Derivations on Pseudoquotients

A space of pseudoquotients denoted by B(X, S) is defined as equivalence classes of pairs (x, f); where x is an element of a nonempty set X, f is an element of S; a commutative semigroup of injective maps from X to X; and (x, f) ~ (y, g) for gx = fy: If X is a ring and elements of S are ring homomorp...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Majeed, A., Mikusiński, P.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2013
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/165578
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Derivations on Pseudoquotients / A. Majeed, P. Mikusiński // Український математичний журнал. — 2013. — Т. 65, № 6. — С. 863–869. — Бібліогр.: 4 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-165578
record_format dspace
spelling irk-123456789-1655782020-02-15T01:25:55Z Derivations on Pseudoquotients Majeed, A. Mikusiński, P. Короткі повідомлення A space of pseudoquotients denoted by B(X, S) is defined as equivalence classes of pairs (x, f); where x is an element of a nonempty set X, f is an element of S; a commutative semigroup of injective maps from X to X; and (x, f) ~ (y, g) for gx = fy: If X is a ring and elements of S are ring homomorphisms, then B(X, S) is a ring. We show that, under natural conditions, a derivation on X has a unique extension to a derivation on B(X, S): We also consider (α, β) -Jordan derivations, inner derivations, and generalized derivations. Введено означення простору псевдочасток B(X, S) як класів еквiвалентностi пар (x, f), де x — елемент непорожньої множини X, f — елемент комутативної напівгрупи S ін'єктивних відображень із X у X; та (x, f) ~ (y, g), якщо gx = fy. Якщо X — кільце та елементи S є гомоморфізмами кільця, то B(X, S) є кільцем. Показано, що за природних умов похідна на X має єдине розширення до похідної на B(X, S). Також розглянуто (α, β)-жорданові похідні, внутрішні похідні та узагальнені похідні. 2013 Article Derivations on Pseudoquotients / A. Majeed, P. Mikusiński // Український математичний журнал. — 2013. — Т. 65, № 6. — С. 863–869. — Бібліогр.: 4 назв. — англ. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/165578 512.5 en Український математичний журнал Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Короткі повідомлення
Короткі повідомлення
spellingShingle Короткі повідомлення
Короткі повідомлення
Majeed, A.
Mikusiński, P.
Derivations on Pseudoquotients
Український математичний журнал
description A space of pseudoquotients denoted by B(X, S) is defined as equivalence classes of pairs (x, f); where x is an element of a nonempty set X, f is an element of S; a commutative semigroup of injective maps from X to X; and (x, f) ~ (y, g) for gx = fy: If X is a ring and elements of S are ring homomorphisms, then B(X, S) is a ring. We show that, under natural conditions, a derivation on X has a unique extension to a derivation on B(X, S): We also consider (α, β) -Jordan derivations, inner derivations, and generalized derivations.
format Article
author Majeed, A.
Mikusiński, P.
author_facet Majeed, A.
Mikusiński, P.
author_sort Majeed, A.
title Derivations on Pseudoquotients
title_short Derivations on Pseudoquotients
title_full Derivations on Pseudoquotients
title_fullStr Derivations on Pseudoquotients
title_full_unstemmed Derivations on Pseudoquotients
title_sort derivations on pseudoquotients
publisher Інститут математики НАН України
publishDate 2013
topic_facet Короткі повідомлення
url http://dspace.nbuv.gov.ua/handle/123456789/165578
citation_txt Derivations on Pseudoquotients / A. Majeed, P. Mikusiński // Український математичний журнал. — 2013. — Т. 65, № 6. — С. 863–869. — Бібліогр.: 4 назв. — англ.
series Український математичний журнал
work_keys_str_mv AT majeeda derivationsonpseudoquotients
AT mikusinskip derivationsonpseudoquotients
first_indexed 2025-07-14T19:00:25Z
last_indexed 2025-07-14T19:00:25Z
_version_ 1837650020385423360
fulltext UDC 512.5 A. Majeed, P. Mikusiński (CIIT, Islamabad, Pakistan) DERIVATIONS ON PSEUDOQUOTIENTS ПОХIДНI НА ПСЕВДОЧАСТКАХ A space of pseudoquotients, denoted by B(X,S), is defined as equivalence classes of pairs (x, f), where x is an element of a nonempty set X, f is an element of S, a commutative semigroup of injective maps from X to X, and (x, f) ∼ (y, g) if gx = fy. If X is a ring and elements of S are ring homomorphosms, then B(X,S) is a ring. We show that, under natural conditions, a derivation on X has a unique extension to a derivation on B(X,S). We also consider (α, β)-Jordan derivations, inner derivations, and generalized derivations. Введено означення простору псевдочасток B(X,S) як класiв еквiвалентностi пар (x, f), де x — елемент непорожньої множини X, f — елемент комутативної напiвгрупи S iн’єктивних вiдображень iз X у X та (x, f) ∼ (y, g), якщо gx = fy. Якщо X — кiльце та елементи S є гомоморфiзмами кiльця, то B(X,S) є кiльцем. Показано, що за природних умов похiдна на X має єдине розширення до похiдної на B(X,S). Також розглянуто (α, β)-жордановi похiднi, внутрiшнi похiднi та узагальненi похiднi. 1. Introduction. Let X be a ring (or an algebra ) with the unit I. An additive (or linear) map δ from X into it self is called a derivation if δ(AB) = δ(A)B +Aδ(B) for all A,B ∈ X. Derivations are very important both in theory and applications, and are studied by many mathematicians. An additive (or linear) map δ from a ring (or an algebra) X into itself is called a Jordan derivation if δ(A2) = δ(A)A+Aδ(A) for all A ∈ X. Let X be any nonempty set and S be a commutative semigroup acting on X injectively. This means that every φ ∈ S is an injective map φ : X → X and (φψ)x = φ(ψx) for all φ, ψ ∈ S and x ∈ S and x ∈ X. For (x, φ), (y, ψ) ∈ X x S we write (x, φ) (y, ψ) if ψx = φy. It is easy to check that is an equivalence relation in X x S, finally we define B(X,S) = (XxS)/∼. The equivalence class of (x, φ) will be denoted by x φ . The set of psedo- quotients. This is a slight absue of notion, but we follow here the tradition of denoting rational numbers by p q even through the same formal problem is present there. Elements of X can be identified with elements of B(X,S) via the embedding ι : X → B(X,S) defined by ι(x) = φx φ , where φ is an arbitrary element of S, clearly is well defined that is, it is independent of φ. Action of S can be extended to B(X,S) via φ x ψ = φx ψ If φ x ψ = i(y), for some y ∈ X, we will write φ x ψ ∈ X and φ x ψ = y, which formally incorrect, but convenient and harmless. For instance, we have φ x φ = x. c© A. MAJEED, P. MIKUSIŃSKI, 2013 ISSN 1027-3190. Укр. мат. журн., 2013, т. 65, № 6 863 864 A. MAJEED, P. MIKUSIŃSKI Element of S, when extended to maps on B(X,S), become bijections. The action of ψ−1 on B(X,S) can be defined as ψ−1x φ = x φψ . Consequently, S can be extended to a commutative group of bijections acting on B(X,S). If (X,�) is a commutative group and S is a commutative semigroup of injective homomorphsims on X, then B(X,S) is a commutative group with the operation defined as x φ � y ψ = ψx� φy φψ . Similarly, if X is a vector space and S is a commutative semigroup of injective linear mapping from X into X, then B(X,S) is a vector space with the operation defined as x φ + y ψ = ψx+ φy φψ and λ x φ = λx φ . If δ : X → X, if δ extends to a map δ̂ : B(X,S) → B(X,S), it is often important to know what properties of δ are inherited by δ̂. In this section we consider some special situations when an extension is possible, which are important for the particular case studied in this paper . If δ(fx) = fδ(x) for all x ∈ X and all f ∈ S, then we say that δ commutes with S. The following Proposition 1.1 in [1] is use full to prove the following theorems. Proposition 1.1. Let δ : X → X. Then δ̂ ( x f ) = δ(x) f is a well-defined extension of δ to δ̂ : B(X,S)→ B(X,S) if and only if δ commutes with S. 2. Derivation on pseudoquotients. In this section we study about extension of (α, β)-derivations on B(X,S). And show under certain conditions it commutes with f is an injective ring homomor- phisms form set S on X. Where S is a commutative semigroup of injective ring homomorphisms. 2.1. (α, β)-Derivations. Let X be a ring and let α and β be endomorphisms of X. By an (α, β)-derivation on X we mean a map δ : X → X such that δ(xy) = δ(x)β(y) + α(x)δ(y) for all x, y ∈ X. A (1, 1)-derivation, where 1 is the identity map on X is called simply a derivation. That is, by a derivation we mean a map δ : X → X such that δ(xy) = δ(x)y + xδ(y) for all x, y ∈ X. Theorem 2.1. Let X be a ring and let S be a commutative semigroup of injective ring ho- momorphisms. Let α and β be homomorphisms from X into itself that commute with S, that is, αf(x) = fα(x) and βf(x) = fβ(x) for every f ∈ S and x ∈ X. If δ is an (α, β)-derivation on X that commutes with S, then the map δ̂ : B → B defined by δ̂ ( x f ) = δ(x) f (2.1) is an extension of δ to an (α, β)-derivation on B. ISSN 1027-3190. Укр. мат. журн., 2013, т. 65, № 6 DERIVATIONS ON PSEUDOQUOTIENTS 865 Proof. Assume δ is an (α, β)-derivation on X that commutes with S. Then δ̂ is well-defined by Proposition 1.1 in [1]. In order to show that it is an (α, β)-derivation on B, consider x f , y g ∈ B(X,G). Then δ̂ ( x f y g ) = δ(gxfy) fg = δ(gx)β(fy) + α(gx)δ(fy) fg = = δx f β(y) g + α(x) f δy g = δ̂ ( x f ) β ( y g ) + α ( x f ) δ̂ ( y g ) . Theorem 2.1 is proved. Corollary 2.1. Let X be a ring and let S be a commutative semigroup of injective ring ho- momorphisms. If δ is a derivation on X that commutes with S, then the map δ̂ : B → B defined by δ̂ ( x f ) = δ(x) f is an extension of δ to a derivation on B. 2.2. (α, β)-Jordan derivations. Let α and β be endomorphisms of X. By an (α, β)-Jordan derivation on X we mean a map δ : X → X such that δ(x2) = δ(x)β(x) + α(x)δ(x) for all x ∈ X. A (1, 1)-Jordan derivation, where 1 is the identity map on X is called simply a Jordan derivation. That is, by a Jordan derivation on X we mean a map δ : X → X such that δ(x2) = δ(x)x+ xδ(x) for all x ∈ X. Theorem 2.2. Let X be a ring and let S be a commutative semigroup of injective ring ho- momorphisms. Let α and β be homomorphisms from X into itself that commute with S, that is, αf(x) = fα(x) and βf(x) = fβ(x) for every f ∈ S and x ∈ X. If δ is an (α, β)-Jordan derivation on X that commutes with S, then the map δ̂ : B → B defined by δ̂ ( x f ) = δ(x) f is an extension of δ to an (α, β)-Jordan derivation on B. Proof. The proof is similar to the proof of Theorem 2.1. Corollary 2.2. Let X be a ring and let S be a commutative semigroup of injective ring ho- momorphisms. If δ is a derivation on X that commutes with S, then the map δ̂ : B → B defined by δ̂ ( x f ) = δ(x) f is an extension of δ to a derivation on B. In Theorem 2.2 and the above corollary it is necessary to assume that δ commutes with S. The next theorem describes a situation which guarantees that δ commutes with S. ISSN 1027-3190. Укр. мат. журн., 2013, т. 65, № 6 866 A. MAJEED, P. MIKUSIŃSKI Theorem 2.3. Let X be an unital Banach algebra and let f be an injective algebra homo- morphism. Let α and β be algebra homomorphisms from X into itself that commute with f, if δ is a linear mapping on X such that δ(xx−1) = α(x)δ(x−1) + δ(x)β(x−1) (2.2) for every invertible element x ∈ X, then δ is an (α, β)-Jordan derivation on X and commutes with f. Proof. It is known that (2.2) implies δ(e) = 0, where e is the identity element in X. Therefore, δ(fe) = 0 for any f injective homomorphism onX. In order to show that linear mapping δ is a Jordan derivation and commutes with S we have to show that δfy2 = fδy2. For any T in X. Let n be a positive integer with n > ‖T‖+e and y = ne+T. We have that y and e−y are invertible in X. Since α(fx−1) = α(fx)−1 = fα(x−1) = fα(x−1) and β(fx−1) = β(fx)−1 = fβ(x−1) = fβ(x−1) for any invertible element x in X. Then δ(fy) = −α(fy)δ(fy−1)β(fy) = −α(fy)δ(fy−1f(e− y)2 − fy)β(fy) = = α(fy)α(fy−1f(e− y)2)δ(f(e− y)−2fy)β(y−1(e− y)2)β(fy) + α(fy)δ(fy)β(fy) = = α(fy)α(fy−1 − 2fe+ fy)δ(f(e− y)−2 − f(e− y)−1)β(fy−1 − 2fe+ fy)β(fy)+ +α(fy)δ(fy)β(fy) = = (e− 2α(fy) + αf(y)2)δ(f(e− y)−2 − f(e− y)−1)(e− 2β(fy) + βf(y2))+ +α(fy)δ(fy)β(fy) = α(f(e− y)2)δ(f(e− y)−2)β(f(e− y)2)− −(αf(e− y))2)δ((e− y)−1)(βf(e− y))2 + α(fy)δ(fy)β(fy) = = −δ(f(e− y)2) + αf(e− y)δf(e− y)βf(e− y) + α(fy)δ(fy)β(fy) = = 2δ(fy)− δf(y2)− δ(fy) + α(fy)δ(fy) + δ(fy)β(fy)− −α(fy)δ(fy)β(fy) + α(fy)δ(fy)β(fy) = = δ(fy)− δ(fy2) + α(fy)δ(fy) + δ(fy)β(fy). Hence δ(fy2) = δ(fy)β(fy) + α(fy)δ(fy). Since δ(fe) = 0 and fy = f(ne) + ft, we have that δ(ft2) = δ(ft)β(ft) + α(ft)δ(ft) for any t ∈ X. Similarly we can show for fδx. Theorem 2.3 is proved. Corollary 2.3. Let X be an unital Banach algebra and let f be an injective algebra homomor- phism on X. Let α and β be algebra homomorphisms from X onto itself that commute with f. If δ is a linear mapping on X such that δ(xx−1) = α(x)δ(x−1) + δ(x)β(x−1) for every invertible element x ∈ X, then δ is an (α, β)-Jordan derivation on X that commutes with S = {fn : n = 1, 2, 3, . . .} and the map δ̂ : B(X,S)→ B(X,S), defined by ISSN 1027-3190. Укр. мат. журн., 2013, т. 65, № 6 DERIVATIONS ON PSEUDOQUOTIENTS 867 δ̂ ( x f ) = δ(x) f , is an extension of δ to an (α, β)-Jordan derivation on B(X,S). 2.3. Idempotent. An idempotent element of a ring is an element which is idempotent with respect to the ring’s multiplication, that is, r2 = r. A ring in which all elements are idempotent is called a Boolean ring. Lemma 2.1. Let X be a ring and let S be a commutative semigroup of injective ring homo- morphisms. x f is idempotent in B(X,S) if and only if x is idempotent in X. Proof. If x f is idempotent in B(X,S), then x f = x f x f = fxfx f2 = f(x2) f2 = x2 f . Consequently, x = x2. The proof in the other direction follows from the above. Theorem 2.4. Let X be a commutative ring and let S be a commutative semigroup of injective ring homomorphisms and let δ be a derivation on X that commutes with S. If δ̂ is the extension of δ onto B(X,S) as defined by (2.1) and x f ∈ B(X,S) is idempotent, then (i) δ̂ ( x f ) = 0, (ii) δ̂ ( y g x f ) = δ̂ ( y g ) x f for any y g ∈ B(X,S), (iii) δ̂ ( x f y g ) = x f δ̂ ( y g ) for any y g ∈ B(X,S). Proof. For any idempotent x f ∈ B(X,S), we have δ̂ ( x f ) = δ̂ ( x f x f ) = δ̂ ( x f ) x f + x f δ̂ ( x f ) . As X is a commutative ring, = δ̂ ( x f ) x f + δ̂ ( x f ) x f and consequently δ̂ ( x f ) x f = δ̂ ( x f ) x f + δ̂ ( x f ) x f . This shows that δ̂ ( x f ) = 0. (ii) δ̂ ( y g x f ) = δ̂ ( y g ) x f + g y δ̂ ( x f ) = g y δ̂ ( x f ) . Similarly we can show δ̂ ( x f y g ) = x f δ̂ ( y g ) . Theorem 2.4 is proved. ISSN 1027-3190. Укр. мат. журн., 2013, т. 65, № 6 868 A. MAJEED, P. MIKUSIŃSKI By induction, it is easy to show that for any idempotents x1 f , x2 f , . . . , xn f ∈ B and any y g ∈ B, δ̂ ( x1 f x2 f . . . xn f y g ) = x1 f x2 f . . . xn f δ̂ ( y g ) . 2.4. Inner derivations. An inner derivation on X is a map δ : X → X such that δ(x) = xy − yx for each y ∈ X. Let X be a ring and let S be a commutative semigroup of injective ring homomorphisms. δ : X → X is an inner derivation for each x ∈ X and for each f ∈ S δ(x) = xf − fx. Theorem 2.5. Let X be a ring and let S be a commutative semigroup of injective ring ho- momorphisms. If δ is a inner derivation on X, then the map δ̂ : B → B defined by δ̂ ( x f ) = = 2δ(x) f − δ(fx) f2 is an extension of δ to a inner derivation on B if xf − fx commutes with S for every f ∈ S. 2.5. Generalized derivation. δ : X → X is a map on X is called a generalized derivation if there exists a derivation d : X → X such that δ(xy) = δ(x)y + xd(y) for all x, y ∈ X. Theorem 2.6. Let X be a ring and let S be a commutative semigroup of injective ring homo- morphisms. If δ is a generalized derivation on X, then the map δ̂ : B → B defined by δ̂ ( x f ) = δ(x) f is an extension of δ to a generalized derivation on B. Proof. Assume that δ and d commutes with S. In order to show that it is an δ is a generalized derivation on B, consider x f , y g ∈ B(X,G): δ̂ ( x f y g ) = δ(gxfy) fg = δ(gx)(fy) + (gx)d(fy) fg = = δx f y g + x f dy g = δ̂ ( x f )( y g ) + α ( x f ) d̂ ( y g ) . Theorem 2.6 is proved. Example 2.1. Let R be a commutative ring and let δ be a derivation on R. For an element x ∈ R we denote by Mx the homomorphism defined by Mx(y) = xy. Let S = {Mx : x ∈ R,Mx is injective, and δ(x) = 0} . Since δ(Mx(y)) = δ(xy) = δ(x)y + xδ(y) = xδ(y) =Mx(δy) ISSN 1027-3190. Укр. мат. журн., 2013, т. 65, № 6 DERIVATIONS ON PSEUDOQUOTIENTS 869 for every Mx ∈ S, δ can has a unique extension to a derivation on B(R,S). For a simple example we can take for R the ring of polynomials in x and y and δ = ∂ ∂y . Then S is not trivial and, since it contains homomorphism that are not surjective, B(R,S) is a nontrivial extension of R. Example 2.2. Let N be a nest algebra and S be a commutative semigroup acting on N gener- ated by finite rank operators. δ is a derivation on N with δ(φ) = 0. Let for any arbitrary n from N and φ from G. From [4] every finite rank operator in N rep- resented as a sum of rank one operators. From [3] Every rank one operator in N denoted as linear combination of at most four idempotents. Hence we have δ(φn) = φδ(n) + nδ(φ). Where δ(φ) = 0, for every rank one operator from S. 1. Atanasiu D., Mikusiński P., Nemzer D. An algebraic approach to tempered distributions // J. Math. Anal. and Appl. – 2011. – 384. – P. 307 – 319. 2. JianKui Li., Jiren Zhou. Characterization of Jordan derivations and Jordan homomorphisms // Linear and Multilinear Algebra. – 2011. – 52, № 2. – P. 193 – 204. 3. Erdos J. A. Operator of finite rank in nest algebras // London Math.Soc. – 1968. – 43. – P. 391 – 397. 4. Hadwin L. B. Local multiplications on algebras spanned by idempotents // Linear and Multilinear Algebras. – 1994. – 37. – P. 259 – 263. Received 23.04.12 ISSN 1027-3190. Укр. мат. журн., 2013, т. 65, № 6