On M-projectively flat LP-Sasakian manifolds

In the present paper, we study the nature of LP-Sasakian manifolds admitting the M-projective curvature tensor. It is examined whether this manifold satisfies the condition W(X, Y ).R = 0. Moreover, it is proved that, in the M-projectively flat LP-Sasakian manifolds, the conditions R(X, Y ).R = 0 an...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автор: Zengin, F.Ö.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2013
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/165705
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On M-projectively flat LP-Sasakian manifolds / F.Ö. Zengin // Український математичний журнал. — 2013. — Т. 65, № 11. — С. 1560–1566. — Бібліогр.: 17 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-165705
record_format dspace
spelling irk-123456789-1657052020-02-17T01:25:58Z On M-projectively flat LP-Sasakian manifolds Zengin, F.Ö. Короткі повідомлення In the present paper, we study the nature of LP-Sasakian manifolds admitting the M-projective curvature tensor. It is examined whether this manifold satisfies the condition W(X, Y ).R = 0. Moreover, it is proved that, in the M-projectively flat LP-Sasakian manifolds, the conditions R(X, Y ).R = 0 and R(X, Y ).S = 0 are satisfied. In the last part of the paper, an M-projectively flat space-time is introduced, and some properties of this space are obtained. Вивчається природа многовидів Сасакяна, що допускають M-проективний тензор кривизни. Перевірено, чи задовольняє цей многовид умову W(X, Y ).R = 0. Більш того, доведено, що умови R(X, Y ).R = 0 та R(X, Y ).S = 0 виконуються для M-проективно плоских LP-многовидів Сасакяна. В останній частині роботи введено M-проективно плоский простір-час та встановлено деякі властивості цього простору. 2013 Article On M-projectively flat LP-Sasakian manifolds / F.Ö. Zengin // Український математичний журнал. — 2013. — Т. 65, № 11. — С. 1560–1566. — Бібліогр.: 17 назв. — англ. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/165705 517.91 en Український математичний журнал Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Короткі повідомлення
Короткі повідомлення
spellingShingle Короткі повідомлення
Короткі повідомлення
Zengin, F.Ö.
On M-projectively flat LP-Sasakian manifolds
Український математичний журнал
description In the present paper, we study the nature of LP-Sasakian manifolds admitting the M-projective curvature tensor. It is examined whether this manifold satisfies the condition W(X, Y ).R = 0. Moreover, it is proved that, in the M-projectively flat LP-Sasakian manifolds, the conditions R(X, Y ).R = 0 and R(X, Y ).S = 0 are satisfied. In the last part of the paper, an M-projectively flat space-time is introduced, and some properties of this space are obtained.
format Article
author Zengin, F.Ö.
author_facet Zengin, F.Ö.
author_sort Zengin, F.Ö.
title On M-projectively flat LP-Sasakian manifolds
title_short On M-projectively flat LP-Sasakian manifolds
title_full On M-projectively flat LP-Sasakian manifolds
title_fullStr On M-projectively flat LP-Sasakian manifolds
title_full_unstemmed On M-projectively flat LP-Sasakian manifolds
title_sort on m-projectively flat lp-sasakian manifolds
publisher Інститут математики НАН України
publishDate 2013
topic_facet Короткі повідомлення
url http://dspace.nbuv.gov.ua/handle/123456789/165705
citation_txt On M-projectively flat LP-Sasakian manifolds / F.Ö. Zengin // Український математичний журнал. — 2013. — Т. 65, № 11. — С. 1560–1566. — Бібліогр.: 17 назв. — англ.
series Український математичний журнал
work_keys_str_mv AT zenginfo onmprojectivelyflatlpsasakianmanifolds
first_indexed 2025-07-14T19:35:23Z
last_indexed 2025-07-14T19:35:23Z
_version_ 1837652221396779008
fulltext UDC 517.91 F. Ö. Zengin (Istanbul Techn. Univ., Turkey) ON M -PROJECTIVELY FLAT LP-SASAKIAN MANIFOLDS ПРО M -ПРОЕКТИВНО ПЛОСКI LP-МНОГОВИДИ САСАКЯНА The object of the present paper is to study the nature of LP-Sasakian manifolds admitting the M -projective curvature tensor. It is examined whether this manifold satisfies the condition W (X,Y ).R = 0. Moreover, it is proved that, in the M -projectively flat LP-Sasakian manifolds, the conditions R(X,Y ).R = 0 and R(X,Y ).S = 0 are satisfied. In the last part of our paper, M -projectively flat space-time is introduced and some properties of this space are obtained. Вивчається природа многовидiв Сасакяна, що допускають M -проективний тензор кривизни. Перевiрено, чи задо- вольняє цей многовид умовуW (X,Y ).R = 0. Бiльш того, доведено, що умовиR(X,Y ).R = 0 таR(X,Y ).S = 0 ви- конуються для M -проективно плоских LP-многовидiв Сасакяна. В останнiй частинi роботи введено M -проективно плоский простiр-час та встановлено деякi властивостi цього простору. 1. Introduction. A Riemannian manifold (M, g) is called a Sasakian manifold if there exists a Killing vector field ξ of unit length on M so that tensor field Φ of type (1,1), defined by Φ(X) = = −∇Xξ, satisfies the condition (∇XΦ)(Y ) = g(X,Y )ξ − g(ξ, Y )X for any pair of vector fields X and Y on M. This is a curvature condition which can be easily expressed in terms the Riemann curvature tensor as R(X, ξ)Y = g(ξ, Y )X − g(X,Y )ξ. Equivalently, the Riemannian cone defined by (C(M), ḡ,Ω) = (R+XM, dr2 + r2g, d(r2η)) is Kähler with the Kähler form Ω = d(r2η), where η is the dual 1-form of ξ. The 4-tuple s = (ξ, η,Φ, g) is commonly called a Sasakian structure on M and ξ is its characteristic or Reeb vector field. Sasakian geometry is a special kind of contact metric geometry such that the structure transverse to the Reeb vector field ξ is Kähler and invariant under the flow of ξ. On the analogy of Sasakian manifolds, in 1989 Matsumoto [1, 2], introduced the notion of LP-Sasakian manifolds. Again the same notion is introduced by Mihai and Rosca [3] and obtained many interesting results. LP-Sasakian manifolds are also studied by De et al. [4], Shaikh et al. [5 – 8], Taleshian and Asghari [9], Venkatesha and Bagewadi [10] and many others. The M -projective curvature tensor of a Riemannian manifold M defined by Pokhariyal and Mishra [11] is in the following form: W (X,Y )Z = R(X,Y )Z − 1 2(n− 1) ( S(Y,Z)X − S(X,Z)Y + g(Y, Z)QX − g(X,Z)QY ) , (1.1) where R(X,Y )Z and S(X,Y ) are the curvature tensor and the Ricci tensor of M, respectively and Q is the Ricci operator defined by S(X,Y ) = g(QX,Y ). Some properties of this tensor in Sasakian and Kähler manifolds have been studied before [12, 13]. In 2010, Chaubey and Ojha [14] investigated the M -projective curvature tensor of a Kenmotsu manifold. The object of the present paper is to study LP-Sasakian manifolds admitting M -projective curva- ture tensor. The paper is organized as follows. Section 2 is concerned with some preliminaries about LP-Sasakian manifolds. Section 3 deals with LP-Sasakian manifolds withM -projective curvature ten- sor. Section 4 is devoted to M -projectively flat LP-Sasakian manifolds. In Section 5, M -projectively flat LP-Sasakian spacetimes are introduced. c© F. Ö. ZENGİN, 2013 1560 ISSN 1027-3190. Укр. мат. журн., 2013, т. 65, № 11 ON M -PROJECTIVELY FLAT LP-SASAKIAN MANIFOLDS 1561 2. Preliminaries. An n-dimensional differentiable manifold M is called an LP-Sasakian man- ifold [1, 2] if it admits a (1, 1) tensor field ϕ, a contravariant vector field ξ, a 1-form η and a Lorentzian metric g which satisfy: ϕ2 = I + η ⊗ ξ, (2.1) η(ξ) = −1, (2.2) g(ϕX,ϕY ) = g(X,Y ) + η(X)η(Y ), (2.3) ∇Xξ = ϕX, g(X, ξ) = η(X), (2.4) (∇Xϕ)Y = g(X,Y )ξ + 2η(X)η(Y )ξ, (2.5) where ∇ denotes the operator of the covariant differentiation with respect to the Lorentzian metric g. It can be easily seen that in an LP-Sasakian manifold, the following relations hold: ϕξ = 0, η(ϕX) = 0, rankϕ = n− 1. Again if we put Ω(X,Y ) = g(X,ϕY ) for any vector fields X and Y, then Ω(X,Y ) is symmetric (0, 2) tensor field [1]. Also since the 1-form η is closed in an LP-Sasakian manifold, we have [1, 4] (∇Xη)(Y ) = Ω(X,Y ), Ω(X, ξ) = 0 for any vector fields X and Y. Also, in an LP-Sasakian manifold, the following conditions hold [2, 4]: g(R(X,Y )Z, ξ) = η(R(X,Y )Z) = g(Y,Z)η(X)− g(X,Z)η(Y ), (2.6) R(ξ,X)Y = g(X,Y )ξ − η(Y )X, (2.7) R(X,Y )ξ = η(Y )X − η(X)Y, (2.8) R(ξ,X)ξ = X + η(X)ξ, (2.9) S(X, ξ) = (n− 1)η(X), (2.10) S(ϕX,ϕY ) = S(X,Y ) + (n− 1)η(X)η(Y ) (2.11) for any vector fields X, Y, Z where R(X,Y )Z is the curvature tensor and S(X,Y ) is the Ricci tensor. ISSN 1027-3190. Укр. мат. журн., 2013, т. 65, № 11 1562 F. Ö. ZENGİN 3. LP-Sasakian manifold satisfying W (X,Y ).S = 0. Let us consider an LP-Sasakian mani- fold (M, g) satisfying the condition W (X,Y ).S = 0. (3.1) Now, we have S(W (ξ,X)Y,Z) + S(Y,W (ξ,X)Z) = 0. (3.2) From (1.1), (2.7) and (2.10), we get W (ξ,X)Y = 1 2 g(X,Y )ξ − 1 2 η(Y )X − 1 2(n− 1) S(X,Y )ξ + 1 2(n− 1) η(Y )QX. (3.3) By using (2.10) and (3.3), (3.2) takes the form 1 2 (n− 1)g(X,Y )η(Z) + 1 2 (n− 1)g(X,Z)η(Y )− S(X,Z)η(Y )− −S(X,Y )η(Z) + 1 2(n− 1) S(QX,Z)η(Y ) + 1 2(n− 1) S(QX,Y )η(Z) = 0. (3.4) Let λ be the eigenvalue of the endomorphism Q corresponding to an eigenvector X. Then QX = λX. (3.5) By using (3.5) in (3.4), we obtain 1 2 (n− 1)g(X,Y )η(Z) + 1 2 (n− 1)g(X,Z)η(Y )− S(X,Z)η(Y )− −S(X,Y )η(Z) + λ 2(n− 1) S(X,Z)η(Y ) + λ 2(n− 1) S(X,Y )η(Z) = 0. (3.6) Remembering that g(QX,Y ) = S(X,Y ) and using (3.6), we have g(QX,Y ) = g(λX, Y ) = λg(X,Y ) = S(X,Y ). (3.7) Thus, from (3.6) and (3.7), taking Z = ξ in (3.6) and using (2.2), it can be easily seen that( λ2 2(n− 1) − λ+ n− 1 2 ) (g(X,Y )− η(X)η(Y )) = 0. (3.8) Finally, taking Y = ξ in (3.8) and using the properties (2.2) and (2.4)2, we obtain( λ2 2(n− 1) − λ+ n− 1 2 ) η(X) = 0. (3.9) In this case, as η(X) 6= 0, we have from (3.9) λ2 − 2(n− 1)λ+ (n− 1)2 = 0. (3.10) From (3.10), it follows that the non-zero eigenvalues of the endomorphism Q are congruent such as (n− 1). Thus we can state the following theorem. ISSN 1027-3190. Укр. мат. журн., 2013, т. 65, № 11 ON M -PROJECTIVELY FLAT LP-SASAKIAN MANIFOLDS 1563 Theorem 3.1. If an n-dimensional (n ≥ 3) LP-Sasakian manifold admitting M -projective cur- vature tensor and with non-zero Ricci tensor S satisfies W (X,Y ).S = 0, then the non-zero eigenvalues of the symmetric endomorphism Q of the tangent space corresponding to S are congruent such as (n− 1). 4. M -projectively flat LP-sasakian manifolds. Let us consider that M be an M -projectively flat LP-Sasakian manifold. Thus, we have W (X,Y )Z = 0 for all vector fields X, Y, Z. Then, we get from (1.1) R(X,Y )Z = 1 2(n− 1) ( S(Y, Z)X − S(X,Z)Y + g(Y,Z)QX − g(X,Z)QY ) . (4.1) Taking Z = ξ in (4.1) and using the relations (2.4), (2.8) and (2.10), we find η(Y )X − η(X)Y = 1 n− 1 [ η(Y )QX − η(X)QY ] . (4.2) Again taking Y = ξ in (4.2) and applying (2.2), (4.2) reduces to QX = (n− 1)X. (4.3) Hence in view of (2.7), (4.1) and (4.3), we get S(X,Y )ξ = (n− 1)g(X,Y )ξ. (4.4) Taking the inner product of both sides (4.4) with ξ and using (2.2), we have S(X,Y ) = (n− 1)g(X,Y ). (4.5) Next, we have the following theorem. Theorem 4.1. Let M be an n-dimensional M -projectively flat LP-Sasakian manifold. Then M is an Einstein manifold and the Ricci tensor of M is in the form S(X,Y ) = (n− 1)g(X,Y ). In this case, by the use of (4.3) and (4.5) in (4.1), we obtain R(X,Y )Z = g(Y, Z)X − g(X,Z)Y. (4.6) According to Karcher [15], a Lorentzian manifold is called infinitesimally spatially isotropic relative to a unit timelike vector field U if its Riemann curvature tensor R satisfies the relation R(X,Y )Z = δ [ g(Y, Z)X − g(X,Z)Y ] for all X,Y, Z ∈ U⊥ and R(X,U)U = γX for X ∈ U⊥ where δ, γ are real valued functions on the manifold. Hence, we can obtain the following theorem. Theorem 4.2. An n-dimensional M -projectively flat LP-Sasakian manifold is infinitesimally spatially isotropic relative to the unit timelike vector field ξ. Theorem 4.3. Let M be an n-dimensional M -projectively flat LP-Sasakian manifold. Then M is semisymmetric, i.e., the condition R(X,Y ).R = 0 holds. ISSN 1027-3190. Укр. мат. журн., 2013, т. 65, № 11 1564 F. Ö. ZENGİN Proof. Let M be an n-dimensional M -projectively flat LP-Sasakian manifold. Thus, we can write R(X,Y ).R = R(X,Y )R(Z,U)V −R(R(X,Y )Z,U)V− −R(Z,R(X,Y )U)V −R(Z,U)R(X,Y )V (4.7) for all vector fields X, Y, Z, U, V on M. So from (4.6), we get R(R(X,Y )Z,U)V = g(U, V )g(Y, Z)X − g(Y,Z)g(X,V )U− −g(X,Z)g(U, V )Y + g(X,Z)g(Y, V )U. (4.8) Again, we obtain R(Z,R(X,Y )U)V = g(U, Y )g(X,V )Z − g(U, Y )g(Z, V )X− −g(U,X)g(Y, V )Z + g(X,U)g(Z, V )Y (4.9) and finally R(Z,U)R(X,Y )V = g(U,X)g(Y, V )Z − g(X,Z)g(Y, V )U− −g(X,V )g(U, Y )Z + g(X,V )g(Z, Y )U. (4.10) So from (4.7) – (4.10), one can easily get R(X,Y ).R = 0. Theorem4.3 is proof is proved. Corollary 4.1. Let M be an n-dimensional M -projectively flat LP-Sasakian manifold. Then M is Ricci semisymmetric, i.e., the condition R(X,Y ).S = 0 holds. Proof. Let M be an n-dimensional M -projectively flat LP-Sasakian manifold. Since a semisym- metric manifold is also Ricci semisymmetric, [16], from Theorem 4.2, the proof is clear. 5. M -projectively flat LP-Sasakian spacetimes. In this section, we consider that M is an M -projectively flat LP-Sasakian spacetime (M4, g) satisfying the Einstein’s equations with a cosmo- logical constant. Further let ξ be the unit time-like velocity vector of the fluid. It is known that the Einstein’s equations with a cosmological constant can be written as [17] S(X,Y )− r 2 g(X,Y ) + λg(X,Y ) = kT (X,Y ) (5.1) for all vector fields X and Y. Here, S(X,Y ) and T (X,Y ) denote the Ricci tensor and the energy- momentum tensor, respectively. In addition, λ is the cosmological constant and k is the non-zero gravitational constant. Hence by use of (4.5), (5.1) forms into T (X,Y ) = ( λ− 3 k ) g(X,Y ). (5.2) Thus, we have the following theorem. ISSN 1027-3190. Укр. мат. журн., 2013, т. 65, № 11 ON M -PROJECTIVELY FLAT LP-SASAKIAN MANIFOLDS 1565 Theorem 5.1. Let M4 be an M -projectively flat LP-Sasakian spacetime satisfying the Einstein’s equations with a cosmological constant. Then the energy momentum tensor of this space is found as in (5.2). In a perfect fluid spacetime, the energy momentum tensor is in the form T (X,Y ) = (σ + p)u(X)u(Y ) + pg(X,Y ), (5.3) where σ is the energy density, p is the isotropic pressure and u(X) is a non-zero 1-form such that g(X,V ) = u(X) for all X, V being the velocity vector field of the flow, that is, g(V, V ) = −1. Also, σ + p 6= 0. With the help of (5.2) and (5.3), we obtain (λ− 3− kp)g(X,Y ) = k(σ + p)u(X)u(Y ). (5.4) Contraction of (5.4) over X and Y leads to λ = 3− k 4 (σ − 3p). (5.5) If we put X = Y = V in (5.4) then we find λ = 3− kσ. (5.6) Combining the equations (5.5) and (5.6), we get σ + p = 0. (5.7) Hence we have the following theorem. Theorem 5.2. In an M -projectively flat LP-Sasakian spacetime M4 satisfying the Einstein’s field equations with a cosmological term then the matter contents of M4 satisfy the vacuum-like equation of state. If we assume a dust in a perfect fluid, we have σ = 3p. (5.8) By putting (5.8) in (5.7), we get p = 0. Thus, we can state the following theorem. Theorem 5.3. The M -projectively flat LP-Sasakian spacetime admitting a dust for a perfect fluid is filled with radiation. In a relativistic spacetime, the energy-momentum tensor is in the form T (X,Y ) = µu(X)u(Y ). (5.9) From (5.2), (5.9) takes the form (λ− 3)g(X,Y ) = kµu(X)u(Y ). (5.10) ISSN 1027-3190. Укр. мат. журн., 2013, т. 65, № 11 1566 F. Ö. ZENGİN Contraction of (5.10) over X and Y leads to λ = 3− 1 4 kµ. (5.11) And, if we put X = Y = V in (5.10), we get λ = 3− kµ. (5.12) Thus, combining the equations (5.11) and (5.12), we finally get that µ = 0. From this relation and (5.9), we find T (X,Y ) = 0. This means that the spacetime is devoid of the matter. In this case, we can give the following theorem. Theorem 5.4. A relativistic M -projectively flat LP-Sasakian manifold satisfying the Einstein’s field equations with a cosmological term is vacuum. 1. Matsumoto K. On Lorentzian almost paracontact manifolds // Bull. Yamagata Univ. Nat. Sci. – 1989. – 12. – P. 151 – 156. 2. Matsumoto K., Mihai I. On a certain transformation in Lorentzian para-Sasakian manifold // Tensor (N. S). – 1988. – 47. – P. 189 – 197. 3. Mihai I., Rosca R. On Lorentzian para-Sasakian manifolds // Class. Anal. – World Sci. Publ. Singapore, 1992. – P. 155 – 169. 4. De U. C., Matsumoto K., Shaikh A. A. On Lorentzian para-Sasakian manifolds // Rend. Semin. mat. Messina. – 1999. – 3. – P. 149 – 156. 5. Shaikh A. A., Baishya K. K. On φ-symmetric LP-Sasakian manifolds // Yokohama Math. J. – 2005. – 52. – P. 97 – 112. 6. Shaikh A. A., Baishya K. K. Some results on LP-Sasakian manifolds // Bull. Math. Sci. Soc. – 2006. – 49(97). – P. 193 – 205. 7. Shaikh A. A., Baishya K. K., Eyasmin S. On the existence of some types of LP-Sasakian manifolds // Commun. Korean Math. Soc. – 2008. – 23, № 1. – P. 1 – 16. 8. Shaikh A. A., Biswas S. On LP-Sasakian manifolds // Bull. Malaysian Math. Sci. Soc. – 2004. – 27. – P. 17 – 26. 9. Taleshian A., Asghari N. On LP-Sasakian manifolds satisfying certain conditions on the concircular curvature tensor // Different. Geom.-Dynam. Syst. – 2010. – 12. – P. 228 – 232. 10. Venkatesha, Bagewadi C. S. On concircular φ-recurrent LP-Sasakian manifolds // Different. Geom.-Dynam. Syst. – 2008. – 10. – P. 312 – 319. 11. Pokhariyal G. P., Mishra R. S. Curvature tensor and their relativistic significance II // Yokohama Math. J. – 1970. – 18. – P. 105 – 108. 12. Ojha R. H. A note on the M -projective curvature tensor // Indian J. Pure and Appl. Math. – 1975. – 8, № 12. – P. 1531 – 1534. 13. Ojha R. H. M -projectively flat Sasakian manifolds // Indian J. Pure and Appl. Math. – 1986. – 17, № 4. – P. 481 – 484. 14. Chaubey S. K., Ojha R. H. On the M -projective curvature tensor of a Kenmotsu manifold // Different. Geom.-Dynam. Syst. – 2010. – 12. – P. 52 – 60. 15. Karcher H. Infinitesimal characterization of Friedman universes // Arch. Math. (Basel). – 1982. – 38. – P. 58 – 64. 16. Deszcz R. On the equivalence of Ricci-semisymmetry and semisymmetry // Dep. Math. Agricultural Univ., Wroclaw. Ser. A. Theory and Methods. – 1998. – Rept № 64. 17. O’Neill B. Semi-Riemannian geometry with applications to relativity // Pure and Appl. Math. – New York: Acad. Press, 1983. – 103. Received 22.08.11, after revision — 19.08.13 ISSN 1027-3190. Укр. мат. журн., 2013, т. 65, № 11