proof. If y = z, by (4.6) we obtain that G(Tx, Ty, Ty) ≤ hmax { G(x, y, y), G(x, Tx, Tx), G(y, Ty, Ty), G(y, Tx, Tx) + 2G(y, Ty, Ty) 3 , G(x, Tx, Tx) + 2G(y, Ty, Ty) 3 } ≤ ≤ hmax { G(x, y, y), G(x, Tx, Tx), G(y, Ty, Ty), G(y, Tx, Tx) + 2G(y, Ty, Ty) 3 , G(x, Tx, Tx) + 2G(y, Ty, Ty) 3 , G(x, Ty, Ty) +G(y, Tx, Tx) 3 } , for all x, y ∈ X. By Theorem 4.2 and Example 3.6, T has a unique fixed point. Remark 4.2. Corollary 4.6 is a generalization of Theorem 2.6 [1], where k ∈ [ 0, 1 2 ) . Remark 4.3. By Theorem 4.2 and Examples 3.7 – 3.10 we obtain new results. 5. Property (P ) in G-metric spaces. Theorem 5.1. Under the conditions of Theorem 4.2, T has property (P ). Proof. By Theorem 4.2, T has a fixed point. Therefore, Fix (Tn) 6= ∅ for each n ∈ N. Fix n > 1 and assume that p ∈ Fix (Tn). We prove that p ∈ Fix (T ). Using (4.1) we have F (G(Tnp, Tn+1p, Tn+1p), G(Tn−1p, Tnp, Tnp), G(Tn−1p, Tnp, Tnp), G(Tnp, Tn+1p, Tn+1p), G(Tn−1p, Tn+1p, Tn+1p), G(Tnp, Tnp, Tnp)) ≤ 0. By rectangle inequality G(Tn−1p, Tn+1p, Tn+1p) ≤ G(Tn−1p, Tnp, Tnp) +G(Tnp, Tn+1p, Tn+1p). By (F1) we obtain F (G(Tnp, Tn+1p, Tn+1p), G(Tn−1p, Tnp, Tnp), G(Tn−1p, Tnp, Tnp), G(Tnp, Tn+1p, Tn+1p), G(Tn−1p, Tnp, Tnp) +G(Tnp, Tn+1p, Tn+1p), 0) ≤ 0. ISSN 1027-3190. Укр. мат. журн., 2013, т. 65, № 6 FIXED-POINT RESULTS ON COMPLETE G-METRIC SPACES FOR MAPPINGS . . . 821 By (F2) we obtain G(Tnp, Tn+1p, Tn+1p) ≤ hG(Tn−1p, Tnp, Tnp) ≤ . . . ≤ hnG(p, Tp, Tp). Since p ∈ Tnp, then G(p, Tp, Tp) = G(Tnp, Tn+1p, Tn+1p). Therefore G(p, Tp, Tp) ≤ hnG(p, Tp, Tp) which implies G(p, Tp, Tp) = 0, i.e., p = Tp and T has property (P ). Theorem 5.1 is proved. Corollary 5.1. In the condition of Corollary 4.6, T has property (P ). Remark 5.1. Corollary 5.1 is a generalization of the results from Theorem 2.6 [1]. Corollary 5.2. In the condition of Corollary 4.4 with k ∈ [ 0, 1 2 ) , instead k ∈ [0, 1), T has property (P ). Remark 5.2. We obtain other new results from Examples 3.1 – 3.10. 1. Abbas M., Nazir T., Radanović S. Some periodic point results in generalized metric spaces // Appl. Math. and Comput. – 2010. – 217. – P. 4094 – 4099. 2. Chung R., Kasian T., Rasie A., Rhoades B. E. Property (P ) in G-metric spaces // Fixed Point Theory and Appl. – 2010. – Art. ID 401684. – 12 p. 3. Dhage B. C. Generalized metric spaces and mappings with fixed point // Bull. Calcutta Math. Soc. – 1992. – 84. – P. 329 – 336. 4. Dhage B. C. Generalized metric spaces and topological structures I // An. şti. Univ. Iaşi. Ser. mat. – 2000. – 46, № 1. – P. 3 – 24. 5. Jeong G. S. More maps for which F (T ) = F (Tn) // Demonstr. math. – 2007. – 40, № 3. – P. 671 – 680. 6. Jeong G. S., Rhoades B. E. Maps for which F (T ) = F (Tn) // Fixed Point Theory and Appl. – Nova Sci. Publ., 2007. – 6. 7. Mustafa Z., Sims B. Some remarks concerning D-metric spaces // Int. Conf. Fixed Point. Theory and Appl. – 2004. – P. 184 – 198. 8. Mustafa Z., Sims B. A new approach to generalized metric spaces // J. Nonlinear Convex Analysis. – 2006. – 7. – P. 289 – 297. 9. Mustafa Z., Obiedat H., Awawdeh F. Some fixed point theorems for mappings on G-complete metric spaces // Fixed Point Theory and Appl. – 2008. – Article ID 189870. – 10 p. 10. Mustafa Z., Sims B. Fixed point theorems for contractive mappings in complete G-metric spaces // Fixed Point Theory and Appl. – 2009. – Article ID 917175. – 10 p. 11. Mustafa Z., Obiedat H. A fixed point theorem of Reich in G-metric spaces // Cubo A. Math. J. – 2010. – 12. – P. 83 – 93. 12. Mustafa Z., Khandagji M., Shatanawi W. Fixed point results on complete G-metric spaces // Stud. Sci. Math. hung. – 2011. – 48, № 3. – P. 304 – 319. 13. Popa V. Fixed point theorems for implicit contractive mappings // Stud. cerc. St. Ser. Mat. Univ. Bacău. – 1997. – 7. – P. 129 – 133. 14. Popa V. Some fixed point theorems for compatible mappings satisfying implicit relations // Demonstr. math. – 1999. – 32. – P. 157 – 163. 15. Rhoades B. E., Abbas M. Maps satisfying contractive conditions of integral type for which F (T ) = F (Tn) // Int. Pure and Appl. Math. – 2008. – 45, № 2. – P. 225 – 231. Received 14.02.12, after revision — 19.11.12 ISSN 1027-3190. Укр. мат. журн., 2013, т. 65, № 6