Special Warped-Like Product Manifolds with (Weak) G₂ Holonomy

By using fiber-base decomposition of the manifolds, the definition of warped-like product is considered as a generalization of multiply-warped product manifolds, by allowing the fiber metric to be not block diagonal. We consider (3 + 3 + 1) decomposition of 7-dimensional warped-like product manifo...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автор: Uğuz, S.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2013
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/165602
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Special Warped-Like Product Manifolds with (Weak) G₂ Holonomy / S. Uğuz // Український математичний журнал. — 2013. — Т. 65, № 8. — С. 1126–1140. — Бібліогр.: 36 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:By using fiber-base decomposition of the manifolds, the definition of warped-like product is considered as a generalization of multiply-warped product manifolds, by allowing the fiber metric to be not block diagonal. We consider (3 + 3 + 1) decomposition of 7-dimensional warped-like product manifolds, which is called a special warped-like product of the form M = F × B, where the base B is a one-dimensional Riemannian manifold and the fibre F is of the form F = F₁ × F₂ where Fi, i = 1, 2, are Riemannian 3-manifolds. If all fibers are complete, connected, and simply connected, then the fibers are isometric to S³ with constant curvature k > 0 in the class of special warped-like product metrics admitting the (weak) G₂ holonomy determined by the fundamental 3-form.