Про модель переносу дифузії для двозонної квантової рідини при нульовій температурі

3a допомогою масштабного перетворення одержано гідродинамічні рівняння у квазікласичному наближенні з двокомпонентного рівняння Шредінгера.

Gespeichert in:
Bibliographische Detailangaben
Datum:2005
Hauptverfasser: Алі, Г., Манзіні, Ч., Фросалі, Г.
Format: Artikel
Sprache:Ukrainian
Veröffentlicht: Інститут математики НАН України 2005
Schriftenreihe:Український математичний журнал
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/165742
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Про модель переносу дифузії для двозонної квантової рідини при нульовій температурі / Г. Алі, Ч. Манзіні, Г. Фросалі // Український математичний журнал. — 2005. — Т. 57, № 6. — С. 723–730. — Бібліогр.: 15 назв. — укр.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-165742
record_format dspace
spelling irk-123456789-1657422020-02-17T01:25:47Z Про модель переносу дифузії для двозонної квантової рідини при нульовій температурі Алі, Г. Манзіні, Ч. Фросалі, Г. Статті 3a допомогою масштабного перетворення одержано гідродинамічні рівняння у квазікласичному наближенні з двокомпонентного рівняння Шредінгера. By using a scale transformation, we obtain hydrodynamic equations in the quasiclassical approximation from the two-band Schrodinger equation. 2005 Article Про модель переносу дифузії для двозонної квантової рідини при нульовій температурі / Г. Алі, Ч. Манзіні, Г. Фросалі // Український математичний журнал. — 2005. — Т. 57, № 6. — С. 723–730. — Бібліогр.: 15 назв. — укр. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/165742 517.9 + 531.19 uk Український математичний журнал Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language Ukrainian
topic Статті
Статті
spellingShingle Статті
Статті
Алі, Г.
Манзіні, Ч.
Фросалі, Г.
Про модель переносу дифузії для двозонної квантової рідини при нульовій температурі
Український математичний журнал
description 3a допомогою масштабного перетворення одержано гідродинамічні рівняння у квазікласичному наближенні з двокомпонентного рівняння Шредінгера.
format Article
author Алі, Г.
Манзіні, Ч.
Фросалі, Г.
author_facet Алі, Г.
Манзіні, Ч.
Фросалі, Г.
author_sort Алі, Г.
title Про модель переносу дифузії для двозонної квантової рідини при нульовій температурі
title_short Про модель переносу дифузії для двозонної квантової рідини при нульовій температурі
title_full Про модель переносу дифузії для двозонної квантової рідини при нульовій температурі
title_fullStr Про модель переносу дифузії для двозонної квантової рідини при нульовій температурі
title_full_unstemmed Про модель переносу дифузії для двозонної квантової рідини при нульовій температурі
title_sort про модель переносу дифузії для двозонної квантової рідини при нульовій температурі
publisher Інститут математики НАН України
publishDate 2005
topic_facet Статті
url http://dspace.nbuv.gov.ua/handle/123456789/165742
citation_txt Про модель переносу дифузії для двозонної квантової рідини при нульовій температурі / Г. Алі, Ч. Манзіні, Г. Фросалі // Український математичний журнал. — 2005. — Т. 57, № 6. — С. 723–730. — Бібліогр.: 15 назв. — укр.
series Український математичний журнал
work_keys_str_mv AT alíg promodelʹperenosudifuzíídlâdvozonnoíkvantovoírídiniprinulʹovíjtemperaturí
AT manzíníč promodelʹperenosudifuzíídlâdvozonnoíkvantovoírídiniprinulʹovíjtemperaturí
AT frosalíg promodelʹperenosudifuzíídlâdvozonnoíkvantovoírídiniprinulʹovíjtemperaturí
first_indexed 2025-07-14T19:46:45Z
last_indexed 2025-07-14T19:46:45Z
_version_ 1837652942451113984
fulltext UDC 517.9 + 531.19 G. Alı̀ (Ist. Appl. Calcolo “M. Picone”, Napoli, Italy), G. Frosali (Univ. Firenze, Italy), Ch. Manzini (Scuola Normale Superiore, Pisa, Italy) ON THE DRIFT-DIFFUSION MODEL FOR A TWO-BAND QUANTUM FLUID AT ZERO-TEMPERATURE PRO MODEL\ PERENOSU DYFUZI} DLQ DVOZONNO} KVANTOVO} RIDYNY PRY NUL\OVIJ TEMPERATURI By using a scale transformation, we obtain hydrodynamic equations in the quasiclassical approximation from the two-band Schrödinger equation. Za dopomohog masßtabnoho peretvorennq oderΩano hidrodynamiçni rivnqnnq u kvaziklasyçnomu nably- Ωenni z dvokomponentnoho rivnqnnq Íredinhera. 1. Introduction. In the recent literature there is a growing interest for diodes in which the valence band electrons play a relevant role in the current flow, such as Interband Resonant Tunneling Diodes [1 – 3]. Correspondingly, the effort in the theoretical study of multiband models has increased [4 – 8]. The typical band diagram structure of a tunneling diode is characterized by a band alignment such that the valence band at the positive side of the semiconductor device lies above the conduction band at the negative one. Correspondingly, one of the simplest multiband model, introduced by E. O. Kane in the early 60’s [9], includes only two energy bands of the device material, separated by a forbidden region. It consists of two coupled Schrödinger-like equations for the conduc- tion and the valence band wave (envelope) functions. The coupling term is derived with the k ·p perturbation method [10, 11], which relies on the assumption that, for a reli- able description, it is sufficient solve of the single-electron Schrödinger equation in the neighbourhood of the bottom and the top of the conduction and the valence bands, respec- tively, since most of the electrons and holes are located there. This model is successfully employed for simulations [2, 3]; in particular, it is suitable for investigations on the bulk properties of semiconductors, such as band nonparabolicity and optical properties. Nevertheless, the approximation of the original multiband problem by the two-band Kane model has not a clear physical interpretation; indeed, the corresponding equations result to be coupled even in absence of an external potential. Moreover the choice of the envelope functions is subtle: in the literature are present various methods based on par- tial diagonalization of the Kane Hamiltonian (such as Luttinger effective-mass models); however, they don’t give satisfactory results when nonperiodic potentials are present [12]. The method proposed in [8], instead, is based on the use of the Wannier envelope func- tions, and the “multiband envelope function” model obtained is reliable even when the symmetry of the crystal is broken by an external potential (standing for heterostructures, impurities, e.g.), since the elements of the basis are located at the crystal sites. Already, in the (semi-)classical framework, a hydrodynamic formulation is recom- mended, because of the lower computational cost of the implementation. In the quantum framework, many works in the literature are devoted to quantum hydrodynamic formu- lation, [13, 14] e.g. In a recent work [15], Alı̀ and Frosali have developed a method to extend the derivation of quantum hydrodynamic models from a (single-band) Schrödinger c© G. AlI, G. FROSALI, CH. MANZINI, 2005 ISSN 1027-3190. Ukr. mat. Ωurn., 2005, t. 57, # 6 723 724 G. ALI, G. FROSALI, CH. MANZINI equation [13] to the Kane model. There, they have obtained a closed system of hydrody- namic equations for a two-band quantum fluid. The method formulated in [15] is suitable to be applied to the multiband envelope function model in [8] as well, and that is precisely the content of the present work. Af- ter introducing (Section 2) the two-band envelope function model, in Section 3 we de- rive the corresponding fluiddynamical system for particle and current densities, using the Madelung transform. In Section 4, we perform a drift-diffusive scaling and we end up with a closed set of equations which are the analog of the zero-temperature quantum drift- diffusion model for a two-band envelope function system. In the last section, we compare our model with the one obtained in [15] and we discuss briefly many open problems in the two-band quantum hydrodynamical model, such as closure and numerical experiments. 2. A two-band envelope function system. Let ψc(x, t) be the conduction band envelope function and ψv(x, t) be the valence band envelope function. The multiband envelope function model in the two-band time-dependent case reads as follows: i� ∂ψc ∂t = − � 2 2m∗∆ψc + (Vc + V )ψc − � 2 m P · ∇V Eg ψv, i� ∂ψv ∂t = � 2 2m∗∆ψv + (Vv + V )ψv − � 2 m P · ∇V Eg ψc. (2.1) This model will be considered in R 3. Here, i is the imaginary unit, � is the reduced Planck constant, m∗ is the isotropic effective mass of both the conduction and valence band electrons, which we suppose to be equal, and m is the bare mass of the carriers. Moreover, V is the electrostatic potential, Vc and Vv are the minimum and the max- imum of the conduction and the valence band energy, respectively. The last two quan- tities depend, through the x-coordinate, on the layer composition, while their difference Eg = Vc − Vv, which is called gap energy, is supposed to be constant. The coupling coefficient between the two bands P represents the momentum operator matrix element between the corresponding Wannier functions. For the derivation of model (2.1) in the framework of the Bloch theory, we refer the reader to [8]. We recall that, for anisotropic materials, the inverse of the isotropic effective mass should be replaced by an inverse mass tensor. We make use of the following scaling: after choosing a (scalar) characteristic length scale xR and a characteristic time scale tR, we introduce the rescaled Planck constant ε = � α , with the dimensional parameter α = m∗x2 R tR , and the rescaled time and space variables t′ = t tR , x′ = x xR componentwise. In the adimensional version of (2.1), the masses m and m∗ are kept unchanged, since they appear in a ratio, while the band energy can be rescaled by VR = m∗x2 R t2R . A dimensional argument shows that the original coupling coefficient is a reciprocal of a characteristic lenght, thus P ′ = PxR, componentwise. ISSN 1027-3190. Ukr. mat. Ωurn., 2005, t. 57, # 6 ON THE DRIFT-DIFFUSION MODEL FOR A TWO-BAND QUANTUM FLUID . . . 725 Hence, dropping the prime, we get the following two-band envelope function model, which will be the object of our study: iε ∂ψc ∂t = −ε 2 2 ∆ψc + (Vc + V )ψc − ε2K ψv, iε ∂ψv ∂t = ε2 2 ∆ψv + (Vv + V )ψv − ε2K ψc, (2.2) where K = m∗ m P · ∇V Eg . 3. Derivation of the fluiddynamical model. The simplest way to derive a flu- iddynamical formulation of the evolution equations for particle and current densities is the (classically used) Madelung transform. Since our model consists of two coupled Schrödinger equations, we decompose the wave (envelope) functions for conduction and valence bands into their amplitudes √ nc, √ nv and phases Sc, Sv, defined by the relations ψc(x, t) = √ nc(x, t) exp ( iSc(x, t) ε ) , ψv(x, t) = √ nv(x, t) exp = ( iSv(x, t) ε ) . (3.1) For more details on the notation see Section 2 of [15], where the same procedure is applied to the two-band Kane model. By using the first equation of the two-band envelope function system (2.2), we find ∂nc ∂t = ψc ∂ψc ∂t + ψc ∂ψc ∂t = −∇· Im ( εψc∇ψc ) − 2K Im ( εψcψv ) . In a similar way, we get the equation for the evolution of nv. Then, the previous equations become ∂nc ∂t + ∇· Im ( εψc∇ψc ) = −2K Im ( εψcψv ) , ∂nv ∂t −∇· Im ( εψv∇ψv ) = 2K Im ( εψcψv ) , (3.2) and by using the definition of current density, we get ∂nc ∂t + ∇·Jc = −2K Im ( εψcψv ) , ∂nv ∂t −∇·Jv = 2K Im ( εψcψv ) . (3.3) Summing the equations in (3.3), we obtain the balance law for the total density, ∂ ∂t (nc + nv) + ∇·(Jc − Jv) = 0. (3.4) We remark that, in contrast with the Kane model, currents due to the interband terms do not appear in the conservation of the total density. Next, we derive equations for phases Sc, Sv. Using systems (2.2) and (3.2), we get ∂Sc ∂t = −iε ∂ ∂t ln ( ψc√ nc ) = −iε ( 1 ψc ∂ψc ∂t − 1 2nc ∂nc ∂t ) = = ε2 2nc ( ∇· Re (ψc∇ψc) −∇ψc ·∇ψc ) − (Vc + V ) + ε2 nc K Re (ψcψv). ISSN 1027-3190. Ukr. mat. Ωurn., 2005, t. 57, # 6 726 G. ALI, G. FROSALI, CH. MANZINI It is possible to rewrite the previous equation as ∂Sc ∂t = −1 2 |∇Sc|2 + ε2∆ √ nc 2 √ nc − (Vc + V ) + ε2 nc K Re (ψcψv). A similar equation can be derived for Sv. The resulting system is ∂Sc ∂t + 1 2 |∇Sc|2 − ε2∆ √ nc 2 √ nc + (Vc + V ) = ε2 nc KRe(ψcψv), ∂Sv ∂t − 1 2 |∇Sv|2 + ε2∆ √ nv 2 √ nv + (Vv + V ) = ε2 nv KRe (ψcψv). (3.5) Equations (3.2) and (3.5) are equivalent to the coupled Schrödinger equations in (2.2). We would like to replace system (3.5) with one of coupled equations for the currents. We can evaluate ∂Jc ∂t = ε Im ( ψc∇ ∂ψc ∂t + ∇ψc ∂ψc ∂t ) = = ∑ j ε2 2 ∂ ∂xj Re ( ψc∇ ∂ψc ∂xj −∇ψc ∂ψc ∂xj ) − ψcψc∇Vc+ + ε2∇K Re (ψcψv) + ε2K Re [ ∇(ψcψv) − 2∇ψc ψv ] . (3.6) Using standard identities, eq. (3.6) can be rewritten in the more familiar form ∂Jc ∂t + div ( Jc ⊗ Jc nc + ε2∇√ nc ⊗∇√ nc − ε2 4 ∇⊗∇nc ) + nc(∇Vc + ∇V ) = = ε2∇K Re (ψcψv) + ε2K Re [ ∇(ψcψv) − 2∇ψcψv ] . (3.7) Similarly, for Jv we find ∂Jv ∂t − div ( Jv ⊗ Jv nv + ε2∇√ nv ⊗∇√ nv − ε2 4 ∇⊗∇nv ) + nv(∇Vv + ∇V ) = = ε2∇K Re (ψcψv) + ε2K Re [ ∇(ψvψc) − 2ψc∇ψv ] . (3.8) The left-hand sides of the equations for the currents can be reformulated by the following identity: div ( ∇√ ni ⊗∇√ ni − 1 4 ∇⊗∇ni ) = −ni 2 ∇ [ ∆ √ ni√ ni ] , i = c, v. The correction terms ε2 2 ∆ √ ni√ ni i = c, v , can be interpreted as internal self-potentials for each band and are called quantum Bohm potentials. In addition, the right-hand sides of equations (3.7), (3.8) can be expressed in terms of the hydrodynamic quantities, by using the relations and definitions we recall here (cf. [15]): εψi∇ψj = √ ni √ nj exp ( i Sj − Si ε ) ( ε ∇√ nj√ nj + i∇Sj ) , (3.9) ISSN 1027-3190. Ukr. mat. Ωurn., 2005, t. 57, # 6 ON THE DRIFT-DIFFUSION MODEL FOR A TWO-BAND QUANTUM FLUID . . . 727 ncv := ψcψv = √ nc √ nv e iσ, (3.10) where σ is the phase difference defined by σ := Sv − Sc ε , uc := ε∇ψc ψc = ε∇√ nc√ nc︸ ︷︷ ︸ uos,c +i∇Sc︸︷︷︸ uel,c , uv := ε∇ψv ψv = ε∇√ nv√ nv︸ ︷︷ ︸ uos,v +i∇Sv︸︷︷︸ uel,v , (3.11) ε∇ncv = ncv(uv + uc). (3.12) Thus, ∂Jc ∂t + div ( Jc ⊗ Jc nc ) − nc∇ ( ε2∆ √ nc 2 √ nc ) + nc(∇Vc + ∇V ) = = ε2∇K Re (ψcψv) + εK Re (ncv(uv − uc)) , ∂Jv ∂t − div ( Jv ⊗ Jv nv ) + nv∇ ( ε2∆ √ nv 2 √ nv ) + nv(∇Vv + ∇V ) = = ε2∇K Re (ψcψv) − εK Re (ncv(uv − uc)) . (3.13) By exploiting, instead, the definition (3.11) of osmotic velocities (uos,c, uos,v) and cur- rent velocities (uel,c, uel,v) , and the relation (3.9), we get ∂Jc ∂t + div ( Jc ⊗ Jc nc ) − nc∇ ( ε2∆ √ nc 2 √ nc ) + nc(∇Vc + ∇V ) = = ε2∇K Re ncv + εK √ nc √ nv(cosσ(uos,v − uos,c) − sinσ(uel,c + uel,v)), ∂Jv ∂t − div ( Jv ⊗ Jv nv ) + nv∇ ( ε2∆ √ nv 2 √ nv ) + nv(∇Vv + ∇V ) = = ε2∇K Re ncv − εK √ nc √ nv(cosσ(uos,v − uos,c) − sinσ(uel,c + uel,v)). (3.14) Analogously to Ref. [15] and at variance with the uncoupled model, systems (3.3) and (3.14) are not equivalent to the original system (2.2), due to the presence of σ. The way to close systems (3.3) and (3.14) is not unique; one possibility is to use system (3.5) to derive an evolution equation for σ = (Sv − Sc)/ε , namely ε ∂σ ∂t − 1 2 (∣∣∣∣Jc nc ∣∣∣∣2 + ∣∣∣∣Jv nv ∣∣∣∣2 ) + ε2 2 ( ∆ √ nc√ nc + ∆ √ nv√ nv ) − Vc + Vv = = ε 2 K Re (εψcψv) ( 1 nv − 1 nc ) . (3.15) Equation (3.15) must be supplemented with the constraint ε∇σ = Jv nv − Jc nc . (3.16) It is possible to prove that equations (3.15) and (3.16) are equivalent. Indeed, if we con- sider equation (3.16), then we can recover σ as a function of the other variables by solving the elliptic equation ε∆σ = ∇· ( Jv nv − Jc nc ) , (3.17) ISSN 1027-3190. Ukr. mat. Ωurn., 2005, t. 57, # 6 728 G. ALI, G. FROSALI, CH. MANZINI which can be obtained immediately by derivation of the constraint (3.16). Another possibility is to regard ncv in system (3.13) as an independent variable, rather than σ. From definition (3.10) and the two-band envelope function system (2.2), we find ∂ncv ∂t = ψv ∂ψc ∂t + ψc ∂ψv ∂t = = − iε 2 ∇ · ( ψv∇ψcψc∇ψv − 2∇ψv∇ψc ) + + i ε (Vc − Vv)ψcψv − iεK ( ψvψv − ψcψc ) , which, using (3.9) and the definitions of osmotic and current velocities, leads to ε ∂ncv ∂t = − i 2 ∇·∇ncv − i ε ncv(ucuv) + i ε ncv(Vc − Vv) + iεK (nc − nv) . (3.18) In addition to (3.18), the complex function ncv must satisfy the constraints ncvncv = ncnv, (3.19) ε∇ncv = (uv + uc)ncv. (3.20) Alternatively, we can use the identity (3.20) to derive a nonlinear elliptic equation for ncv, div ( ε∇ncv ncv ) = div(uv + uc), (3.21) which must be solved together with the constraint (3.19). Now we are in position to rewrite the hydrodynamic system as follows: ∂nc ∂t + divJc = −2εK Imncv, ∂nv ∂t − divJv = 2εK Imncv, ∂Jc ∂t + div ( Jc ⊗ Jc nc ) − nc∇ ( ε2∆ √ nc 2 √ nc ) + nc(∇Vc + ∇V ) = = ε2∇K Re ncv + εK Re (ncv(uv − uc)) , (3.22) ∂Jv ∂t − div ( Jv ⊗ Jv nv ) + nv∇ ( ε2∆ √ nv 2 √ nv ) + nv(∇Vv + ∇V ) = = ε2∇K Re ncv − εK Re (ncv(uv − uc)) , ε∇σ = Jv nv − Jc nc , where ncv, uv, uv are expressed in the terms of the hydrodynamic quantities nc, nv, Jc, Jv, σ by (3.10) and (3.11). System (3.22) is the extension of the classical Madelung fluid equations to a two-band quantum fluid. 4. The drift-diffusive scaling. In the following we will consider a modified version of the system (3.3), (3.13) and (3.17), with additional relaxation terms for the currents. It is convenient to rewrite this system as ∂nc ∂t + divJc = −2εK Imncv, ∂nv ∂t − divJv = 2εK Imncv, ISSN 1027-3190. Ukr. mat. Ωurn., 2005, t. 57, # 6 ON THE DRIFT-DIFFUSION MODEL FOR A TWO-BAND QUANTUM FLUID . . . 729 ∂Jc ∂t + div ( Jc ⊗ Jc nc ) − nc∇ ( ε2∆ √ nc 2 √ nc ) + nc(∇Vc + ∇V ) = = ε2∇K Re ncv + εK Re (ncv(uv − uc)) − Jc τ , (4.1) ∂Jv ∂t − div ( Jv ⊗ Jv nv ) + nv∇ ( ε2∆ √ nv 2 √ nv ) + nv(∇Vv + ∇V ) = = ε2∇K Re ncv − εK Re (ncv(uv − uc)) − Jv τ , ε∇σ = Jv nv − Jc nc , where τ is a relaxation time, which we assume the same for the two bands. As customary in semiconductor theory, we perform the diffusive limit by introducing the scaling t→ t τ , Jc → τJc, Jv → τJv . (4.2) Consequently, from definition (3.17), the phase difference σ has to be rescaled as ε∇σ → τε∇σ , and hence σ → τσ + constant. Then, by choosing the constant equal to zero, we have ncv → √ nc √ nv +O(τ), uc → ε∇√ nc√ nc + i Jc nc τ, uv → ε∇√ nv√ nv + i Jv nv τ. The coupling term has to be tackled with much care, by writing ncvuv → √ nc √ nvuos,v + i √ nc √ nv (εσuos,v + uel,v) τ +O(τ2). Formally, as τ tends to zero, after expressing the osmotic and current velocities in terms of the other hydrodynamic quantities, (4.1) reduces to ∂nc ∂t + divJc = −2εσK √ nc √ nv, ∂nv ∂t + divJv = 2εσK √ nc √ nv, Jc = nc∇ ( ε2∆ √ nc 2 √ nc ) − nc(∇Vc + ∇V ) + ε2∇K√ nc √ nv + +ε2K( √ nc∇ √ nv −√ nv∇ √ nc) , (4.3) Jv = −nv∇ ( ε2∆ √ nv 2 √ nv ) − nv(∇Vv + ∇V ) + ε2∇K√ nc √ nv + +ε2K( √ nv∇ √ nc − √ nc∇ √ nv ), ε∇σ = Jv nv − Jc nc . This system represents the analog of the zero-temperature, quantum drift-diffusion model for a two-band envelope function system. ISSN 1027-3190. Ukr. mat. Ωurn., 2005, t. 57, # 6 730 G. ALI, G. FROSALI, CH. MANZINI 5. Conclusions. We can summarize the considerations done during the derivation of our fluiddynamical model (3.22), by saying that the two-band envelope function model [8] seems to be more suitable for the formulation of a hydrodynamic system and, con- sequently, of a drift-diffusion model for a two-band quantum system. As a further con- firmation, we remark that in the scaled equations (4.3) the interband current terms have disappeared, making more evident the physical meaning of the model presented. Both the system (3.22) and the its scaled version (4.3) refer to quantum systems described by pure states; however, the procedure can be easily repeated for an appropriate combination of pure states in order to get the corresponding systems for mixed states (cf. [15]). The closure relation chosen is the one proposed for one-band system by Gasser – Markowich [13]; however, a deeper discussion about this problem would be needed and has to be postponed for further investigations. Thus, this contribution is meant to be a preliminary step of a bigger project in which thermal effects will be taken into account as well, and numerical validations will be included. 1. Kluksdahl N. C., Kriman A. M., Ferry D. K., Ringhofer C. Self-consistent study of the resonant-tunneling diode // Phys. Rev. B. – 1989. – 39, # 11. – P. 7720 – 7735. 2. Sweeney M., Xu J. M. Resonant interband tunnel diodes // Appl. Phys. Lett. – 1989. – 54, # 6. – P. 546 – 548. 3. Yang R. Q., Sweeny M., Day D., Xu J. M. Interband tunneling in heterostructure tunnel diodes // IEEE Trans. Electron Devices. – 1991. – 38, # 3. – P. 442 – 446. 4. Barletti L. Wigner envelope functions for electron transport in semiconductor devices // Transp. Theory and Statist. Phys. – 2003. – 32, # 3-4. – P. 253 – 277. 5. Borgioli G., Frosali G., Zweifel P. F. Wigner approach to the two-band Kane model for a tunneling diode // Ibid. – P. 347 – 366. 6. Demeio L., Barletti L., Bertoni A., Bordone P., Jacoboni C. Wigner function approach to multiband trans- port in semiconductors // Physica B. – 2002. – 314. – P. 104 – 107. 7. Demeio L., Bordone P., Jacoboni C. Numerical simulation of an intervalley transition by the Wigner- function approach // Semiconductor Sci. and Technol. – 2004. – 19. – P. 1 – 3. 8. Modugno M., Morandi O. A multiband envelope function model for quantum transport in a tunneling diode. – 2004. – Preprint. 9. Kane E. O. Energy band structure in p-type Germanium and Silicon // J. Phys. and Chem. Solids. – 1956. – 1. – P. 82 – 89. 10. Kane E. O. The k ·p method // Semiconductors and Semimetals / Eds R. K. Willardson, A. C. Bear. – New York: Acad. Press, 1966. – Vol. 1. – P. 75 – 100. 11. Wenckebach W. T. Essential of semiconductor physics. – Chichester: J. Wiley & Sons, 1999. 12. Chao C. Y., Chuang S. L. Resonant tunneling of holes in the multiband effective-mass approximation // Phys. Rev. B. – 1991. – 43. – P. 7027 – 7039. 13. Gasser I., Markowich P. Quantum hydrodynamics, Wigner transforms and the classical limit // Asymptotic Analysis. – 1997. – 14. – P. 97 – 116. 14. Jüngel A. Quasi-hydrodynamic semiconductor equations. – Basel: Birkhäuser, 2001. 15. Alı́ G., Frosali G. On quantum hydrodynamic models for the two-band Kane system (submitted). Received 08.11.2004 ISSN 1027-3190. Ukr. mat. Ωurn., 2005, t. 57, # 6