On the embedding of Waterman class in the class Hωp
In this paper the necessary and sufficient condition for the inclusion of class ΛBV in the class Hωp is found.
Gespeichert in:
Datum: | 2005 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2005
|
Schriftenreihe: | Український математичний журнал |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/165902 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | On the embedding of Waterman class in the class Hωp / U. Goginava // Український математичний журнал. — 2005. — Т. 57, № 11. — С. 1557–1562. — Бібліогр.: 21 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-165902 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1659022020-02-23T16:30:17Z On the embedding of Waterman class in the class Hωp Goginava, U. Короткі повідомлення In this paper the necessary and sufficient condition for the inclusion of class ΛBV in the class Hωp is found. Знайдено необхідну i достатню умову для включення класу ΛBV до класу Hωp. 2005 Article On the embedding of Waterman class in the class Hωp / U. Goginava // Український математичний журнал. — 2005. — Т. 57, № 11. — С. 1557–1562. — Бібліогр.: 21 назв. — англ. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/165902 517.5 en Український математичний журнал Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Короткі повідомлення Короткі повідомлення |
spellingShingle |
Короткі повідомлення Короткі повідомлення Goginava, U. On the embedding of Waterman class in the class Hωp Український математичний журнал |
description |
In this paper the necessary and sufficient condition for the inclusion of class ΛBV in the class Hωp is found. |
format |
Article |
author |
Goginava, U. |
author_facet |
Goginava, U. |
author_sort |
Goginava, U. |
title |
On the embedding of Waterman class in the class Hωp |
title_short |
On the embedding of Waterman class in the class Hωp |
title_full |
On the embedding of Waterman class in the class Hωp |
title_fullStr |
On the embedding of Waterman class in the class Hωp |
title_full_unstemmed |
On the embedding of Waterman class in the class Hωp |
title_sort |
on the embedding of waterman class in the class hωp |
publisher |
Інститут математики НАН України |
publishDate |
2005 |
topic_facet |
Короткі повідомлення |
url |
http://dspace.nbuv.gov.ua/handle/123456789/165902 |
citation_txt |
On the embedding of Waterman class in the class Hωp / U. Goginava // Український математичний журнал. — 2005. — Т. 57, № 11. — С. 1557–1562. — Бібліогр.: 21 назв. — англ. |
series |
Український математичний журнал |
work_keys_str_mv |
AT goginavau ontheembeddingofwatermanclassintheclasshōp |
first_indexed |
2025-07-14T20:20:55Z |
last_indexed |
2025-07-14T20:20:55Z |
_version_ |
1837655087984410624 |
fulltext |
K�O�R�O�T�K�I���P�O�V�I�D�O�M�L�E�N�N�Q
UDC 517.5
U. Goginava (Tbilisi Univ., Georgia)
ON THE EMBEDDING OF WATERMAN CLASS
IN THE CLASS Hp
ωω
PRO VKLGÇENNQ KLASU VATERMANA DO KLASU Hp
ωω
In this paper the necessary and sufficient condition for the inclusion of class ΛBV in the class Hp
ω is
found.
Znajdeno neobxidnu i dostatng umovu dlq vklgçennq klasu ΛBV do klasu Hp
ω .
1. Introduction. The notion of function of bounded variation was introduced by
Jordan [1]. Generalized this notion Wiener [2] has considered the class Vp of
functions. Young [3] introduced the notion of functions of Φ -variation. In [4]
Waterman has introduced the following concept of generalized bounded variation.
Definition 1. Let Λ = { λn : n ≥ 1 } be an increasing sequence of positive num-
bers such that ( )/1
1
λnn=
∞∑ = ∞ . A function f is said to be of Λ -bounded varia-
tion ( f ∈ ΛBV ) , if for every choice of nonoverlapping intervals { In : n ≥ 1 } w e
have
n
n
n
f I
=
∞
∑
1
( )
λ
< ∞ ,
where In = [ an , bn ] ⊂ [ 0, 1 ] and f ( In ) = f ( bn ) – f ( an ) .
If f ∈ ΛBV, then Λ-variation of f is defined to be the supremum of such sums,
denoted by VΛ ( f ) .
Properties of functions of the class ΛBV as well as the convergence and summabi-
lity properties of their Fourier series were investigated in [4 – 10].
For everywhere bounded 1-periodic functions, Chanturia [11] introduced the con-
cept of the modulus of variation.
If ω ( δ ) is a modulus of continuity, then Hp
ω , p ≥ 1, denotes the class of
functions f ∈ L
p ( [ 0, 1 ] ) for wich ω ( δ, f ) p = O ( ω ( δ )) as δ → 0 +, where
ω δ( , )f p = sup ( ) ( )
/
0 0
1 1
< ≤
∫ + −
h
p
p
f x h f x dx
δ
.
The relation between different classes of generalized bounded variation was taken into
account in the works of Avdispahic[12], Kovacik [13], Belov [14], Chanturia [15],
Akhobadze [16], Medvedeva [17], Kita, Yoneda [18], Goginava [19, 20].
2. Main result. The main result of this paper is presented in the following propo-
sition:
Theorem 1. ΛBV ⊂ Hp
ω for some p ∈ [ 1, ∞ ) if and only if
lim max
( / ) /
/
/
n p m n
p
ii
mn n
m
→∞ ≤ ≤
=∑
1
1 1
1 1
1
1
ω λ
< + ∞ . (1)
© U. GOGINAVA, 2005
ISSN 1027-3190. Ukr. mat. Ωurn., 2005, t. 57, # 11 1557
1558 U. GOGINAVA
3. Proof. The sufficiency of Theorem 1 follows immediately from the following
theorem:
Theorem A [21]. Let f ∈ ΛBV and p ∈ [ 1, ∞ ) . Then
ω 1
n
f
p
,
≤ V f
n
m
m n
ii
m p
p
Λ( ) max
/
/
1
1
1
1
1
≤ ≤
=∑( )
λ
.
Necessity. We suppose that condition (1) is not satisfied. As an example, we
construct function from ΛBV which is not in Hp
ω .
Since condition (1) is not satisfied, there exists a sequence of integers { γk : k ≥ 1 }
such that
lim max
( / ) /
/
/
k
k k
p m
p
ii
m
k
m
→∞ ≤ ≤
=∑
1
1 1
1 1
1
1
ω γ γ λγ
= ∞ .
Let { ′γ k : k ≥ 1 } be a sequence of integers for which 2 1′ −γ k ≤ γk < 2 ′γ k . Then from
the fact that ω ( δ ) is nondecreasing we write
2
2 2 1
1
1 2
1
1
/
/
/
( )
max
/
p
p
m
p
ii
mk k k
m
ω λγ γ γ− ′ ′ ≤ ≤
=
′ ∑
≥
≥
1
1 1
1 1
1
1
ω γ γ λγ( / ) /
/
/
max
k k
p m
p
ii
m
k
m
≤ ≤
=∑
,
consequently,
lim
( )
max/
/
/k p
m
p
ii
mk k k
m
→∞ − ′ ′ ≤ ≤
=
′ ∑
1
2 2 11 2
1
1
ω λγ γ γ
< + ∞ .
Then there exists a sequence of integers { }:′ ≥n kk 1 ⊂ { }:′ ≥γ k k 1 such that
lim
( )
( ) /
( )
/
k n
ii
m n
k
n
p
k k k
m n
→∞ − ′
=
′ ′∑
′
1
2
1
1 2
1
1
ω λ
< + ∞ , (2)
where
max
/
/1 2
1
1
1≤ ≤
=
′ ∑m
p
ii
mnk
m
λ
=
( ( )) /
( )
/
m nk
p
ii
m nk
′
=
′∑
1
1
1 λ
.
The following three cases are possible:
a) there exists a sequence of integers { }:′ ≥s kk 1 ⊂ { }:′ ≥n kk 1 such that
m sk( )′ < 22 1′ −sk ,
b) there exists a sequence of integers { }:′ ≥q kk 1 ⊂ { }:′ ≥n kk 1 such that
22 1′ −qk ≤ m qk( )′ < 2 1′ − ′ −q qk k ,
c) 2 1′ − ′ −n nk k ≤ m nk( )′ < 2 ′nk for all k ≥ k0 .
First, we consider the case a). We choose a sequence of integers { }:s kk ≥ 1 ⊂
⊂ { }:′ ≥s kk 1 such that
ISSN 1027-3190. Ukr. mat. Ωurn., 2005, t. 57, # 11
ON THE EMBEDDING OF WATERMAN CLASS IN THE CLASS Hp
ω 1559
i
m s
i
k
=
∑
1
1
( )
λ
≥ 22 1s pk − / .
Then from (2) we get
lim /
k s
s p
k
k
→∞
ω 1
2
2 = 0.
Let { }:r kk ≥ 1 ⊂ { }:s kk ≥ 1 such that
ω 1
2
2r
r p
k
k
/ ≤ 4−k . (3)
Consider the function f defined by
f ( x ) =
2 2 1 2 3 2
2 2 2 3 2 2 2 1 2
0
1
1
c x x
c x x j
j
r r r
j
r r r
j j j
j j j
( ), [ , ),
( ), [ , ) , , ,
,
− ∈ ⋅
− − ∈ ⋅ ⋅ = …
− − −
− − −
if
if for
otherwise,
f ( x + l ) = f ( x ) , l = ± 1, ± 2, … ,
where
cj = ω 1
2
2r
r p
j
j
/
.
From the construction of the function f and by (3), we get f ∈ ΛBV. Next, we shall
prove that f ∉ Hp
ω . Since f x f x
rj( ) ( )+ −− −
2
2
= cj /2, for x ∈ [ ],2 5 2
2− − −⋅r rj j
we get
0
1
2
2∫ + −− −
f x f x dx
r p
j( ) ( ) ≥
≥
2
5 2
2
2
2
−
− −⋅
− −∫ + −
rj
rj
jf x f x dx
r p
( ) ( ) =
1
2
2
2
p j
p r
c j− −
.
Consequently, by (3) we get
ω
ω
( )
( )
,f
r
p
r
j
j
2
2
−
− ≥
1
2
1
4 2 2
1/ /( )p
j
r r p
c
j jω − ≥
2
4
1
1
j
p
−
/ → ∞ as j → ∞ .
Now we consider the case b). Let { }:q kk ≥ 1 ⊂ { }:′ ≥q kk 1 such that
1
2
1
1 2
1
1
ω λ( )
( )
/
( )
/
−
=∑
q
ii
m q
k
q
p
k k k
m q
≥ 4
k. (4)
Consider the function gk defined by
gk ( x ) =
h x j x j j
h x j x j j
j m q m q
k
q q q
k
q q q
k k
k k k
k k k
( ), [( ) , ),
( ), [ , ( ) )
( ), ( ) ,
,
/ /
/ /
2 2 1 2 1 2 2 2
2 2 1 2 2 2 1 2
1
0
1
− + ∈ −
− − − ∈ +
= … −
−for
otherwise,
ISSN 1027-3190. Ukr. mat. Ωurn., 2005, t. 57, # 11
1560 U. GOGINAVA
where
hk =
1
2 1
1
k
jj
m qk /
( ) λ=∑
.
Let
g ( x ) = g xk
k
( )
=
∞
∑
2
, g ( x + l ) = g ( x ) , l = ± 1, ± 2, … .
First, we prove that g ∈ ΛBV. For every choice of nonoverlapping intervals { In :
n ≥ 1 }, we get
j
j
j
g I
=
∞
∑
1
( )
λ
≤ 2
1
1 1i
i
j
m q
j
h
i
=
∞
=
∑ ∑
( )
λ
= 2
1
21i
i
=
∞
∑ = 2.
Hence, we have g ∈ ΛBV.
Next, we shall prove that g ∉ Hp
ω . Since g xk
qk( )+ − −2 1 = g x hk k( ) /+ 2 , for x ∈
∈ [ )( ) , ( )2 1 2 4 1 2 1j jq qk k− −− − − and m ( qk ) ≥ 2 1m qk( )− we obtain
0
1
1
1
2∫ +
−+g x g x dxq
p
k
( ) ≥
≥
j m q
m q
j
j
k q k
p
k
k
q
q
k
k
k
g x g x dx
=
−
−
−
+
− −
− −
∑ ∫ +
−
( )
( )
( )
( )
( )
1
1
1
2 1 2
4 1 2
1
1
2
=
=
h
m q m qk
p
p q k kk2
1
2 1 1+ −−( ( ) ( )) ≥
h m qk
p
p
k
qk2 22+
( )
,
consequently, by (4)
ω
ω
( )
( )
,2
2
−
−
q
p
q
k
k
f
≥
1
2 2 21 2
1
+ −
/
/
( )
( )
p
k
q
k
q
ph m q
k kω
=
=
1
2 2
1
2
1
1 21 2
1
1
+ −
=∑
/ ( )
/
( ) /
( )
p k q
ii
m q
k
q
p
k k k
m q
ω λ
≥
2
21 2
k
p+ / → ∞ as k → ∞ .
Finally, we consider the case c). Let { }:n kk ≥ 1 ⊂ { }:′ ≥n k kk 0 such that
nk ≥ 2 11nk− + , (5)
1
2
1
1 2
1
1
ω λ( ) /
( )
/( )
−
=∑
n
ii
m n
k
n
p
k k k
m n
≥ 22 1n p kk − +/ . (6)
Consider the function ϕk defined by
ϕk ( x ) =
d x j x j j
d x j x j j
j
k
n n n
k
n n n
n n n n
k k k
k k k
k k k k
( ), [( ) , ),
( ), [ , ( ) )
, , ,
,
/ /
/ /
2 2 1 2 1 2 2 2
2 2 1 2 2 2 1 2
2 2 1
0
1 2 1 1
− + ∈ −
− − − ∈ +
= … −
− − −− − −for
otherwise,
ISSN 1027-3190. Ukr. mat. Ωurn., 2005, t. 57, # 11
ON THE EMBEDDING OF WATERMAN CLASS IN THE CLASS Hp
ω 1561
where
dk =
1
2 1
1
k
jj
m nk /
( ) λ=∑
.
Let
ϕ ( x ) = ϕk
k
x( )
=
∞
∑
3
, ϕ ( x + l ) = ϕ ( x ) , l = ± 1, ± 2, … .
For every choice of nonoverlapping intervals { In : n ≥ 1 }, we get
j
j
j
I
=
∞
∑
1
ϕ
λ
( )
≤ 2
1
2 1
2 1 1
di
i jj
n ni i
=
∞
=
∑ ∑
− −−
λ
≤ 2
1
2 1
di
i jj
m ni
=
∞
=
∑ ∑ λ
( )
≤ 2
1
22
i
i=
∞
∑ = 1.
Hence, we have ϕ ∈ ΛBV .
Next, we shall prove that ϕ ∉ Hp
ω . From (5) we write
0
1
1
1
2∫ +
−+ϕ ϕx x dxn
p
k
( ) ≥
≥
j j
j
k n k
p
nk nk
nk nk
n
n
k
k
k
x x dx
=
−
−
−
+
− − −
− −
−
− −
∑ ∫ +
−
2
2 1
2 1 2
4 1 2
1
1 2
1
1
1
2
( )
( )
( )ϕ ϕ ≥
≥
2 1
2 2
1
2
n n
p
k
p
n
k k
k
d−
+
− −
≥ c
d m nk
p
n
k
nk k2 21−
( )
.
Consequently, by (6)
ω
ω
( , )
( )
2
2
−
−
n
p
n
k
k
f
≥ c
d m nk
n p
k
n
p
nk k k2 2
1
21
1
−
−/
/( )
( )ω
=
=
c m n
n p k j
j
m n
k
n
p
nk
k
k k2
1
2
1
21
1
1 1
− +
=
−
−∑
/
( ) /
/
( )
( )
λ
ω
≥ c n pk2 1− → ∞/ as k → ∞ .
Therefore we get ϕ ω∉ Hp and the proof of Theorem 1 is complete.
1. Jordan C. Sur la series de Fourier // C. r. Acad. sci. – 1881. – 92. – P. 228 – 230.
2. Wiener N. The quadratic variation of a function and its Fourier coefficients // Mass. J. Math. –
1924. – 3. – P. 72 – 94.
3. Young L. C. Sur un generalization de la notion de variation de Winer et sur la convergence de
series de Fourier // C. r. Acad. sci. – 1937. – 204. – P. 470 – 472.
4. Waterman D. On convergence of Fourier series of functions of generalized bounded variation //
Stud. Math. – 1972. – 44. – P. 107 – 117.
5. Perlman S., Waterman D. Some remarks of functions of Λ-bounded variation // Proc. Amer. Math.
Soc. – 1979. – 74. – P. 113 – 118.
6. Perlman S. Functions of generalized variation // Fund. Math. – 1980. – 105. – P. 199 – 211.
7. Wang S. Some properties of the functions of Λ -bounded variation // Sci. Sinica. Ser. A. – 1982. –
25. – P. 149 – 160.
8. Waterman D. On Λ-bounded variation // Stud. Math. – 1976. – 57. – P. 33 – 45.
9. Waterman D. On the summability of Fourier series of functions of Λ-bounded variation // Ibid. –
1976. – 55. – P. 87 – 95.
ISSN 1027-3190. Ukr. mat. Ωurn., 2005, t. 57, # 11
1562 U. GOGINAVA
10. Waterman D. Fourier series of functions of Λ-bounded variation // Proc. Amer. Math. Soc. –
1979. – 74. – P. 119 – 123.
11. Chanturia Z. A. The modulus of variation and its application in the theory of Fourier // Dokl.
Akad. Nauk SSSR. – 1974. – 214. – S. 63 – 66 (in Russian).
12. Avdispahic M. On the classes ΛBV and V n[ ( )]v // Proc. Amer. Math. Soc. – 1985. – 95. –
P. 230 – 235.
13. Kovacik O. On the embedding H Vp
ω ⊂ // Math. Slovaca. – 1993. – 43. – P. 573 – 578.
14. Belov A. S. Relations between some classes of generalized variation // Repts Enlarged Sess. Sem. I.
Vekua Inst. Appl. Math. – 1988. – 3. – P. 11 – 13 (in Russian).
15. Chanturia Z. A. On the uniform convergence of Fourier series // Mat. Sb. – 1976. – 100. –
S. 534 – 554 (in Russian).
16. Akhobadze T. Relations between Hω , V n[ ( )]v and B p nΛ ( ( ) , )↑ ∞ ϕ classes of functions //
Bull. Georg. Acad. Sci. – 2001. – 164, # 3. – P. 433 – 435.
17. Medvedeva M. V. On the inclusion of classes Hω // Mat. Zametki. – 1998. – 64. – S. 713 – 719
(in Russian).
18. Kita H., Yoneda K. A generalization of bounded variation // Acta math. hung. – 1990. – 56. –
P. 229 – 238.
19. Goginava U. Relations between some classes of functions // Sci. Math. J. – 2001. – 53, # 2. –
P. 223 – 232.
20. Goginava U. Relations between ΛBV and BV p n( ( ) )↑ ∞ classes of functions // Acta math.
hung. – 2003. – 101, # 4. – P. 245 – 254.
21. Kuprikov Yu. E. Continuity moduli of functions from Waterman classes // Moscow Univ. Math.
Bull. – 1997. – 52, # 5. – P. 46 – 49.
Received 24.06.2004
ISSN 1027-3190. Ukr. mat. Ωurn., 2005, t. 57, # 11
|