Прямі й обернені теореми в теорії наближень методом Рітца

Для довільного самоспряженого оператора B у гільбертовому просторі Y наведено прямі й обернені теореми, що встановлюють зв'язок між степенем гладкості вектора X∈Y відносно оператора B, порядком прямування до нуля його найкращого наближення цілими векторами експоненціального типу оператора B і k...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2005
Hauptverfasser: Горбачук, М.Л., Грушка, Я.І., Торба, С.М.
Format: Artikel
Sprache:Ukrainian
Veröffentlicht: Інститут математики НАН України 2005
Schriftenreihe:Український математичний журнал
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/165735
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Прямі й обернені теореми в теорії наближень методом Рітца / М.Л. Горбачук, Я.І. Грушка, С.М. Торба // Український математичний журнал. — 2005. — Т. 57, № 5. — С. 633–643. — Бібліогр.: 13 назв. — укр.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-165735
record_format dspace
spelling irk-123456789-1657352020-02-17T01:26:28Z Прямі й обернені теореми в теорії наближень методом Рітца Горбачук, М.Л. Грушка, Я.І. Торба, С.М. Статті Для довільного самоспряженого оператора B у гільбертовому просторі Y наведено прямі й обернені теореми, що встановлюють зв'язок між степенем гладкості вектора X∈Y відносно оператора B, порядком прямування до нуля його найкращого наближення цілими векторами експоненціального типу оператора B і k-модулем неперервності вектора x щодо оператора B. Результати застосовано до знаходження апріорних оцінок наближених за Рітцом розв'язків операторних рівнянь у гільбертовому просторі. For an arbitrary self-adjoint operator B in a Hilbert space H, we present direct and inverse theorems establishing the relationship between the degree of smoothness of a vector x∈H with respect to the operator B, the rate of convergence to zero of its best approximation by exponential-type entire vectors of the operator B, and the k-modulus of continuity of the vector x with respect to the operator B. The results are used for finding a priori estimates for the Ritz approximate solutions of operator equations in a Hilbert space. 2005 Article Прямі й обернені теореми в теорії наближень методом Рітца / М.Л. Горбачук, Я.І. Грушка, С.М. Торба // Український математичний журнал. — 2005. — Т. 57, № 5. — С. 633–643. — Бібліогр.: 13 назв. — укр. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/165735 517.9 uk Український математичний журнал Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language Ukrainian
topic Статті
Статті
spellingShingle Статті
Статті
Горбачук, М.Л.
Грушка, Я.І.
Торба, С.М.
Прямі й обернені теореми в теорії наближень методом Рітца
Український математичний журнал
description Для довільного самоспряженого оператора B у гільбертовому просторі Y наведено прямі й обернені теореми, що встановлюють зв'язок між степенем гладкості вектора X∈Y відносно оператора B, порядком прямування до нуля його найкращого наближення цілими векторами експоненціального типу оператора B і k-модулем неперервності вектора x щодо оператора B. Результати застосовано до знаходження апріорних оцінок наближених за Рітцом розв'язків операторних рівнянь у гільбертовому просторі.
format Article
author Горбачук, М.Л.
Грушка, Я.І.
Торба, С.М.
author_facet Горбачук, М.Л.
Грушка, Я.І.
Торба, С.М.
author_sort Горбачук, М.Л.
title Прямі й обернені теореми в теорії наближень методом Рітца
title_short Прямі й обернені теореми в теорії наближень методом Рітца
title_full Прямі й обернені теореми в теорії наближень методом Рітца
title_fullStr Прямі й обернені теореми в теорії наближень методом Рітца
title_full_unstemmed Прямі й обернені теореми в теорії наближень методом Рітца
title_sort прямі й обернені теореми в теорії наближень методом рітца
publisher Інститут математики НАН України
publishDate 2005
topic_facet Статті
url http://dspace.nbuv.gov.ua/handle/123456789/165735
citation_txt Прямі й обернені теореми в теорії наближень методом Рітца / М.Л. Горбачук, Я.І. Грушка, С.М. Торба // Український математичний журнал. — 2005. — Т. 57, № 5. — С. 633–643. — Бібліогр.: 13 назв. — укр.
series Український математичний журнал
work_keys_str_mv AT gorbačukml prâmíjoberneníteoremivteoríínabliženʹmetodomrítca
AT gruškaâí prâmíjoberneníteoremivteoríínabliženʹmetodomrítca
AT torbasm prâmíjoberneníteoremivteoríínabliženʹmetodomrítca
first_indexed 2025-07-14T19:45:19Z
last_indexed 2025-07-14T19:45:19Z
_version_ 1837652866607611904
fulltext UDK 517.9 M. L. Horbaçuk, Q. I. Hrußka, S. M. Torba (In-t matematyky NAN Ukra]ny, Ky]v) PRQMI J OBERNENI TEOREMY V TEORI} NABLYÛEN| METODOM RITCA* For an arbitrary self-adjoint operator B in the Hilbert space �, we give direct and inverse theorems that establish relations between the degree of smoothness of a vector x ∈� with respect to the operator B, the order of tending to zero of the best approximation of this vector by exponential-type entire vectors of operator B, and k-module of continuity of x with respect to B. The results obtained are used in finding a priori estimates of the Rietz approximation of solutions of operator equations in the Hilbert space. Dlq dovil\noho samosprqΩenoho operatora B u hil\bertovomu prostori � navedeno prqmi j oberneni teoremy, wo vstanovlggt\ zv’qzok miΩ stepenem hladkosti vektora x ∈� vidnosno operatora B, porqdkom prqmuvannq do nulq joho najkrawoho nablyΩennq cilymy vektoramy eksponencial\noho typu operatora B i k-modulem neperervnosti vektora x wodo operatora B. Re- zul\taty zastosovano do znaxodΩennq apriornyx ocinok nablyΩenyx za Ritcom rozv’qzkiv opera- tornyx rivnqn\ u hil\bertovomu prostori. V teori] nablyΩen\ periodyçnyx funkcij dobre vidomi prqmi j oberneni teore- my, wo vstanovlggt\ zv’qzok miΩ stepenem hladkosti funkci] vidnosno opera- tora dyferencigvannq i porqdkom prqmuvannq do nulq ]] najkrawoho nably- Ωennq tryhonometryçnymy polinomamy. Meta ci[] roboty — dovesty podibni teoremy u vypadku nablyΩennq vektora, hladkoho dlq samosprqΩenoho operatora u hil\bertovomu prostori, cilymy vek- toramy eksponencial\noho typu c\oho operatora i zastosuvaty ci teoremy do znaxodΩennq apriornyx ocinok nablyΩennq za Ritcom rozv’qzkiv operatornoho rivnqnnq. 1. Nexaj B — zamknenyj linijnyj operator zi wil\nog oblastg vyznaçennq D( )B u separabel\nomu hil\bertovomu prostori � nad polem kompleksnyx çysel. Poznaçymo çerez C B∞( ) mnoΩynu vsix neskinçenno dyferencijovnyx vek- toriv operatora B : C B∞( ) = n nB ∈N0 ∩ D ( ) , de N0 = N ∪ { }0 . Dlq çysla α > 0 poklademo �α α( ) ( ) ( )B x C B c c x k B x ck k= ∈ ∃ = > ∀ ∈ ≤{ }∞ 0 0N . MnoΩyna � α( )B [ banaxovym prostorom wodo normy x B x B n n n�α α( ) sup= ∈N0 . Todi �( )B = ∪ α α >0 � ( )B — linijnyj lokal\no-opuklyj prostir vidnosno topo- lohi] induktyvno] hranyci banaxovyx prostoriv � α( )B : �( )B = lim ( )ind α α →∞ � B . Elementy prostoru �( )B nazyvagt\sq cilymy vektoramy eksponencial\noho * Çastkovo pidtrymano DerΩavnym fondom fundamental\nyx doslidΩen\ Ukra]ny (proekt 01.07/027) ta CRDF (proekt UM1-2567-OD-03). © M. L. HORBAÇUK, Q. I. HRUÍKA, S. M. TORBA, 2005 ISSN 0041-6053. Ukr. mat. Ωurn., 2005, t. 57, # 5 633 634 M. L. HORBAÇUK, Q. I. HRUÍKA, S. M. TORBA typu operatora B. Pid typom σ( , )x B vektora x B∈�( ) rozumitymemo çyslo σ( , )x B = inf : ( )α α> ∈{ }0 x B� = lim sup n n nB x →∞ 1 . Skriz\ u podal\ßomu operator B samosprqΩenyj v � , a E( )∆ — joho spekt- ral\na mira. Nexaj G( )λ — majΩe skriz\ skinçenna vymirna funkciq na R. Pid funk- ci[g G B( ) vid operatora B budemo rozumity G B( ) : = −∞ ∞ ∫ G dE( ) ( )λ λ . Qk pokazano v [1], dlq bud\-qkoho α > 0 � α( )B = E −[ ]( )α α, �. Zhidno z [2] poklademo ωk t x B, ,( ) = sup 0≤ ≤τ τ t k x∆ , k ∈N , (1) de ∆h k = U h k( ) −( )I = j k k j k jC U jh = −∑ − 0 1( ) ( ), (2) k ∈N0, h ∈R ∆h h0 1≡ ∈( )+, R , a U h( ) = exp ih B( ) — hrupa unitarnyx operatoriv v � z heneratorom i B [3]. Z vyznaçennq ωk t x B, ,( ) bezposeredn\o vyplyva[, wo pry k ∈N : 1) ωk x B0, ,( ) = 0; 2) pry fiksovanomu x funkciq ωk t x B, ,( ) ne spada[ na R+ = 0, ∞[ ) ; 3) ω αk t x B, ,( ) ≤ ( ) , ,1 + ( )α ωk k t x B , α, t > 0; 4) pry fiksovanomu t ∈ +R funkciq ωk t x B, ,( ) neperervna po x. Dali bude vstanovleno nerivnist\ typu Bernßtejna – Nikol\s\koho. Lema 1. Nexaj G( )λ — nevid’[mna parna funkciq na R, nespadna na R+ , x B∈�( ) i σ( , )x B ≤ α. Todi ∆h k k kG B x h G x( ) ( )≤ α α , h > 0, k ∈N0. (3) Dovedennq. Oskil\ky σ( , )x B ≤ α i 1 2 − ei h kλ = 4 2 2 2sin k hλ ≤ λ2 2k kh , λ ∈R , to na osnovi operacijnoho çyslennq dlq operatora B ma[mo ∆h k G B x( ) 2 = − ∫ −( ) ( ) α α λ λλ1 2 2e G d E x xi h k ( ) , ≤ ≤ h G d E x xk k2 2 2 − ∫ ( ) α α λλ λ( ) , ≤ h G xk k2 2 2 2α α( ) . (4) Lemu dovedeno. Pry k = 0 z lemy 1 oderΩu[mo G B x G x( ) ( )≤ α . (5) Naslidok 1. Za umov lemy 1 stosovno x ta σ( , )x B ISSN 0041-6053. Ukr. mat. Ωurn., 2005, t. 57, # 5 PRQMI J OBERNENI TEOREMY V TEORI} NABLYÛEN| METODOM RITCA 635 ∆h k k kx h x≤ α , h ≥ 0. Dlq dovedennq dosyt\ v lemi 1 vzqty G( )λ ≡ 1, λ ∈R . Qkwo � = L2 0 2, π[ ]( ), Bx t( )( ) = i x t′( ) , D ( )B = { x( )⋅ ∈ W2 1 0 2, π[ ]( ): x( )0 = = x( )2π }, de W2 1 0 2, π[ ]( ) — prostir Sobol[va, to �( )B zbiha[t\sq z mnoΩynog usix tryhonometryçnyx mnohoçleniv, σ( , )x B — stepin\ mnohoçlena x, � α( )B — mnoΩyna vsix tryhonometryçnyx mnohoçleniv, stepeni qkyx ne perevywugt\ α, U h x t( ) ( )( ) = ˜ ( )x t h+ , ωk t x B, ,( ) — k-j modul\ neperervnosti funkci] x t( ), a nerivnist\ (3) pry G( )λ = λm , k = 0 peretvorg[t\sq na nerivnist\ typu S.RBernßtejna u prostori L2 0 2, π[ ]( ) [4 ] (tut pid ˜( )x t rozumi[t\sq 2π-pe- riodyçne prodovΩennq funkci] x t( )). Dlq dovil\noho x ∈� poklademo, dotrymugçys\ [5, 6], � � r y B y B r x B x y( , ) inf ( ): ( , ) = − ∈ ≤σ , r > 0, tobto �r x B( , ) — najkrawe nablyΩennq elementa x cilymy vektoramy y eks- ponencial\noho typu operatora B, dlq qkyx σ( , )y B ≤ r. Pry fiksovanomu x �r x B( , ) ne zrosta[ i �r x B( , ) → 0, r → ∞. Zrozumilo, wo �r x B( , ) = x E r r x− −[ ]( ), = x F r x− [ ]( )0, , de F( )∆ — spektral\na mira operatora B = B B* . Teorema 1. Nexaj G( )λ zadovol\nq[ umovy lemy 1. Todi dlq dovil\noho x G B∈ ( )D ( ) ∀ ∈k N �r x B( , ) ≤ k G r r G B x Bk k +     1 2 ( ) , ( ) ,ω π , r > 0. (6) Dovedennq. Vykorystovugçy spektral\ne zobraΩennq dlq operatora B i monotonnist\ funkci] G( )λ , oderΩu[mo ωk t G B x B2 , ( ) ,( ) = sup ( ) 0 2 ≤ ≤ −( ) τ τ t i B k e G B xI ≥ e G B xitB k −( )I ( ) 2 = = −∞ ∞ ∫ − ( )e G d E x xi t kλ λλ1 2 2( ) , = 2 1 2k kt G d E x x −∞ ∞ ∫ −( ) ( )cos ( ) ,λ λ λ ≥ ≥ 2 12k r kG r t d E x x( ) cos , λ λλ ≥ ∫ −( ) ( ). Zafiksu[mo r > 0 i viz\memo t r ∈    0, π . Todi sin rt ≥ 0. PomnoΩymo obydvi ças- tyny oderΩano] vywe nerivnosti na sin rt i prointehru[mo po t vid 0 do π r . Todi 0 2 π ω / , ( ) , sin r k t G B x B rt dt∫ ( ) ≥ 2 12 0 k r r kG r t rt d E x x dt( ) cos sin , /π λ λλ∫ ∫ ≥ −( ) ( ) = = 2 12 0 k r r kG r t rt dt d E x x( ) cos sin , / λ π λλ ≥ ∫ ∫ −( )       ( ) . (7) Oskil\ky funkciq ωk t G B x B2 , ( ) ,( ) [ monotonno nespadnog, to ISSN 0041-6053. Ukr. mat. Ωurn., 2005, t. 57, # 5 636 M. L. HORBAÇUK, Q. I. HRUÍKA, S. M. TORBA 0 2 π ω / , ( ) , sin r k t G B x B rt dt∫ ( ) ≤ ≤ 0 2 π ω π / , ( ) , sin r k r G B x B rt dt∫     = 2 2 r r G B x Bkω π , ( ) ,    . (8) Vykorystovugçy nerivnist\ 0 1 π θ∫ −( )cos sint t dtk ≥ 2 1 1k k + + , θ ≥ 1, k ∈N (9) (dyv. [7]), na osnovi (7) i (8) pryxodymo do spivvidnoßennq 2 2 r r G B x Bkω π , ( ) ,    ≥ 2 1 2 1 2 1 k r k G r r k d E x x( ) , λ λ ≥ + ∫ +     ( ) = = 2 1 2 1 2 2 k r G r r k x B + + ( ) ( ) ( , )� , (10) rivnosyl\noho (6). Teoremu dovedeno. Pry G( )λ = λ m, λ ∈R , m > 0 z teoremy 1 oderΩu[mo takyj naslidok. Naslidok 2. Nexaj x B m∈ ( )D , m > 0. Todi dlq bud\-qkoho k ∈N �r x B( , ) ≤ k r r B x Bk m k m+     1 2 ω π , , , r > 0. (11) U vypadku, koly B — operator dyferencigvannq z periodyçnymy krajovymy umovamy u prostori � = L2 0 2, π[ ]( ), tobto ( )( )Bx t = ix t′( ) , D ( )B = { ⋅x( ) ∈ ∈ W2 1 0 2, π[ ]( ): x( )0 = x( )2π }, nerivnist\ (11) dlq k = 1 navedeno v [8], a dlq dovil\noho k ∈N — v roboti [7]. Sformulg[mo teper obernenu teoremu u vypadku nablyΩennq vektora x ci- lymy vektoramy eksponencial\noho typu operatora B. Teorema 2. Nexaj ω( )t — funkciq typu modulq neperervnosti taka, wo: 1) ω( )t — neperervna i nespadna pry t ∈ +R ; 2) ω( )0 0= ; 3) ∃ >c 0 ∀ >t 0 ω ω( ) ( )2t c t≤ ; 4) 0 1 ∫ < ∞ω( )t t dt . Nexaj takoΩ funkciq G( )λ [ parnog, nevid’[mnog i nespadnog pry λ ≥ 0, pryçomu sup ( ) ( )λ λ λ> < ∞ 0 2G G . Qkwo dlq x ∈� isnu[ m > 0 take, wo �r x B( , ) < m G r r( ) ω 1    , r > 0, (12) to x G B∈ ( )D ( ) i dlq koΩnoho k ∈N isnu[ stala mk > 0 taka, wo ωk t G B x B, ( ) ,( ) ≤ m t d dk k t k t1 1 0 ∫ ∫+ +         ω τ τ τ ω τ τ τ( ) ( ) , 0 < t ≤ 1 2 . (13) Dovedemo spoçatku take tverdΩennq. ISSN 0041-6053. Ukr. mat. Ωurn., 2005, t. 57, # 5 PRQMI J OBERNENI TEOREMY V TEORI} NABLYÛEN| METODOM RITCA 637 Lema 2. Nexaj funkciq ω( )t zadovol\nq[ umovy 1 – 3 teoremy 2. Qkwo dlq x ∈� isnu[ m > 0 take, wo �r x B( , ) < m r ω 1    , r > 0, (14) to dlq koΩnoho k ∈N isnu[ stala ck > 0 taka, wo ω ω τ τ τk k k t kt x B c t d( , , ) ( )≤ ∫ + 1 1 , 0 < t ≤ 1 2 . (15) Dovedennq. Z umovy (14) vyplyva[ isnuvannq poslidovnosti ui i{ } = ∞ 0 cilyx vektoriv eksponencial\noho typu takyx, wo σ( , )u Bi ≤ 2i , a x u mi i− ≤    ω 1 2 . (16) Viz\memo dovil\ne h ∈    0 1 2 , i vyberemo çyslo N tak, wob 1 2 1N + < h ≤ 1 2N . Iz nerivnosti (16) oderΩu[mo u uj j− −1 ≤ u xj − + x uj− −1 ≤ ≤ m jω 1 2     + m jω 1 2 1−     ≤ 2 1 2 1m jω −     ≤ 2 1 2 cm jω    . (17) V sylu monotonnosti ω( )t ma[mo 2 1 2 1 2 1 1 k k j j u u du / / ( ) − ∫ + ω ≥ 2 1 2 1 1 2 1 2 1 1 k j k j j u duω    − ∫ + / / = = 2 1 2 2 1 kj j k k ω    −( ) ≥ 2 1 2 kj jω    . (18) Oskil\ky σ u u Bj j−( )−1, ≤ 2 j i σ( , )u B0 ≤ 1, to za naslidkom 1 ∆h k ku h u0 0≤ , ∆h k j j k j k j ju u h u u−( ) ≤ ⋅ −− −1 12( ) , j ≥ 1. Formuly (16) – (18) zumovlggt\ nerivnosti ∆h k j j k kj j k k ku u cmh cmh u h du j j −( ) ≤ ⋅     ≤− + + − ∫1 1 1 2 1 2 12 2 1 2 2 1 ω ω / / ( ) ta ∆h k N ihB k N k N k Nx u e x u x u m−( ) ≤ +( ) − ≤ − ≤    1 2 2 1 2 ω , vykorystovugçy qki, pryxodymo do spivvidnoßen\ ∆h k x = ∆ ∆ ∆h k j N h k j j h k Nu u u x u0 1 1+ − + − = −∑ ( ) ( ) ≤ ≤ h uk 0 + 2 1 1 1 2 1 2 1 1 k k j N kcmh u u du j j + = +∑ ∫ − / / ( )ω + 2 1 2 k Nmω    ≤ ISSN 0041-6053. Ukr. mat. Ωurn., 2005, t. 57, # 5 638 M. L. HORBAÇUK, Q. I. HRUÍKA, S. M. TORBA ≤ h uk 0 + 2 1 1 2 1 1 k k kcmh u u du N + +∫ / ( )ω + 2k m hω ( ) ≤ ≤ h uk 0 + 2 1 1 1 k k h kcmh u u du+ +∫ ω( ) + 2k cm hω ( ) = = h u cmh u u du cm k h h u duk k k h k k k h k0 1 1 1 1 12 2 1 + + −     + + +∫ ∫ω ω( ) ( ) ≤ ≤ c h u u duk k h k 1 1∫ + ω( ) , de c u u u du cm k k k k k = −      ∫ + max ( ) , / 0 1 2 1 1 2 1 1 2 ω . Lemu dovedeno. ZauvaΩennq 1. Qk vydno z dovedennq, lema [ virnog za dewo slabkißo] umovy, niΩ vymaha[t\sq v teoremi, a same: dostatn\o, wob dlq elementa x ∈� isnuvala xoça b odna poslidovnist\ uj j{ } = ∞ 0 taka, wo σ( , )u Bj j≤ 2 i ∀ ∈j N x u mj j− ≤    ω 1 2 . Dovedennq teoremy 2. Zavdqky (12) isnu[ poslidovnist\ un n{ } = ∞ 0 taka, wo σ( , )u Bn ≤ 2n i x u m G n n n− ≤    ( )2 1 2 ω , n ∈N0. (19) Z nerivnosti (19) ta umov 1, 2 teoremy vyplyva[, wo x un− → 0, n → ∞ , a tomu vektor x moΩna podaty u vyhlqdi x u u u k k k= + − = ∞ −∑0 1 1( ). Oskil\ky σ u u Bk k−( )−1, ≤ 2k , k ∈N , to, beruçy do uvahy (5), oderΩu[mo G B u G B uk k( ) ( )− −1 ≤ G u uk k k( )2 1− − ≤ ≤ G x u x uk k k( )2 1− + −( )− ≤ G m G m G k k k k k( ) ( ) ( ) 2 2 1 2 2 1 21 1ω ω    +        − − ≤ ≤ 2 2 2 1 21 1 G m G k k k ( ) ( )− −    ω ≤ 2 1 21cc m kω    ≤ 2 2 1 2 2 1 cc m u u du k k ln ( ) − − + ∫ ω , de çerez c1 poznaçeno sup ( ) ( )λ λ λ>0 2G G . Tomu rqd k k kG B u G B u= ∞ −∑ −( )1 1( ) ( ) zbiha- [t\sq. Zamknenist\ operatora G B( ) zumovlg[ vklgçennq x G B∈ ( )D ( ) i riv- nist\ ISSN 0041-6053. Ukr. mat. Ωurn., 2005, t. 57, # 5 PRQMI J OBERNENI TEOREMY V TEORI} NABLYÛEN| METODOM RITCA 639 G B x G B u G B u G B u k k k( ) ( ) ( ) ( )= + −( ) = ∞ −∑0 1 1 . Zvidsy vyplyva[ G B x G B uj( ) ( )− ≤ k j k kG B u G B u = + ∞ −∑ − 1 1( ) ( ) ≤ ≤ 2 2 1 1 2 2 1 cc m u u du k j k k ln ( ) = + ∞ ∑ ∫ − − + ω = 2 2 1 0 2cc m u u du j ln ( ) − ∫ ω = : c̃ jΩ 2−( ), j ∈N , de ˜ : ln c cc m= 2 2 1 , a Ω( ) : ( ) t u u du t = ∫ 0 ω . NevaΩko perekonatys\, wo funkciq Ω( )t ma[ taki vlastyvosti: 1) Ω( )t [ neperervnog i monotonno nespadnog; 2) Ω( )0 = 0; 3) pry t > 0 Ω Ω( ) ( ) ( ) ( ) ( )2 2 0 2 0 2 0 2t u u du u u du c u u du c t t t t = = ≤ =∫ ∫ ∫ω ω ω . Tomu, poklavßy v lemi 2 ω( )t = Ω( )t i vraxuvavßy zauvaΩennq 1, oderΩymo ωk t G B x B, ( ) ,( ) ≤ c t u u duk k t k 1 1∫ + Ω( ) = = c t k u u u u duk k k t t kΩ( ) ( )1 1 1 1+    ∫ + ω ≤ m t u u du u u duk k t k t1 1 0 ∫ ∫+ +       ω ω( ) ( ) . Teoremu dovedeno. Teorema 2 pokazu[, wo u vypadku, koly ω( )t = tα , t ≥ 0, α > 0, i �r x B( , ) = = O r 1 α     , ωk t x B( , , ) = O t k O t t k O t k k k ( ) , ln , ( ) . pry pry pry < ( ) = >       α α αα 2. Rozhlqnemo rivnqnnq Ax y= , (20) de A — dodatno vyznaçenyj samosprqΩenyj operator z dyskretnym spektrom, y ∈�, x A∈D ( ) — ßukanyj rozv’qzok rivnqnnq (20). Çerez � + poznaçymo po- povnennq mnoΩyny D ( )A za normog ⋅ + , porodΩenog skalqrnym dobutkom ( , ) ( , )x y Ax y+ = . Za umov na operator A, zaznaçenyx vywe, rivnqnnq (20) ma[ [dynyj rozv’qzok x A∈D ( ) i, zhidno z pryncypom Dirixle [9], znaxodΩennq c\oho rozv’qzku ekvi- ISSN 0041-6053. Ukr. mat. Ωurn., 2005, t. 57, # 5 640 M. L. HORBAÇUK, Q. I. HRUÍKA, S. M. TORBA valentne vidßukanng vektora u A∈D ( ), na qkomu funkcional F z Az z y z( ) ( , ) Re( , )= − 2 , zadanyj na D ( )A , dosqha[ svoho minimumu. Nexaj ek k{ } = ∞ 1 — povna linijno nezaleΩna systema vektoriv iz D ( )A (tak zvana koordynatna systema) i H n ne e= …{ }l o. . , ,1 . Poznaçymo çerez xn vektor, na qkomu F z( ) nabuva[ minimal\noho znaçennq na H n . Vektor xn nazyva[t\sq nablyΩenym za Ritcom rozv’qzkom rivnqnnq (20). Qk vidomo, nezaleΩno vid vyboru koordynatno] systemy poslidovnist\ xn zbiha[t\sq do x u prostori � + (a tym paçe, i v � ). Wo stosu[t\sq nev’qzky Rn = Ax yn − , to vona ne zavΩdy prqmu[ do nulq v �. Ale qkwo koordynatnu systemu ek k{ } = ∞ 1 vybraty tak, wob vona utvorgvala ortonormovanyj vlasnyj bazys qkoho-nebud\ samosprqΩenoho dodatno vyznaçenoho operatora B, sporid- nenoho z A v tomu rozuminni, wo D ( )A = D ( )B , to Rn → 0, n → ∞ (dyv. [9]), a tomu j velyçyny rn = x xn − + prqmugt\ do nulq pry n → ∞ . Prote do- slidΩennq povedinky na neskinçennosti cyx velyçyn, wo zaleΩat\ vid vyboru ek k{ } = ∞ 1 i pravo] çastyny rivnqnnq (20), vyqvylos\ dosyt\ vaΩkog zadaçeg, ne rozv’qzanog j ponyni. Deqki okremi rezul\taty dlq operatoriv, porodΩenyx krajovymy zadaçamy dlq zvyçajnyx dyferencial\nyx rivnqn\, bulo oderΩano v çyslennyx robotax bahat\ox avtoriv (dyv. ohlqd [10]). Wo Ω stosu[t\sq ab- straktnoho vypadku, to deqki çastynni sytuaci] rozhlqnuto v [11]. U roboti [6] uperße otrymano prqmi j oberneni teoremy za umovy, wo x C B∈ ∞( ), a takoΩ dano ocinky velyçyny Rn , qkwo hladkist\ vektora x [ skinçennog, tobto x Bk∈D ( ) . NyΩçe dlq x Bk∈D ( ) povnistg xarakteryzu[t\sq velyçyna rn . Nadali prypuskatymemo, wo vykonugt\sq taki umovy: 1°. Operator A [ samosprqΩenym dodatno vyznaçenym. 2°. Koordynatnog systemog v metodi Ritca [ ortonormovanyj bazys samo- sprqΩenoho dodatno vyznaçenoho operatora B z dyskretnym i prostym spekt- rom Be ek k k=( )λ , sporidnenoho z A. Poznaçymo çerez xn nablyΩenyj za Ritcom rozv’qzok rivnqnnq (20) vidnos- no koordynatno] systemy ek k{ } = ∞ 1 i poklademo x̃n = k n k kx e e=∑ 1 ( , ) . Oskil\ky operatory A i B dodatno vyznaçeni i samosprqΩeni i D ( )A = D ( )B , to z nerivnosti Hajnca [12] vyplyva[, wo dlq dovil\noho α ∈( , )0 1 D ( )Aα = D ( )Bα , a otΩe, operatory B A1 2 1 2/ /− , A B1 2 1 2/ /− vyznaçeni j obmeΩeni na vs\omu pro- stori � i dlq dovil\noho x A∈D ( ) c1 1− +x ≤ x + ≤ c2 x + , (21) de x + = B x1 2/ , c1 = B A1 2 1 2/ /− , c2 = A B1 2 1 2/ /− . Lema 3. Dlq bud\-qkyx n ∈N i x B∈D ( ) spravdΩu[t\sq nerivnist\ x xn− +˜ ≤ x xn− + ≤ c3 x xn− +˜ , (22) de c3 = B A1 2 1 2/ /− A B1 2 1 2/ /− . Dovedennq. Oskil\ky B x e e k n k k 1 2 1 / ( , )=∑( ) = k n k kB x e e=∑ ( )1 1 2/ , , to ISSN 0041-6053. Ukr. mat. Ωurn., 2005, t. 57, # 5 PRQMI J OBERNENI TEOREMY V TEORI} NABLYÛEN| METODOM RITCA 641 x xn− +˜ = B x x e e k n k k 1 2 1 / ( , )−    = ∑ = = B x B x e e k n k k 1 2 1 1 2/ / ,− ( ) = ∑ ≤ B x B xn 1 2 1 2/ /− = x xn− + . Beruçy do uvahy, wo nablyΩennq za Ritcom xn [ najkrawym nablyΩennqm vektora x u normi ⋅ + , ma[mo x xn− + = B x xn 1 2/ ( )− ≤ ≤ B A1 2 1 2/ /− A x xn 1 2/ ( )− = c1 x xn− + ≤ c1 x xn− +˜ = = c1 1 2A x xn / ( ˜ )− ≤ c c1 2 1 2B x xn / ( ˜ )− = c3 x xn− +˜ . Lemu dovedeno. Vraxovugçy, wo �λn B x B x xn 1 2/ , ˜( ) = − + i � �λ λ ηn n B x B B x B1 2 1 2/ /, ,( ) = ( )+ , 0 < η < λn +1 – λn , nerivnosti (21), (22) i teoremu 1 z G( )λ = λ α −1 2/ , α ≥ 1, pryxodymo do nastup- noho tverdΩennq. Teorema 3. Qkwo x B∈D( )α , α ≥ 1, to dlq bud\-qkoho k ∈N x xn− + ≤ c0 1 1 2 1 1 2 k B x Bk n k n +    + − +λ ω π λα α / , , , de c c c0 2 3= , c2 i c3 — stali, wo fihurugt\ v nerivnostqx (21), (22). Oskil\ky pry x B∈D( )α ω π λ α k n B x B +    1 , , → 0, n → ∞, to dlq x B∈D( )α lim / n n nx x →∞ + − +− =λα 1 1 2 0 . (23) Navedemo pryklady operatoriv A i B, dlq qkyx rivnist\ (23) pry α > 1 ne zumovlg[ vklgçennq x B∈D( )α . Poklademo � = L2 0, π[ ]( ), A = B = − d dt 2 2 , D ( )A = D ( )B = { x( )⋅ ∈ W2 2 0, π[ ]( ) : x( )0 = x( )π = 0}, λk B( ) = k2 , ek = = 2 π sin kt , x = x t( ) = 2 2π k kx kt= ∞∑ sin , de xk = 1 2 1 2 1 2k kα + / /ln , k ∈N \{}1 . Rivnist\ k k k k= ∞ +∑ 2 4 4 1 α α ln = k k k= ∞ ∑ 2 1 ln = ∞ pokazu[, wo x B∉D ( )α . Ale oskil\ky ISSN 0041-6053. Ukr. mat. Ωurn., 2005, t. 57, # 5 642 M. L. HORBAÇUK, Q. I. HRUÍKA, S. M. TORBA x xn− + 2 = x xn− +˜ 2 = k n k k k= + ∞ +∑ 1 2 4 1α ln ≤ ≤ 1 1 1 4 1ln( )n t dt n+ ∞ −∫ α = 1 4 2 14 2( ) ln( )α α− +−n n , to lim ( )/ n n nB x x →∞ − +−λα 1 2 ≤ lim ln( )n n n n→∞ − −− + 2 1 2 1 1 4 2 1 1 α αα = 0. Prote, qk vyplyva[ z teoremy 3, nerivnosti (21) i lemy 3, virnog [ taka te- orema. Teorema 4. Nexaj ω( )t zadovol\nq[ umovy teoremy 2. Qkwo dlq x B∈D ( ) , n ∈N , α > 1 vykonu[t\sq nerivnist\ x x cn n n − ≤    + + − − + λ ω λ α 1 1 2 1 1( / ) , de c ≡ const, to x B∈D ( )α . Zaznaçymo, wo na osnovi nerivnosti (21), ⋅ + v teoremax 3 i 4 moΩna zaminy- ty na ⋅ + . Z ci[] Ω teoremy bezposeredn\o vyplyva[ takyj naslidok. Naslidok 3. Nexaj dlq x B∈D ( ) , n ∈N , α > 1, ε > 0 vykonu[t\sq neriv- nist\ x x cn n− ≤+ + − + −λ α ε 1 1 2( / ) . Todi x B∈D ( )α . ZauvaΩennq 2. Qkwo za nablyΩenyj za Ritcom rozv’qzok rivnqnnq (20) vzq- ty vektor xn , na qkomu funkcional F z( ) dosqha[ svoho minimumu na �n = = �λ1 ⊕ �λ2 ⊕ … ⊕ �λn , de �λ j — vlasnyj pidprostir operatora B, wo vid- povida[ vlasnomu çyslu λ j , to u prypuwenni 2° moΩna vidkynuty umovu pro- stoty spektra. 3. Poklademo � = L2 0, π[ ]( ), D ( )A = { x( )⋅ ∈ W2 2 0, π[ ]( ) : ′x ( )0 = ′x ( )π = 0}, ( )( ) ( ) ( ) ( )Ax t x t q t x t= − ′′ + , q t( ) > 0 , q C( ) ,⋅ ∈ [ ]( )0 π . Operator B vyznaçymo takym çynom: D ( )B = D ( )A , ( )( ) ( ) ( )Bx t x t x t= − ′′ + . Operatory A i B [ samosprqΩenymy j dodatno vyznaçenymy v L2 0, π[ ]( ). Spektr B sklada[t\sq z vlasnyx znaçen\ λk B( ) = k2 + 1, k ∈N0, qkym vidpovidagt\ vlasni funkci] 2 π cos( )kt , wo utvorggt\ ortonormovanyj bazys u prostori L2 0, π[ ]( ). Nexaj k ∈N i g C k( ) ,⋅ ∈ [ ]( )2 0 2π . NevaΩko perekonatysq, wo D ( )Ak +1 = = D ( )Bk +1 todi i til\ky todi, koly g j2 1 0+( )( ) = g j2 1+( )( )π = 0, j = 0, … , k. Qkwo y( )⋅ ∈ C k2 1 0 2( ) ,− [ ]( )π i y j2 1 0+( )( ) = y j2 1+( )( )π = 0, to y t Ak( ) ( )∈D , a tomu rozv’qzok zadaçi − ′′ + =x t g t x t y t( ) ( ) ( ) ( ) , (24) ′ = ′ =x x( ) ( )0 0π , (25) ISSN 0041-6053. Ukr. mat. Ωurn., 2005, t. 57, # 5 PRQMI J OBERNENI TEOREMY V TEORI} NABLYÛEN| METODOM RITCA 643 naleΩyt\ do mnoΩyny D ( )Ak +1 = D ( )Bk +1 i iz spivvidnoßennq (23) bezposered- n\o vyplyva[ take tverdΩennq. Teorema 5. Qkwo g C k( ) ,⋅ ∈ [ ]( )2 0 2π , g j2 1 0+( )( ) = g j2 1+( )( )π = 0, j = 0, … , k, a y( )⋅ ∈R C k2 1 0 2( ) ,− [ ]( )π , y j( )( )2 1 0+ = y j( )( )2 1+ π = 0, j = 0, … , k – 1, to dlq na- blyΩenoho za Ritcom rozv’qzku zadaçi (24), (25) vykonu[t\sq spivvidnoßennq x x o n n W k− =    [ ]( ) +2 2 0 2 1 1 , π . 1. Horbaçuk M. L. Pro analityçni rozv’qzky dyferencial\no-operatornyx rivnqn\ // Ukr. mat. Ωurn. – 2000. – 52, # 5. – S. 596 – 607. 2. Kupcov N. P. Prqm¥e y obratn¥e teorem¥ teoryy pryblyΩenyj y poluhrupp¥ operatorov // Uspexy mat. nauk. – 1968. – 23, v¥p. 4. – S. 118 – 178. 3. Axyezer N. Y., Hlazman Y. M. Teoryq lynejn¥x operatorov v hyl\bertovom prostranstve. – M.: Nauka, 1966. – 320 s. 4. Axyezer N. Y. Lekcyy po teoryy otnosytel\nosty. – M.: Nauka, 1965. – 407 s. 5. Horbaçuk M. L., Horbaçuk V. Y. Prostranstva beskoneçno dyfferencyruem¥x vektorov zamknutoho operatora y yx prymenenye k voprosam approksymacyy // Uspexy mat. nauk. – 1993. – 48, v¥p. 4. – S. 180. 6. Horbaçuk V. Y., Horbaçuk M. L. Operatorn¥j podxod k zadaçam approksymacyy // Alhebra y analyz. – 1997. – 9, v¥p. 6. – S. 90 – 108. 7. Stepanec A. Y., Serdgk A. S. Prqm¥e y obratn¥e teorem¥ teoryy pryblyΩenyq funkcyj v prostranstve S p // Ukr. mat. Ωurn. – 2002. – 54, # 1. – S. 106 – 124. 8. Çern¥x N. Y. O neravenstvax DΩeksona v L2 // Tr. Mat. yn-ta AN SSSR. – 1967. – 88. – S.R71R– 74. 9. Myxlyn S. H. Varyacyonn¥e metod¥ v matematyçeskoj fyzyke. – M.: Nauka, 1970. – 512 s. 10. Luçka A. G., Luçka H. F. Voznyknovenye y razvytye prqm¥x metodov matematyçeskoj fy- zyky. – Kyev: Nauk. dumka, 1970. – 340 s. 11. DΩyßkaryany A. V. O b¥strote sxodymosty pryblyΩennoho metoda Rytca // Ûurn. v¥çys- lyt. matematyky y mat. fyzyky. – 1963. – 3, # 4. – S. 654 – 663. 12. Byrman M. Í., Solom\qk M. Z. Spektral\naq teoryq samosoprqΩenn¥x operatorov v hyl\- bertovom prostranstve. – L.: Yzd-vo Lenynhr. un-ta, 1980. – 264 s. 13. Rad¥no Q. V. Prostranstva vektorov πksponencyal\noho typa // Dokl. AN BSSR. – 1983. – 27, # 9. – S. 215 – 229. OderΩano 09.02.2005 ISSN 0041-6053. Ukr. mat. Ωurn., 2005, t. 57, # 5