O системе дифференциальных уравнений Дирака с условиями разрыва внутри интервала

Вивчаються зображення розв'язків рівняння Дірака, властивості спектральних даних та обернені задачі оператора Дірака на скінченному інтервалі з умовами розриву всередині інтервалу....

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2005
Автор: Амиров, Р.Х.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут математики НАН України 2005
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/165732
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:O системе дифференциальных уравнений Дирака с условиями разрыва внутри интервала / Р.Х. Амиров // Український математичний журнал. — 2005. — Т. 57, № 5. — С. 601–613. — Бібліогр.: 15 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-165732
record_format dspace
spelling irk-123456789-1657322020-02-17T01:26:10Z O системе дифференциальных уравнений Дирака с условиями разрыва внутри интервала Амиров, Р.Х. Статті Вивчаються зображення розв'язків рівняння Дірака, властивості спектральних даних та обернені задачі оператора Дірака на скінченному інтервалі з умовами розриву всередині інтервалу. We study representations of solutions of the Dirac equation, properties of spectral data, and inverse problems for the Dirac operator on a finite interval with discontinuity conditions inside the interval. 2005 Article O системе дифференциальных уравнений Дирака с условиями разрыва внутри интервала / Р.Х. Амиров // Український математичний журнал. — 2005. — Т. 57, № 5. — С. 601–613. — Бібліогр.: 15 назв. — рос. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/165732 517.9 ru Український математичний журнал Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language Russian
topic Статті
Статті
spellingShingle Статті
Статті
Амиров, Р.Х.
O системе дифференциальных уравнений Дирака с условиями разрыва внутри интервала
Український математичний журнал
description Вивчаються зображення розв'язків рівняння Дірака, властивості спектральних даних та обернені задачі оператора Дірака на скінченному інтервалі з умовами розриву всередині інтервалу.
format Article
author Амиров, Р.Х.
author_facet Амиров, Р.Х.
author_sort Амиров, Р.Х.
title O системе дифференциальных уравнений Дирака с условиями разрыва внутри интервала
title_short O системе дифференциальных уравнений Дирака с условиями разрыва внутри интервала
title_full O системе дифференциальных уравнений Дирака с условиями разрыва внутри интервала
title_fullStr O системе дифференциальных уравнений Дирака с условиями разрыва внутри интервала
title_full_unstemmed O системе дифференциальных уравнений Дирака с условиями разрыва внутри интервала
title_sort o системе дифференциальных уравнений дирака с условиями разрыва внутри интервала
publisher Інститут математики НАН України
publishDate 2005
topic_facet Статті
url http://dspace.nbuv.gov.ua/handle/123456789/165732
citation_txt O системе дифференциальных уравнений Дирака с условиями разрыва внутри интервала / Р.Х. Амиров // Український математичний журнал. — 2005. — Т. 57, № 5. — С. 601–613. — Бібліогр.: 15 назв. — рос.
series Український математичний журнал
work_keys_str_mv AT amirovrh osistemedifferencialʹnyhuravnenijdirakasusloviâmirazryvavnutriintervala
first_indexed 2025-07-14T19:44:33Z
last_indexed 2025-07-14T19:44:33Z
_version_ 1837652801372553216
fulltext UDK 517.9 R.�X.�Amyrov (Baku, AzerbajdΩan) O SYSTEME DYFFERENCYAL|NÁX URAVNENYJ DYRAKA S USLOVYQMY RAZRÁVA VNUTRY YNTERVALA We study representations of solutions of the Dirac equation, properties of spectral data, and inverse problems of the Dirac operator on a finite interval with conditions of discontinuity inside the interval. Vyvçagt\sq zobraΩennq rozv’qzkiv rivnqnnq Diraka, vlastyvosti spektral\nyx danyx ta ober- neni zadaçi operatora Diraka na skinçennomu intervali z umovamy rozryvu vseredyni intervalu. 1. Vvedenye. Rassmotrym kanonyçeskug systemu dyfferencyal\n¥x uravne- nyj Dyraka B y ′ + Ω ( x ) y = λ y , 0 < x < π , (1) na koneçnom yntervale. Zdes\ B = 0 1 1 0−     , Ω ( x ) = p x q x q x p x ( ) ( ) ( ) ( )−     , y ( x ) = y x y x 1 2 ( ) ( )     . PredpoloΩym, çto p ( x ) y q ( x ) — dejstvytel\n¥e funkcyy yz prostran- stva L2 ( 0 , π ) . Oboznaçym çerez L kraevug zadaçu, poroΩdennug uravnenyem (1) s hranyç- n¥my uslovyqmy y1 ( 0 ) = 0, (2) y1 ( π ) = 0, (3) a takΩe uslovyqmy razr¥va vo vnutrennej toçke x = a yntervala ( 0 , π ) : y ( a – 0) = A y ( a + 0) , A = α α 0 0 1−     , a ∈ ( 0 , π ) . (4) Zdes\ α > 0 — dejstvytel\noe çyslo y α ≠ 1. Yz (2) y (3) vydno, çto v toçkax x = 0 y x = π hranyçn¥e uslovyq ymegt specyal\n¥j vyd. MoΩno rassmatryvat\ y obwye samosoprqΩenn¥e hranyçn¥e uslovyq, a takΩe sluçaj, kohda v uslovyy (4) matryca A — lgbaq samosoprq- Ωennaq matryca vtoroho porqdka y det A = 1. Cel\g nastoqwej rabot¥ qvlqetsq yssledovanye prqm¥x y obratn¥x zadaç spektral\noho analyza dlq kraevoj zadaçy L . Dlq klassyçeskyx operatorov Íturma – Lyuvyllq, Dyraka, uravnenyq Íre- dynhera y hyperbolyçeskyx uravnenyj prqm¥e y obratn¥e zadaçy dostatoçno polno yzuçen¥ (sm. [1 – 6] y pryvedennug v nyx byblyohrafyg). Nalyçye uslo- vyq razr¥va vnutry yntervala vnosyt kaçestvenn¥e yzmenenyq v yssledovanye. Nekotor¥e aspekt¥ prqm¥x y obratn¥x zadaç dlq operatorov Íturma – Lyu- vyllq y Dyraka s uslovyqmy razr¥va yzuçalys\ v [7 – 12]. 2. Predstavlenye reßenyq. Oboznaçym çerez Y 0 ( x , λ ) matryçnoe reße- nye uravnenyq (1) pry Ω ( x ) ≡ 0, udovletvorqgwee uslovyg Y0 ( 0 , λ ) = I ( I — edynyçnaq matryca) . Tohda Y0 ( x , λ ) ymeet vyd Y0 ( x , λ ) = e x a e A e x B x B x a Ba − − − − − < < < <     λ λ λ π , , , .( ) 0 01 (5) Pust\ Y ( x , λ ) — matryçnoe reßenye uravnenyq (1), udovletvorqgwee uslo- © R.=X.=AMYROV, 2005 ISSN 0041-6053. Ukr. mat. Ωurn., 2005, t. 57, # 5 601 602 R.=X.=AMYROV vyg Y ( 0 , λ ) = I . DokaΩem, çto reßenye Y ( x , λ ) moΩno predstavyt\ v vyde Y ( x , λ ) = Y0 ( x , λ ) + K x t e dtBt x x ( , ) − − ∫ λ . (6) Netrudno pokazat\, çto yntehral\noe uravnenye dlq reßenyq Y ( x , λ ) ymeet vyd Y ( x , λ ) = Y0 ( x , λ ) + Y x Y t B t Y t dt x 0 0 1 0 ( , ) ( , ) ( ) ( , )λ λ λ−∫ Ω . (7) Dlq toho çtob¥ funkcyq vyda (6) udovletvorqla uravnenyg (7), dolΩno v¥- polnqt\sq ravenstvo K x t e dtBt x x ( , ) − − ∫ λ = Y x Y t B t Y t dt x 0 0 1 0 0 ( , ) ( , ) ( ) ( , )λ λ λ−∫ Ω + + Y x Y t B t K t s e ds dtBs t tx 0 0 1 0 ( , ) ( , ) ( ) ( , )λ λ λ− − − ∫∫ Ω , (8) y naoborot, esly matryca-funkcyq K ( x , t ) udovletvorqet πtomu ravenstvu, to matryca-funkcyq Y ( x , λ ) udovletvorqet uravnenyg (7). Preobrazuem pravug çast\ ravenstva (8) tak, çtob¥ ona ymela vyd, analohyçn¥j levoj çasty. Vvedem sledugwye oboznaçenyq: K± ( x , t ) = 1 2 K x t B K x t B( , ) ( , )±[ ] ( K ( x , t ) = K+ ( x , t ) + K– ( x , t ) ) . Yz vyda matryc-funkcyj K+ ( x , t ) y K– ( x , t ) qsno, çto ony udovletvorqgt sle- dugwym svojstvam: B K+ ( x , t ) = 1 2 B K x t K x t B( , ) ( , )−[ ] = – K+ ( x , t ) B , B K– ( x , t ) = 1 2 B K x t K x t B( , ) ( , )+[ ] = K– ( x , t ) B . Uçyt¥vaq, çto Y x Y t0 0 1( , ) ( , )λ λ− = e t x a e e t a x e a t x B x t B x t B a x t B x t − − + − − − − − − − − < < + + −     < < < <         λ λ λ λ α α ( ) ( ) ( ) ( ) , , , , , , 1 0 0 1 2 hde α± = 1 2 1 α α±    , y preobrazuq pravug çast\ ravenstva (8) dlq matryc-funk- cyj K+ ( x , t ) y K– ( x , t ) , poluçaem sledugwug systemu yntehral\n¥x uravnenyj: K+ ( x , t ) = 1 2 2 2 B x t B K t x d x t x Ω Ω+    + + −− + ∫ ( ) ( , ) ( )/ ξ ξ ξ ξ , esly t < x < a , K– ( x , t ) = B K t x d x t x Ω( ) ( , ) ( )/ ξ ξ ξ ξ+ + + −∫ 2 , esly t < x < a , K+ ( x , t ) = α α ξ ξ ξ ξ + + − + +    + − +∫2 2 2 B x t B K t x d x t a Ω Ω( ) ( , ) ( )/ + ISSN 0041-6053. Ukr. mat. Ωurn., 2005, t. 57, # 5 O SYSTEME DYFFERENCYAL|NÁX URAVNENYJ DYRAKA … 603 + α ξ ξ ξ ξ− + − −−     + + −∫ 1 0 0 1 2 2 2 B K t x a d a x t a Ω( ) ( , ) ( )/ + + B K t x d a x Ω( ) ( , )ξ ξ ξ ξ− + −∫ , esly x > a , – x < t < 2a – x , K+ ( x , t ) = α + +   2 2 B x tΩ + + B K t x d x t x Ω( ) ( , ) ( )/ ξ ξ ξ ξ− + + −∫ 2 , esly x > a , 2a – x < t < x , K– ( x , t ) = α ξ ξ ξ ξ+ + + − +∫ B K t x d x t a Ω( ) ( , ) ( )/2 + + α ξ ξ ξ ξ− − − −−     + + −∫ 1 0 0 1 2 2 2 B K t x a d a x t a Ω( ) ( , ) ( )/ + + B K t x d a x Ω( ) ( , )ξ ξ ξ ξ+ + −∫ , esly x > a , – x < t < x – 2a , K– ( x , t ) = α − −     − +   2 1 0 0 1 2 2 B t x aΩ + + α ξ ξ ξ ξ+ + + − +∫ B K t x d x t a Ω( ) ( , ) ( )/2 + + α ξ ξ ξ ξ− − − −−     + + −∫ 1 0 0 1 2 2 2 B K t x a d a x t a Ω( ) ( , ) ( )/ + + B K t x d a x Ω( ) ( , )ξ ξ ξ ξ+ + −∫ , esly x > a , x – 2a < t < 2a – x , K– ( x , t ) = α − −     − +   2 1 0 0 1 2 2 B t x aΩ + α − + −    −    2 2 2 1 0 0 1 B x a tΩ + + B K t x d x t x Ω( ) ( , ) ( )/ ξ ξ ξ ξ+ + + −∫ 2 , esly x > a , 2a – x < t < x . Prymenqq metod posledovatel\n¥x pryblyΩenyj (sm. [2, 5]), poluçaem sle- dugwug teoremu. Teorema 1. Pust\ || ||∫ Ω( )x dx 0 π < + ∞ . Tohda reßenye Y ( x , λ ) uravnenyq (1), udovletvorqgwee naçal\nomu uslovyg Y ( 0 , λ ) = I , moΩno predstavyt\ v vyde (6), pryçem evklydova norma || ||K x t( , ) udovletvorqet neravenstvu ISSN 0041-6053. Ukr. mat. Ωurn., 2005, t. 57, # 5 604 R.=X.=AMYROV || || − ∫ K x t dt x x ( , ) ≤ eC xσ( ) − 1, hde σ ( x ) = || ||∫ Ω( )t dt x 0 , C — poloΩytel\naq postoqnnaq. Dalee, esly funkcyq Ω ( x ) dyfferencyruema, to qdro K ( x , t ) udovletvo- rqet sootnoßenyqm B Kx + Ω ( x ) K = – Kt B , K x B( , )0 0 1−     = 0, Ω ( x ) + B K ( x , x ) = K ( x , x ) B , esly 0 < x < a , α+ Ω ( x ) + B K ( x , x ) = K ( x , x ) B , esly x > a , B [ K ( x , 2a – x + 0 ) – K ( x , 2a – x – 0 ) ] = = – [ K ( x , 2a – x + 0 ) – K ( x , 2a – x – 0 ) ] B , esly x < a , α− −     Ω( )x 1 0 0 1 + B [ K ( x , 2a – x + 0 ) – K ( x , 2a – x – 0 ) ] = = – [ K ( x , 2a – x + 0 ) – K ( x , 2a – x – 0 ) ] B , esly x > a . Otmetym, çto esly p ( x ) ∈ L2 ( 0 , π ) , q ( x ) ∈ L2 ( 0 , π ) , to πlement¥ matryc¥- funkcyy K ( x , t ) = ( )( , ) ,K x tij i j=1 2 pry kaΩdom fyksyrovannom x ∈ [ 0 , π ] pry- nadleΩat prostranstvu L2 ( 0 , π ) po peremennoj t . 3. Svojstva spektra. V πtom punkte yzuçagtsq svojstva spektra zadaçy L . V=sluçae Ω ( x ) ≡ 0 zadaçu L oboznaçym çerez L0 . Netrudno pokazat\, çto reßenye ϕ0 ( x , λ ) = ϕ λ ϕ λ 01 02 ( , ) ( , ) x x     uravnenyq B y ′ = λ y s naçal\n¥m uslovyem ϕ0 ( 0 , λ ) = 0 1−     y uslovyqmy (4) ymeet vyd ϕ0 ( x , λ ) = sin cos , , sin cos sin ( ) cos ( ) , . λ λ α λ λ α λ λ π x x x a x x a x a x a x −     < < −     + −     × × − − −     < <           + − 0 1 0 0 1 2 2 Oboznaçym çerez ∆0 ( λ ) xarakterystyçeskug funkcyg zadaçy L0 : ∆0 ( λ ) ≡ α+ sin λπ + α– sin λ ( 2a – π ) . Korny πtoho uravnenyq λn 0 qvlqgtsq sobstvenn¥my znaçenyqmy zadaçy L0 . PredpoloΩym, çto λn 0 > 0, esly n > 0, λn 0 = 0 y λ−n 0 = – λn 0 , n = 1, 2, … . Lemma 1. Ymeet mesto sootnoßenye inf n m n m≠ | |−λ λ0 0 = β > 0, t .$e. korny xarakterystyçeskoho uravnenyq ∆0 ( λ ) = 0 otdelen¥. ISSN 0041-6053. Ukr. mat. Ωurn., 2005, t. 57, # 5 O SYSTEME DYFFERENCYAL|NÁX URAVNENYJ DYRAKA … 605 Dokazatel\stvo. Dopustym protyvnoe, t.=e. pust\ suwestvugt podposle- dovatel\nosty λnk 0{ } y λ̂nk 0{ } posledovatel\nosty λn 0{ } takye, çto λnk 0 ≠ λ̂nk 0 , λnk 0 , λ̂nk 0 → ∞ pry k → + ∞ y lim ˆ k n nk k→∞ −λ λ0 0 = 0. Yspol\zuq ortohonal\nost\ sobstvenn¥x funkcyj ϕ λ0 0x nk ,( ) y ϕ λ0 0x nk , ˆ( ) za- daçy L0 v prostranstve L2 ( 0 , π ; R 2 ) , poluçaem 0 = ϕ λ ϕ λ π 0 0 0 0 0 x x dxn nk k , , , ˆ( ) ( )∫ = ϕ λ ϕ λ π 0 0 0 0 0 x x dxn nk k , , ,( ) ( )∫ + + ϕ λ ϕ λ ϕ λ π 0 0 0 0 0 0 0 x x x dxn n nk k k , , , ˆ ,( ) ( ) − ( )[ ]∫ ≥ ≥ ϕ λ ϕ λ0 0 0 0 0 x x dxn n a k k , , ,( ) ( )∫ + + ϕ λ ϕ λ ϕ λ π 0 0 0 0 0 0 0 x x x dxn n nk k k , , , ˆ ,( ) ( ) − ( )[ ]∫ ≥ ≥ sin cos2 0 2 0 0 λ λn n a k k x x dx+( )∫ + + ϕ λ ϕ λ ϕ λ π 0 0 0 0 0 0 0 x x x dxn n nk k k , , , ˆ ,( ) ( ) − ( )[ ]∫ = = a + ϕ λ ϕ λ ϕ λ π 0 0 0 0 0 0 0 x x x dxn n nk k k , , , ˆ ,( ) ( ) − ( )[ ]∫ . Zdes\ çerez 〈 ⋅ , ⋅ 〉 oboznaçeno skalqrnoe proyzvedenye v evklydovom prostran- stve R 2. Takym obrazom, poluçym neravenstvo 0 ≥ ϕ λ ϕ λ ϕ λ π 0 0 0 0 0 0 0 x x x dx an n nk k k , , , ˆ ,( ) ( ) − ( ) +∫ . (9) Yz vyda reßenyq ϕ0 ( x , λ ) sleduet, çto lim , ˆ , k n n R x x k k→∞ ( ) − ( )ϕ λ ϕ λ0 0 0 0 2 = 0 ( || ||⋅ R2 = 〈⋅ ⋅〉, ) ravnomerno po x ∈ [ 0 , π ] . Poπtomu, perexodq k predelu pry k → ∞ v nera- venstve (9), ymeem 0 ≥ a . Poluçennoe protyvoreçye dokaz¥vaet spravedlyvost\ lemm¥. Oboznaçym çerez ∆ ( λ ) , { λn } y { αn } sootvetstvenno xarakterystyçeskug funkcyg, posledovatel\nost\ sobstvenn¥x znaçenyj y normyrovoçn¥x çysel zadaçy L . Pust\ ϕ ( x , λ ) = ϕ λ ϕ λ 1 2 ( , ) ( , ) x x     — reßenye uravnenyq (1), udovletvorqg- ISSN 0041-6053. Ukr. mat. Ωurn., 2005, t. 57, # 5 606 R.=X.=AMYROV wee naçal\nomu uslovyg ϕ ( 0 , λ ) = 0 1−     y uslovyqm (4). Tohda s pomow\g vektor-reßenyj F ( x , λ ) = Y ( x , λ ) ⋅ 1 −    i , f0 ( x , λ ) = Y0 ( x , λ ) ⋅ 1 −    i moΩno zapysat\ ϕ ( x , λ ) = 1 2i F x F x( , ) ( , )λ λ−[ ], ϕ0 ( x , λ ) = 1 2 0 0i f x f x( , ) ( , )λ λ−[ ]. Sledovatel\no, yspol\zuq predstavlenye (6), dlq reßenyq ϕ ( x , λ ) ymeem ϕ ( x , λ ) = ϕ0 ( x , λ ) + K x t t t dt x x ( , ) sin cos λ λ−    − ∫ . Tohda dlq ϕ1 ( x , λ ) — pervoj komponent¥ reßenyq ϕ ( x , λ ) — poluçaem ϕ1 ( x , λ ) = ϕ01 ( x , λ ) + K x t t dt K x t t dt x x x x 11 12( , )sin ( , )cosλ λ − − ∫ ∫− , yly ϕ1 ( x , λ ) = ϕ01 ( x , λ ) + ˜ ( , )sin ˜ ( , )cosK x t t dt K x t t dt x x 11 0 12 0 λ λ∫ ∫+ , hde ˜ ( , )K x t11 = K x t K x t11 11( , ) ( , )+ − , ˜ ( , )K x t12 = − − −K x t K x t12 12( , ) ( , ) , ˜ ( , ), ˜ ( , )K x K x11 12⋅ ⋅ ∈ L2 ( –x , x ) . Takym obrazom, xarakterystyçeskoe uravnenye zadaçy L budet ymet\ vyd ∆ ( λ ) = ∆0 ( λ ) + ˜ ( , )sin ˜ ( , )cosK t t dt K t t dt11 0 12 0 π λ π λ π π ∫ ∫+ = 0. Lemma 2. Sobstvenn¥e znaçenyq zadaçy L prost¥e, t.$e. ∆̇( )λn ≠ 0. Dokazatel\stvo. Poskol\ku B ϕ′ ( x , λ ) + Ω ( x ) ϕ ( x , λ ) = λ ϕ ( x , λ ) , B ˙ ′ϕ ( x , λ ) + Ω ( x ) ϕ̇ ( x , λ ) = λ ϕ̇ ( x , λ ) + ϕ ( x , λ ) , umnoΩaq skalqrno v evklydovom prostranstve R 2 pervoe uravnenye na ϕ̇ ( x , λ ) , vtoroe uravnenye na ϕ ( x , λ ) y v¥çytaq yz vtoroho ravenstva pervoe, poluçaem 〈 ϕ , ϕ 〉 = B ˙ ,′ϕ ϕ – B ′ϕ ϕ, ˙ . Yntehryruq poslednee ravenstvo na otrezke [ 0 , π ] y uçyt¥vaq, çto αn = ϕ ϕ π n n dx, 0 ∫ = ϕ λ ϕ λ π 1 2 2 2 0 ( , ) ( , )x x dxn n+[ ]∫ , posle yntehryrovanyq po çastqm poluçaem ISSN 0041-6053. Ukr. mat. Ωurn., 2005, t. 57, # 5 O SYSTEME DYFFERENCYAL|NÁX URAVNENYJ DYRAKA … 607 αn = – ˙ ( )∆ λn ϕ2 ( π , λn ) . Otsgda sleduet, çto ˙ ( )∆ λn ≠ 0. Lemma dokazana. Lemma 3. Dlq sobstvenn¥x znaçenyj zadaçy L spravedlyvo asymptoty- çeskoe ravenstvo λn = λn 0 + εn , hde { εn } ∈ l2 . Dokazatel\stvo. Oboznaçym Γn = λ λ λ β : , , , , ,| | | |= + = ± ± …{ }n n0 2 0 1 2 , Gδ = λ λ λ δ: , , , , ,| |− ≥ = ± ± …{ }n n0 0 1 2 , hde δ — dostatoçno maloe poloΩytel\noe çyslo ( δ << β / 2 ) . Yz vyda ∆0 ( λ ) y lemm¥ 1 sleduet, çto ∆0 ( λ ) qvlqetsq funkcyej typa „synusa”. Poπtomu [13, s. 118, 119] dlq λ ∈ Gδ v¥polnqgtsq neravenstva | ∆0 ( λ ) | > C eδ λ π| |Im , ˙ ( )∆0 0λn ≥ γ > 0. S druhoj storon¥ [2] (lemma 1.3.1), lim ( ) ( )Im ( ) | |→∞ −| | − λ λ π λ λe ∆ ∆0 = = lim ˜ ( , )sin ˜ ( , )cosIm Im | |→∞ −| | −| |∫ ∫+    λ λ π π λ π π π λ π λe K t t dt e K t t dt11 0 12 0 = 0, t.=e. pry dostatoçno bol\ßyx n dlq λ ∈ Γn v¥polnqetsq neravenstvo | ∆ ( λ ) – ∆0 ( λ ) | < C eδ λ π 2 | |Im . Znaçyt, dlq λ ∈ Γn , hde n — dostatoçno bol\ßoe natural\noe çyslo, ymeem | ∆0 ( λ ) | ≥ C eδ λ π| |Im > C eδ λ π 2 | |Im > | ∆ ( λ ) – ∆0 ( λ ) | . Tohda, yspol\zuq teoremu Ruße, poluçaem, çto vnutry kontura Γn pry dosta- toçno bol\ßom n funkcyy ∆0 ( λ ) y ∆0 ( λ ) + { ∆ ( λ ) – ∆0 ( λ ) } = ∆ ( λ ) ymegt odynakovoe çyslo nulej, t.=e. 2n + 1 nulej: λ – n , … , λ0, … , λn . Analohyçno, yspol\zuq teoremu Ruße, moΩno dokazat\, çto pry dostatoçno bol\ßyx n v kaΩdom kruhe | λ – λn 0 | < δ ymeetsq rovno odyn nul\ funkcyy ∆ ( λ ) . Poskol\- ku δ — lgboe dostatoçno maloe çyslo, moΩno zapysat\ λn = λn 0 + εn , hde lim n n→∞ ε = 0, a tak kak çysla λ n qvlqgtsq kornqmy xarakterystyçeskoj funk- cyy ∆ ( λ ) , to ∆ ( λn ) = ∆0 ( λn 0 + εn ) + ˜ ( , )sin( )K t t dtn n11 0 0 π λ ε π +∫ + + ˜ ( , )cos( )K t t dtn n12 0 0 π λ ε π +∫ = 0. ISSN 0041-6053. Ukr. mat. Ωurn., 2005, t. 57, # 5 608 R.=X.=AMYROV S druhoj storon¥, ∆0 0( )λ εn n+ = ˙ ( )( )∆0 0 1 1λ εn no+[ ] . Poπtomu dlq opredelenyq povedenyq εn poluçym ε λ π λ ε π n n n no K t t dt˙ ( ) ( , )sin( ) ( )˜∆0 0 11 0 0 1 1+[ ] + +∫ + + ˜ ( , )cos( )K t t dtn n12 0 0 π λ ε π +∫ = 0. (10) Dalee, sleduq rezul\tatam rabot [14, 15], ymeem λn 0 = n + hn , sup | hn | ≤ µ . Poπtomu [2, s. 67] ˜ ( , )sin( )K t t dtn n11 0 0 π λ ε π +         ∫ ∈ l2 , ˜ ( , )cos( )K t t dtn n12 0 0 π λ ε π +         ∫ ∈ l2 . Sledovatel\no, yz (10) poluçaem, çto { εn } ∈ l2 . Lemma dokazana. Lemma 4. Dlq normyrovoçn¥x çysel zadaçy L spravedlyvo asymptotyçes- koe ravenstvo αn = αn 0 + δn , hde { δn } ∈ l2 . Dokazatel\stvo. V sylu lemm¥ 3 yz predstavlenyj ∆ ( λ ) y ϕ2 ( π , λ ) ne- trudno poluçyt\ sledugwye sootnoßenyq: ˙ ( )∆0 λn = ˙ ( )∆0 0λn + O ( εn ) , ϕ2 ( π , λn ) = ϕ π λ2 0 0 , ( ), n + δ̃n , δ̃n{ } ∈ l2 . Poπtomu αn = – ˙ ( )∆ λn ϕ2 ( π , λn ) = – ˙ ( ) , ˜( ) ( ),∆0 0 2 0 0λ ε ϕ π λ δn n n nO+[ ] +[ ] = αn 0 + δn , hde δn = – ˙ ˜( )∆0 0λ δn n + O n n( ) ,, ( )ε ϕ π λ2 0 0 + O n n( ) ˜ε δ . Oçevydno, çto { δn } ∈ l2 . Lemma dokazana. 4. Reßenye Vejlq. Funkcyq Vejlq. Pust\ vektor-funkcyq Φ ( x , λ ) = = Φ Φ 1 2 ( , ) ( , ) x x λ λ     qvlqetsq reßenyem uravnenyq (1) y udovletvorqet uslovyqm Φ1( 0, λ) = 1, Φ1 ( π , λ ) = 0, a takΩe uslovyqm sklejky (4). Funkcyg Φ ( x , λ ) budem naz¥vat\ reßenyem Vejlq dlq kraevoj zadaçy L . Oboznaçym çerez ψ ( x , λ ) = ψ λ ψ λ 1 2 ( , ) ( , ) x x     y C ( x , λ ) = C x C x 1 2 ( , ) ( , ) λ λ     reßenyq urav- ISSN 0041-6053. Ukr. mat. Ωurn., 2005, t. 57, # 5 O SYSTEME DYFFERENCYAL|NÁX URAVNENYJ DYRAKA … 609 nenyq (1), udovletvorqgwye naçal\n¥m uslovyqm ψ ( π , λ ) = 0 1−     , C ( 0 , λ ) = = 1 0     y uslovyqm sklejky (4). Qsno, çto funkcyy ψ ( x , λ ) y C ( x , λ ) qvlqgt- sq cel¥my po λ . Tohda funkcyg ψ ( x , λ ) moΩno predstavyt\ v vyde ψ ( x , λ ) = – ψ2 ( 0 , λ ) ϕ ( x , λ ) – ∆ ( λ ) C ( x , λ ) . Oboznaçym M ( λ ) = + ψ λ λ 2( , ) ( ) x ∆ −    ψ λ ψ λ 2 1 0 0 ( , ) ( , ) . (11) Qsno, çto Φ ( x , λ ) = C ( x , λ ) + M ( λ ) ϕ ( x , λ ) . (12) Funkcyg – Φ2 ( 0 , λ ) = M ( λ ) budem naz¥vat\ funkcyej Vejlq dlq zadaçy L . Reßenye Vejlq y funkcyq Vejlq qvlqgtsq meromorfn¥my po λ funkcyqmy s polgsamy na spektre zadaçy L . Yz (11) y (12) sleduet Φ ( x , λ ) = − ψ λ λ ( , ) ( ) x ∆ . (13) Teorema 2. Spravedlyvo predstavlenye M ( λ ) = 1 1 1 0 0 0 0 0 α λ λ α λ λ α λ( ) ( ),− + − +     =−∞ ≠ +∞ ∑ n n n nn n . (14) Dokazatel\stvo. Analohyçno predstavlenyg reßenyq ϕ ( x , λ ) netrudno poluçyt\ predstavlenye dlq reßenyq ψ ( x , λ ) : ψ ( x , λ ) = ψ0 ( x , λ ) + N x t t t dt x x ( , ) sin cos( ) λ λπ π −    − − − ∫ = = ψ0 ( x , λ ) + ˜( , ) sin cos N x t t t dt x λ λ π −     − ∫ 0 , (15) hde πlement¥ ˜ ( , )N x tij matryc¥-funkcyy ˜( , )N x t = ˜ ( , ) , N x tij i j { } =1 2 pry kaΩdom fyksyrovannom x ∈ [ 0 , π ] prynadleΩat prostranstvu L 2 ( 0 , π ) po pere- mennoj t , ψ0 ( x , λ ) = − − −     − −     × × − + − +     < < − − −     < <           + −α λ π λ π α λ π λ π λ π λ π π sin ( ) cos ( ) sin ( ) cos ( ) , , sin ( ) cos ( ) , . x x x a x a x a x x a x 1 0 0 1 2 2 0 Vvedem sledugwye oboznaçenyq: ISSN 0041-6053. Ukr. mat. Ωurn., 2005, t. 57, # 5 610 R.=X.=AMYROV M0 ( λ ) = − ψ λ ψ λ 20 10 0 0 ( , ) ( , ) = − + − + − + − + − α λπ α λ π α λπ α λ π cos cos ( ) sin sin ( ) 2 2 a a , (16) fi ( λ ) = ˜ ˜( , )sin ( , )cosN t t N t t dti i1 2 0 0 0λ λ π −{ }∫ , i = 1, 2. Tohda yz (15) ymeem ψi ( 0 , λ ) = ψi , 0 ( 0 , λ ) + fi ( λ ) . Poskol\ku lim ( )Im | |→∞ −| | | | λ λ π λe fi = 0, | ∆ ( λ ) | > C eδ λ π| |Im pry λ ∈ Gδ , yz ra- venstva M ( λ ) – M0 ( λ ) = f f M2 1 0 ( ) ( ) ( ) ( ) ( ) λ λ λ λ λ ∆ ∆ − sleduet lim sup ( ) ( ) | |→∞ ∈ | |− λ λ δ λ λ G M M0 = 0. (17) Dalee, vektor-funkcyy ϕ ( x , λn ) ( ϕ0 ( x , λn 0 ) ) y ψ ( x , λn ) ( ψ0 ( x , λn 0 ) ) qv- lqgtsq sobstvenn¥my funkcyqmy zadaçy L ( L0 ) . Poπtomu suwestvugt kon- stant¥ βn ( )βn 0 takye, çto ψ ( x , λn ) = βn ϕ ( x , λn ) ψ λ β ϕ λ0 0 0 0 0( ) ( ), ,x xn n n=( ). Otsgda poluçaem βn = – ψ2 ( 0, λn ) = − 1 2ϕ π λ( , )n , βn 0 = – ϕ2, 0 ( 0 , λn 0 ) = − 1 2 0 0ϕ π λ, ( , )n . Yspol\zuq ravenstva αn = – ˙ ( )∆ λn ϕ2 ( π , λn ) , αn 0 = − ˙ ,( ) ( ),∆0 0 2 0 0λ ϕ π λn n , ymeem Res λ λ λ = n M( ) = ψ λ λ 2 0( , ) ˙ ( ) n n∆ = − 1 2 ˙ ( , )( )∆ λ ϕ π λn n = 1 αn , (18) Res λ λ λ = n M 0 0( ) = 1 0αn . Teper\ rassmotrym konturn¥j yntehral In ( λ ) = 1 2 0 π µ µ λ µ µ i M M d n ( ) ( )− −∫ Γ , λ ∈ int Γn . V sylu (17) ymeem lim ( )n nI→∞ λ = 0. S druhoj storon¥, sohlasno teoreme o v¥çetax yz (18) ymeem In ( λ ) = – M ( λ ) + M0 ( λ ) + 1 1 0 0 0α λ λ α λ λλ λn n n nn n n ( )int int ( )− − −∈ ∈ ∑ ∑ Γ Γ . Otsgda pry n → ∞ M ( λ ) = M0 ( λ ) + 1 1 0 0α λ λ α λ λn n n nn ( ) ( )− − −      =−∞ +∞ ∑ . ISSN 0041-6053. Ukr. mat. Ωurn., 2005, t. 57, # 5 O SYSTEME DYFFERENCYAL|NÁX URAVNENYJ DYRAKA … 611 Yz vyda (16) funkcyy M0 ( λ ) sleduet M0 ( λ ) = 1 1 1 1 0 0 0 0α λ α λ λ λ + − +     =−∞ +∞ ∑ nn n n . Sravnyvaq dva poslednyx ravenstva, poluçaem M ( λ ) = 1 1 1 1 0 0 0 0 0 α λ λ α λ λ α λ( ) ( ),− + − +     =−∞ ≠ +∞ ∑ n n n nn n . 5. Obratnaq zadaça. V πtom punkte yssledugtsq obratn¥e zadaçy vossta- novlenyq kraevoj zadaçy L po zadann¥m funkcyy Vejlq y dyskretn¥m spek- tral\n¥m dann¥m. ∏ty obratn¥e zadaçy qvlqgtsq obobwenyqmy yzvestn¥x obratn¥x zadaç dlq system¥ Dyraka (sm. [5, 6]). Narqdu s L rassmotrym kraevug zadaçu L̃ toho Ωe vyda, no s potencyalom ˜ ( )Ω x . Uslovymsq, çto esly nekotor¥j symvol α oboznaçaet obæekt, otnosq- wyjsq k zadaçe L , to α̃ budet oboznaçat\ obæekt, otnosqwyjsq k zadaçe L̃ . Teorema 3. Esly M ( λ ) = ˜ ( )M λ , to L = L̃ . Takym obrazom, zadanye funk- cyy Vejlq odnoznaçno opredelqet kraevug zadaçu L . Dokazatel\stvo. Vvedem matrycu P ( x , λ ) = [ Pj k ( x , λ ) ]j, k =1, 2 po formule P x( , ) ˜ ˜ ˜ ˜ λ ϕ ϕ 1 1 2 2 Φ Φ       = ϕ ϕ 1 1 2 2 Φ Φ     . Yspol\zuq tot fakt, çto vronskyan reßenyj ϕ̃ = ˜ ˜ ϕ ϕ 1 2     y Φ̃ = ˜ ˜ Φ Φ 1 2       W x x˜ ( , ), ( , )˜ϕ λ λΦ{ } ≡ ˜ ( , ) ( , )˜ϕ λ λ1 2x xΦ – ˜ ( , ) ( , )˜ϕ λ λ2 1x xΦ = 1, naxodym P11 ( x , λ ) = ϕ λ λ1 2( , ) ,˜x xΦ ( ) – Φ1 2( , ) ˜ ( , )x xλ ϕ λ , P12 ( x , λ ) = Φ1 1( , ) ˜ ( , )x xλ ϕ λ – ϕ λ λ1 1( , ) ,˜x xΦ ( ), (19) P21 ( x , λ ) = ϕ λ λ2 2( , ) ,˜x xΦ ( ) – Φ2 2( , ) ˜ ( , )x xλ ϕ λ , P22 ( x , λ ) = Φ2 1( , ) ˜ ( , )x xλ ϕ λ – ϕ λ λ2 1( , ) ,˜x xΦ ( ); ϕ1 ( x , λ ) = P x x P x x11 1 12 2( , ) ˜ ( , ) ( , ) ˜ ( , )λ ϕ λ λ ϕ λ+ , ϕ2 ( x , λ ) = P x x P x x21 1 22 2( , ) ˜ ( , ) ( , ) ˜ ( , )λ ϕ λ λ ϕ λ+ , (20) Φ1 ( x , λ ) = P x x11 1( , ) ,˜λ λΦ ( ) + P x x12 2( , ) ,˜λ λΦ ( ) , Φ2 ( x , λ ) = P x x21 1( , ) ,˜λ λΦ ( ) + P x x22 2( , ) ,˜λ λΦ ( ). Yz (19), (12) y (18) sleduet P11 ( x , λ ) = 1 + 1 1 2 2∆( ) ( , ) ˜ ( , ) ( , ) λ ϕ λ ψ λ ψ λx x x−( )( – – ψ λ ϕ λ ϕ λ1 2 2( , ) ˜ ( , ) ( , )x x x−( )) , ISSN 0041-6053. Ukr. mat. Ωurn., 2005, t. 57, # 5 612 R.=X.=AMYROV P12 ( x , λ ) = 1 1 1 1 1∆( ) ( , ) ˜ ( , ) ( , ) ˜ ( , ) λ ψ λ ϕ λ ϕ λ ψ λx x x x−( ) , P21 ( x , λ ) = 1 2 2 2 2∆( ) ( , ) ˜ ( , ) ( , ) ˜ ( , ) λ ϕ λ ψ λ ψ λ ϕ λx x x x−( ), P22 ( x , λ ) = 1 + 1 2 1 1∆( ) ( , ) ˜ ( , ) ( , ) λ ψ λ ϕ λ ϕ λx x x−( )( – – ϕ λ ψ λ ψ λ2 1 1( , ) ˜ ( , ) ( , )x x x−( )). Yz predstavlenyj reßenyj ϕ ( x , λ ) y ψ ( x , λ ) qsno, çto lim max ( , ) λ λ π δ λ →∞ ∈ ≤ ≤ | |− G x P x 0 11 1 = lim max ( , ) λ λ π δ λ →∞ ∈ ≤ ≤ | |− G x P x 0 22 1 = = lim max ( , ) λ λ π δ λ →∞ ∈ ≤ ≤ | | G x P x 0 12 = lim max ( , ) λ λ π δ λ →∞ ∈ ≤ ≤ | | G x P x 0 21 = 0. (21) Sohlasno (12) y (20) ymeem P11 ( x , λ ) = ϕ λ λ λ ϕ λ1 2 1 2( , ) ( , ) ( , ) ˜ ( , )˜x C x C x x− + + ˜ ( ) ( ) ( , ) ˜ ( , )M M x xλ λ ϕ λ ϕ λ−( ) 1 2 , P12 ( x , λ ) = C x x x C x1 1 1 1( , ) ˜ ( , ) ( , ) ( , )˜λ ϕ λ ϕ λ λ− + + M M x x( ) ( ) ( , ) ˜ ( , )˜λ λ ϕ λ ϕ λ−( ) 1 1 , P21 ( x , λ ) = ϕ λ λ λ ϕ λ2 2 2 2( , ) ( , ) ( , ) ˜ ( , )˜x C x C x x− + + ˜ ( ) ( ) ( , ) ˜ ( , )M M x xλ λ ϕ λ ϕ λ−( ) 2 2 , P22 ( x , λ ) = C x x C x x2 1 1 2( , ) ˜ ( , ) ( , ) ( , )˜λ ϕ λ λ ϕ λ− + + M M x x( ) ( ) ( , ) ˜ ( , )˜λ λ ϕ λ ϕ λ−( ) 2 2 . Takym obrazom, esly M ( λ ) ≡ ˜ ( )M λ , to pry kaΩdom fyksyrovannom x funkcyy Pi j ( x , λ ) qvlqgtsq cel¥my po λ . Vmeste s (21) P11 ( x , λ ) ≡ 1, P12 ( x , λ ) ≡ 1, P22 ( x , λ ) ≡ 1, P21 ( x , λ ) ≡ 0. Podstavlqq yx v (20), naxodym ϕ1 ( x , λ ) ≡ ˜ ( , )ϕ λ1 x , ϕ2 ( x , λ ) ≡ ˜ ( , )ϕ λ2 x , Φ1 ( x , λ ) ≡ ˜ ,Φ1( )x λ , Φ2 ( x , λ ) ≡ ˜ ,Φ2( )x λ pry vsex x y λ , y, sledovatel\no, L ≡ L̃ . Teorema 3 dokazana. Rassmotrym teper\ obratnug zadaçu vosstanovlenyq L po dyskretn¥m spek- tral\n¥m dann¥m { } =−∞ ∞λ αn n n, . Yz formul¥ (14) dlq funkcyy Vejlq y teo- rem¥ 3 v¥tekaet sledugwaq teorema. Teorema 4. Esly λn = λ̃n , αn = α̃n pry vsex n ∈ Z , to L ≡ L̃ . Takym ob- razom, zadanye spektral\n¥x dann¥x odnoznaçno opredelqet zadaçu L . Avtor v¥raΩaet blahodarnost\ Y.=M.=Husejnovu za vnymanye k rabote y kry- tyçeskye zameçanyq. 1. Levytan$B.$M., Sarhsqn$Y.$S. Operator¥ Íturma – Lyuvyllq y Dyraka. – M.: Nauka, 1988. – 432=s. ISSN 0041-6053. Ukr. mat. Ωurn., 2005, t. 57, # 5 O SYSTEME DYFFERENCYAL|NÁX URAVNENYJ DYRAKA … 613 2. Marçenko$V.$A. Operator¥ Íturma – Lyuvyllq y yx pryloΩenyq. – Kyev: Nauk. dumka, 1977. – 329=s. 3. Berezanskyj$G.$M. Teorema edynstvennosty v obratnoj spektral\noj zadaçe dlq uravne- nyq Íredynhera // Tr. Mosk. mat. o-va. – 1958. – 7. – S.=3 – 51. 4. NyΩnyk$L.$P. Obratn¥e zadaçy rasseqnyq dlq hyperbolyçeskyx uravnenyj. – Kyev: Nauk. dumka, 1977. – 329=s. 5. Has¥mov$M.$H. Obratnaq zadaça teoryy rasseqnyq dlq system Dyraka porqdka 2n // Tr. Mosk. mat. o-va. – 1968. – 19. – S.=41 – 112. 6. Has¥mov$M.$H., DΩabyev$T.$T. Opredelenye system¥ dyfferencyal\n¥x uravnenyj Dyraka po dvum spektram // Tr. ßkol¥-semynara po spektral\noj teoryy operatorov y predstavle- nyg teoryy hrupp. – Baku: ∏lm, 1975. – S.=46 – 71. 7. Husejnov$Y.$M. O predstavlenyy reßenyj Josta system¥ dyfferencyal\n¥x uravnenyj Dyraka s razr¥vn¥my koπffycyentamy // Yzv. AN AzSSR. – 1999. – #=5. – S.=41 – 45. 8. Hald O. H. Discontinuous inverse eigenvalue problems // Communs Pure and Appl. Math. – 1984. – 37. – P. 539 – 577. 9. Shepelsky D. The inverse problem of reconstruction of the medium’s conductivity in a class of discontinuous and increasing functions // Spectral Operator Theory and Related Topics: Adv. in Sov. Math. – Providence: Amer. Math. Soc., 1994. – 19. – P. 209 – 232. 10. Kobayashi M. A uniqueness proof for discontinuous inverse Sturm – Liouville problems with symmetric potentials // Inverse Problems. – 1989. – 5, # 5. – P. 767 – 781. 11. Amyrov$R.$X., Grko$V.$A. O dyfferencyal\n¥x operatorax s osobennost\g y uslovyqmy razr¥va vnutry yntervala // Ukr. mat. Ωurn. – 2001. – 53, #=11. – S.=1443 – 1458. 12. Yurko V. A. Integral transforms connected with discontinuous boundary-value problems // Int. Trans. and Spec. Funct. – 2000. – 10, # 2. – P. 141 – 164. 13. Levyn$B.$Q. Cel¥e funkcyy. – M.:Yzd-vo Mosk. un-ta, 1971. – 125=s. 14. Ûdanovyç$V.$F. Formul¥ dlq nulej polynomov Dyryxle y kvazypolynomov // Dokl. AN SSSR. – 1960. – 135, #=8. – S.=1046 – 1049. 15. Krejn$M.$H., Levyn$B.$Q. Dokl. AN SSSR. – 1949. – 64, #=3. Poluçeno 29.01.2004 ISSN 0041-6053. Ukr. mat. Ωurn., 2005, t. 57, # 5