Stochastic and Deterministic Bundles

We consider a bundle determined by a classifying map with skeleton smooth in the Chen — Souriau sense. We show that the stochastic classifying map is homotopic to a deterministic classifying map on the Holder loop space.

Gespeichert in:
Bibliographische Detailangaben
Datum:2005
1. Verfasser: Leandre, R.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2005
Schriftenreihe:Український математичний журнал
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/165834
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Stochastic and Deterministic Bundles / R. Leandre // Український математичний журнал. — 2005. — Т. 57, № 9. — С. 1284–1288. — Бібліогр.: 23 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-165834
record_format dspace
spelling irk-123456789-1658342020-02-17T01:27:21Z Stochastic and Deterministic Bundles Leandre, R. Статті We consider a bundle determined by a classifying map with skeleton smooth in the Chen — Souriau sense. We show that the stochastic classifying map is homotopic to a deterministic classifying map on the Holder loop space. Розглядаються розшарування, що визначаються класифікуючим відображенням із скелетом, гладким у сенсі Chen - Souriau. Показано, що стохастичне класифікуюче відображення гомотопне детерміністичному класифікуючому відображенню на просторах гьольдерових петель. 2005 Article Stochastic and Deterministic Bundles / R. Leandre // Український математичний журнал. — 2005. — Т. 57, № 9. — С. 1284–1288. — Бібліогр.: 23 назв. — англ. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/165834 519.21 en Український математичний журнал Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Статті
Статті
spellingShingle Статті
Статті
Leandre, R.
Stochastic and Deterministic Bundles
Український математичний журнал
description We consider a bundle determined by a classifying map with skeleton smooth in the Chen — Souriau sense. We show that the stochastic classifying map is homotopic to a deterministic classifying map on the Holder loop space.
format Article
author Leandre, R.
author_facet Leandre, R.
author_sort Leandre, R.
title Stochastic and Deterministic Bundles
title_short Stochastic and Deterministic Bundles
title_full Stochastic and Deterministic Bundles
title_fullStr Stochastic and Deterministic Bundles
title_full_unstemmed Stochastic and Deterministic Bundles
title_sort stochastic and deterministic bundles
publisher Інститут математики НАН України
publishDate 2005
topic_facet Статті
url http://dspace.nbuv.gov.ua/handle/123456789/165834
citation_txt Stochastic and Deterministic Bundles / R. Leandre // Український математичний журнал. — 2005. — Т. 57, № 9. — С. 1284–1288. — Бібліогр.: 23 назв. — англ.
series Український математичний журнал
work_keys_str_mv AT leandrer stochasticanddeterministicbundles
first_indexed 2025-07-14T20:05:45Z
last_indexed 2025-07-14T20:05:45Z
_version_ 1837654131882328064
fulltext UDC 519.21 R. Léandre (Inst. Math. Univ. Bourgogne, France) STOCHASTIC AND DETERMINISTIC BUNDLES STOXASTYÇNI TA DETERMINISTYÇNI ROZÍARUVANNQ In honour of Professor A. Skorokhod for his 75 birthday We consider a bundle determined by a classifying map with skelettum smooth in Chen – Souriau sense. We show that the stochastic classifying map is homotopic to a deterministic classifying map on the Hölder loop space. Rozhlqdagt\sq rozßaruvannq, wo vyznaçagt\sq klasyfikugçym vidobraΩennqm iz skeletom, hladkym u sensi Chen – Souriau. Pokazano, wo stoxastyçne klasyfikugçe vidobraΩennq homotopne determinis- tyçnomu klasyfikugçomu vidobraΩenng na prostorax h\ol\derovyx petel\. 1. Introduction. Let Lx(M) be the based loop space of a compact Riemannian mani- fold, endowed with the Brownian bridge measure. There are two stochastic de Rham cohomology theories associated to it, for forms almost surely defined: The first one is the de Rham cohomology in Nualart – Pardoux sense, which is a refin- ment of Malliavin Calculus [1 – 3]. If the manifold is simply connected, it is equal to the de Rham cohomology of the finite energy based loop space. The second one is the de Rham cohomology in Chen – Souriau sense, which uses a wide variety of stochastic diffeologies on the based loop space [4 – 7]. The main theorem is that the stochastic cohomology in Chen – Souriau sense is equal to the deterministic de Rham cohomology of the Hölder loop space. On a compact manifold, associated to a complex bundle, we can study character- istic classes. In particular, Chern – Weil isomorphism states that the complex K-theory tensorized by C of a compact manifold is equal to the complex de Rham cohomology associated to the manifold. There are a big variety of definition of stochastic bundle (with fiber almost surly de- fined!) on the loop space: Either, in Nualart – Pardoux sense, [8 – 10] consider stochastic K-theories, by consid- ering finite dimensional random projectors. Let us recall that one of the main originality of Malliavin Calculus with respects of its preliminary versions (see works of Hida, Elworthy, Fomin, Albeverio, Berezanskii ...) is that the space of test functionals is an algebra. This allows to Léandre [8, 11] to define a stochastic Chern – Character in Nualart – Pardoux sense. Or in the Chen – Souriau sense, various stochastic Z-valued Stiefel – Whitney classes were defined [8]. Léandre [8] uses a suitable classifying map in Chen – Souriau sense in the classifying space (see the book of Milnor – Stasheff [12] for the study of such objects in the deterministic context). Moreover, for these two Calculi, in order to understand characteristic classes, various algebraic de Rham complexes were studied in [13] (see the book of Loday [14] for an extensive study of such objects associated to differential algebras). On the other hand, if the based loop space is simply connected, a line bundle is deter- mined by its curvature. This justifies the fact [7] that a stochastic line bundle (with fiber c© R. LÉANDRE, 2005 1284 ISSN 1027-3190. Ukr. mat. Ωurn., 2005, t. 57, # 9 STOCHASTIC AND DETERMINISTIC BUNDLES 1285 almost surely defined!) in Chen – Souriau sense is isomorphic to a true line bundle over the Hölder loop space, if this one is simply connected. This motivates the question: for what theories is a stochastic bundle (with fiber almost- surely defined!) isomorphic to a deterministic bundle? Let us recall that study of bundles on the loop spaces are motivated by the works of Witten [15, 16] relating the K-theory of the free loop space with elliptic cohomology. Moreover, Jaffe – Lesniewski – Osterwalder [17] have considered some K-theory on the loop space associated to the Wess – Zumino model on the loop space. The goal of this work is to answer to this question. Let us recall that we have defined in [18, 19] the notion of stochastic forms smooth in Chen – Souriau sense with skelettum. We consider in this paper a bundle determined by a classifying map with skelettum smooth in Chen – Souriau sense. We show that the stochastic classifying map is homo- topic to a deterministic classifying map on the Hölder loop space. We get: Main theorem. A stochastic bundle, smooth in Chen – Souriau sense (or in the Froelicher sense), with skelettum, over the based loop space is isomorphic to a deter- ministic bundle on the strong Hölder loop space. By strong Hölder loop space, we mean the set of loops s → γ(s) such that lim s→t d(γ(s), γ(t)) |s− t|1/2−ε = 0 for some small ε where d is the Riemannian distance on the manifold. We refer to the survey of Albeverio [20], and to the 3 surveys of Léandre for the relation between stochastic analysis and mathematical physics [11, 21, 22]. We thank D. Arnal for helpfull comments. 2. The model. We consider the injective limit M∞(C) of the linear space Mn(C) of linear applications from Cn into Cn. We consider the Hilbert norm ‖A‖2 = = ∑ |Aei|2 where ei is the canonical basis of Cn. This norm is compatible with the canonical injection from Mn(C) into Mn+1(C). We get a structure of Prehilbert space M∞(C) (it is not complete). In order to take derivatives, we consider its natural completion M∞(C). B∞(U(n)) is the set of orthogonal projectors of rank n belonging to M∞(C). It is the classifying space [12] of n-dimensional complex Hermitian bundles endowed with an Hermitian structure. There is on B∞(U(n)) a canonical universal U(n) bundle. Let M ⊆ Rn a Riemannian manifold of dimension d isometrically imbedded in Rn. We consider the based loop space Lx(M) of strongs Hölder loops s → γ(s) of loops such that lim s→t d(γ(s), γ(t)) |s− t|1/2−ε = 0. It is a Banach manifold. It is endowed with the Brownian bridge measure. Definition 2.1. A stochastic plot of dimension m, φst = (U, φi,Ωi)i∈N is given by the following data: a open subset U of Rm; a countable partition Ωi of Lx(M); a family of smooth applications (u, s, y) → Fi(u, s, y) from U × S1 ×M bounded with bounded derivatives of all orders, with values in Rn; over Ωi, φi(u) = {s → Fi(u, s, γ(s))} belongs to Lx(M). ISSN 1027-3190. Ukr. mat. Ωurn., 2005, t. 57, # 9 1286 R. LÉANDRE Let Lx(M)N be the set of loops such that sup|s−t|<1/N d(γ(s), γ(t)) < r where r is small enough. If γ belongs to Lx(M)N , we can define its polygonal approxima- tion γN . We call Lx,∞(M) the finite energy based loop space. Theorem 2.1. A map Ψ from Lx,∞(M) into B∞(Un) is called smooth in the Frechet sense if it is Frechet smooth considered as map with values in M∞(C). Analoguous definition works for a Frechet smooth map from the strong Hölder loop space in the classifying space. Definition 2.2. A Frechet smooth map Ψ from Lx,∞(M) in the classifying space is called the skelettum of a map smooth in the Chen – Souriau sense (or in the Froelicher sense) Ψst with values in the classifying space if for all stochastic plot u → Ψ(φN st) tends almost surely smoothly in N (for a suitable compactification of R+ ) for the smooth topology to a smooth random map u → Ψst(φst(u)) from U into the classi- fying space (almost surely defined!). The application Ψst defines a map smooth in the stochastic Chen – Souriau sense (or in the stochastic Froelicher sense) from Lx(M) endowed with the Brownian bridge mea- sure according to our diffeology and the definitions of [8] with values in the classifying space. In particular, the pullback by Ψst of the universal bundle E∞(U(n)) on the clas- sifying space defines a stochastic bundle in the stochastic Chen – Souriau sense (or in the stochastic Froelicher sense) over Lx(M). We denote Ψ∗ stE∞(Un) it. It is a stochastic bundle in Chen – Souriau sense with skelettum Ψ∗E∞(Un). 3. Proof of the main theorem. Let us recall what is a stochastic bundle in Chen – Souriau sense (or in Froelicher sense) over the strong Hölder loop space [8]. Definition 3.1. Let us consider a map Ψst smooth in Chen – Souriau sense with values in the classifying space B∞(Un). This means, that for all stochastic plots φst U → Lx(M), we can define Ψst(φst(u)) as a random smooth map from U into the classifying space. Moreover the set of these random smooth maps have to satisfied the two following requirements: If j : U1 → U2 is a smooth deterministic map from U1 into U2, if φst,2 is a stochastic plot from U2 into Lx(M), we can consider the composite plot φst,1 = = φst,2 ◦ j. Therefore, the following statement has to be satisfied: Ψst(φst(u1)) = = Ψst(φst,2(j(u1)) has smooth random applications from U1 into the classifying space. If two stochastic plots φst,1 and φst,2 are deduced one from the other by a measur- able transformation ψ of the strong Hölder based loop space on a set of probability not equal to 0, we have Ψst(φst,1) = Ψst(φst,2) ◦ ψ almost surely. All stochastic bundle in the Chen – Souriau sense (or in the Froelicher sense) can be seen as isomorphic to a pullback bundle Ψ∗ stE∞(Un) [8]. This generalizes this very well known fact in algebraic topology [12] in the deterministic context. Let us recall the following theorem: Theorem 3.1. Ψ∗ st,1E∞(Un) and Ψ∗ st,2E∞(Un) are isomorphic as soon as there exists a smooth homotopy Ψst,t between Ψst,1 and Ψst,2. This means that for all stochastic plot φst, (u, t) → Ψst,t(φ(u)) is almost surely smooth in t in u with val- ues in the classifying space and satisfies consistency requirements analoguous to Defini- tion 3.1. ISSN 1027-3190. Ukr. mat. Ωurn., 2005, t. 57, # 9 STOCHASTIC AND DETERMINISTIC BUNDLES 1287 Lemma 3.1. Let L0(Rn) be the strong 1 2 − ε-Hölder based loop space of Rn. There exists θ and p ∈ 2N such that the map which to γ in the strong Hölder based loop space of Rm associates F (γ) = ∫ S1 |γ(s)|pds+ ∫ S1×S1 |γ(s) − γ(t)|p |s− t|1+θp ds dt is Frechet smooth. Proof. Let us perturb γ by h in the strong Hölder based loop space:∣∣|γ(s) − γ(t)|p − |γ(s) + h(s) − γ(t) − h(t)|p ∣∣ ≤ ≤ |h(s) − h(t)|t ∑ |γ(s) − γ(t)|k|γ(s) + h(s) − γ(t) − h(t)|p−k−1. If θ is small enough,∫ S1×S1 |γ(s) − γ(t)|k|γ(s) + h(s) − γ(t) − h(t)|p−k−1 |s− t|1+θp−1/2+ε ds dt is finite. Therefore the result for the Frechet differentiability of F. Higher Frechet deriv- abilities are shown in the same way. The lemma is proved. F 1/p defines a norm. Some Hölder loop space is continuously imbedded in the Ba- nach space of loops such the norm F 1/p is finite [23]. This shows us that if F (γ) < < Ck for some real number k, we can define γC′ for C ′ ≥ C if γ is a loop on the strong 1 2 − ε-Hölder loop space of the manifold, imbedded in L0(Rn). Moreover, ‖γC′ − γ‖∞ < r for r small enough where ‖.‖∞ is the supremum norm on the based loop space of Rn. Let π be the projection from a small tubular neighborhood from M in Rn into M. Let us consider γ̃ a loop in this tubular neighborhood. Let us introduce π∞ — the Nemystki map: π∞(γ̃) = {s → π(γ̃)(s)}, π∞ is Frechet smooth for the strong Hölder topology (see [7] for a proof of this statement in a similar situation). Proof of the main theorem. Let h be a smooth decreasing function from R+ into [0, 1] equal to 0 outside a small neighborhood of 0 and equal to 1 in a small neighborhood of 0. Let Ψ be the skelettum of Ψst. We put Ψst,t = Ψ ( π∞ ( ∑ n≥0 γnC exp[C/t](−h(n−kF (γ)) + h((n+ 1)−kF (γ) )) . We remark that ∑ n≥0 −h(n−kF (γ)) + h((n + 1)−kF (γ)) = 1 and is a series of positives numbers almost all equal to 0. Moreover,∥∥∥∑ γnC exp[C/t](h((n+ 1)−kF (γ)) − h(n−kF (γ)) − γ ∥∥∥ ∞ ≤ r. So we can define π∞ (∑ γnC exp[C/t] ( h((n+ 1)−kF (γ)) − h(n−kF (γ) )) . Since F is Frechet smooth for the strong Hölder topology, and since Ψ is the skelettum of Ψst, ISSN 1027-3190. Ukr. mat. Ωurn., 2005, t. 57, # 9 1288 R. LÉANDRE we deduce that that t → Ψst,t is a smooth homotopy between Ψst,0 = Ψst and Ψst,1 with values in the classifying space. But Ψst,1 is a Frechet smooth map from the strong Hölder based loop space of M into the classifying space. Therefore the results. 1. Léandre R. Cohomologie de Bismut – Nualart – Pardoux et cohomologie de Hochschild entiere // Séminaire de Probabilités XXX in honour of P. A. Meyer and J. Neveu / Eds J. Azéma, M. Emery, M. Yor // Lect. Notes Math. – 1996. – 1626. – P. 68 – 100. 2. Léandre R. Brownian cohomology of an homogeneous manifold // New Trends in Stochastic Analysis / Eds K. D. Elworthy, S. Kusuoka, I. Shigekawa. – World Sci., 1997. – P. 305 – 347. 3. Léandre R. Stochastic Adams theorem for a general compact manifold // Rev. Math. Phys. – 2001. – 13. – P. 1095 – 1133. 4. Léandre R. Singular integral homology of the stochastic loop space // Inf. Dim. Anal. Quant. Probab. Rel. Top. – 1998. – 1. – P. 17 – 31. 5. Léandre R. A sheaf theoretical approach to stochastic cohomology // XXXI Symp. Math. Phys. Torun / Ed R. Mrugala // Rep. Math. Phys. – 2000. – 46. – P. 157 – 164. 6. Léandre R. Anticipative Chen – Souriau cohomology and Hochschild cohomology // Conf. Moshe Flato 1999 / Eds G. Dito, D. Sternheimer // Math. Phys. Stud. – 2000. – 22 – P. 185 – 199. 7. Léandre R. Stochastic cohomology of Chen – Souriau and line bundle over the Brownian bridge // Probab. Theory Relat. Fields. – 2001. – 120. – P. 168 – 182. 8. Léandre R. Brownian motion and classifying space // Non-Commutativity, Infinite-Dimensionality and Probability at the Crossroads // Eds N. Obata, T. Matsui, A. Hora. – World Sci., 2002. – P. 329 – 345. 9. Léandre R. Stochastic complex K-theories: Chern character and Bott periodicity // Lett. Math. Phys. – 2003. – 64. – P. 185 – 202. 10. Léandre R. Malliavin Calculus and real Bott periodicity // Stochastic analysis / Eds S. Albeverio, A. Boutet de Monvel, H. Ouerdiane. – Kluwer, 2004. – P. 37 – 51. 11. Léandre R. Analysis over loop space and topology // Math. Notes. – 2002. – 72. – P. 212 – 229. 12. Milnor J., Stasheff J. Characteristic classes. – Princeton Univ. Press, 1974. 13. Léandre R. Stochastic algebraic de Rham complexes // Acta. Appl. Math. – 2003. – 79. – P. 217 – 247. 14. Loday J. L. Cyclic homology. – Springer, 1998. 15. Witten E. The Index of Dirac operator in loop space // Elliptic Curves and Modular Forms in Algebraic Topology / Ed. P. S. Landweber // Lect. Notes. Math. – 1988. – 1326. – P. 161 – 181. 16. Kreck M. Elliptic homology // Espaces de lacets / Eds R. Léandre, S. Paycha, T. Wuerzbacher. – Publ. Univ. Strasbourg, 1996. – P. 63 – 69. 17. Jaffe A., Lesniewski A., Osterwalder K. Quantum K-theory. The Chern character // Communs Math. Phys. – 1988. – 118. – P. 1 – 19. 18. Léandre R. Hypoelliptic diffusions and cyclic cohomology // Stochastic Analysis. IV / Eds R. Dalang, M. Dozzi, F. Russo // Prog. Probab. – 2004. – 58. – P. 165 – 185. 19. Léandre R. Stochastic equivariant cohomologies and cyclic cohomology // Ann. Probab. (to appear). 20. Albeverio S. Loop groups, random gauge fields, Chern – Simons models, strings: some recent mathe- matical developments // Espaces de lacets / Eds R. Léandre, S. Paycha, T. Wuerzbacher. – Publ. Univ. Strasbourg, 1996. – P. 5 – 34. 21. Léandre R. Cover of the Brownian bridge and stochastic symplectic action // Rev. Math. Phys. – 2000. – 12. – P. 157 – 164. 22. Léandre R. The geometry of Brownian surfaces. – Preprint. 23. Triebel H. Interpolation theory, function spaces and differential operators // J. Ambrosius Barth. – 1995. Received 17.06.2005 ISSN 1027-3190. Ukr. mat. Ωurn., 2005, t. 57, # 9