Обернена задача для рівняння теплопровідності з виродженням

Розглянуто обернену задачу визначення залежного від часу коефіцієнта температуропровідності, який дорівнює нулю у початковий момент часу. Встановлено умови існування та єдиності класичного розв'язку вказаної задачі....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2005
Hauptverfasser: Іванчов, М.І., Салдіна, Н.В.
Format: Artikel
Sprache:Ukrainian
Veröffentlicht: Інститут математики НАН України 2005
Schriftenreihe:Український математичний журнал
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/165903
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Обернена задача для рівняння теплопровідності з виродженням / М.І. Іванчов, Н.В. Салдіна // Український математичний журнал. — 2005. — Т. 57, № 11. — С. 1563–1570. — Бібліогр.: 13 назв. — укр.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-165903
record_format dspace
spelling irk-123456789-1659032020-02-18T01:28:44Z Обернена задача для рівняння теплопровідності з виродженням Іванчов, М.І. Салдіна, Н.В. Короткі повідомлення Розглянуто обернену задачу визначення залежного від часу коефіцієнта температуропровідності, який дорівнює нулю у початковий момент часу. Встановлено умови існування та єдиності класичного розв'язку вказаної задачі. We consider the inverse problem of determining the time-dependent thermal diffusivity that is equal to zero at the initial moment of time. We establish conditions for the existence and uniqueness of a classical solution of the problem under consideration. 2005 Article Обернена задача для рівняння теплопровідності з виродженням / М.І. Іванчов, Н.В. Салдіна // Український математичний журнал. — 2005. — Т. 57, № 11. — С. 1563–1570. — Бібліогр.: 13 назв. — укр. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/165903 517.95 uk Український математичний журнал Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language Ukrainian
topic Короткі повідомлення
Короткі повідомлення
spellingShingle Короткі повідомлення
Короткі повідомлення
Іванчов, М.І.
Салдіна, Н.В.
Обернена задача для рівняння теплопровідності з виродженням
Український математичний журнал
description Розглянуто обернену задачу визначення залежного від часу коефіцієнта температуропровідності, який дорівнює нулю у початковий момент часу. Встановлено умови існування та єдиності класичного розв'язку вказаної задачі.
format Article
author Іванчов, М.І.
Салдіна, Н.В.
author_facet Іванчов, М.І.
Салдіна, Н.В.
author_sort Іванчов, М.І.
title Обернена задача для рівняння теплопровідності з виродженням
title_short Обернена задача для рівняння теплопровідності з виродженням
title_full Обернена задача для рівняння теплопровідності з виродженням
title_fullStr Обернена задача для рівняння теплопровідності з виродженням
title_full_unstemmed Обернена задача для рівняння теплопровідності з виродженням
title_sort обернена задача для рівняння теплопровідності з виродженням
publisher Інститут математики НАН України
publishDate 2005
topic_facet Короткі повідомлення
url http://dspace.nbuv.gov.ua/handle/123456789/165903
citation_txt Обернена задача для рівняння теплопровідності з виродженням / М.І. Іванчов, Н.В. Салдіна // Український математичний журнал. — 2005. — Т. 57, № 11. — С. 1563–1570. — Бібліогр.: 13 назв. — укр.
series Український математичний журнал
work_keys_str_mv AT ívančovmí obernenazadačadlârívnânnâteploprovídnostízvirodžennâm
AT saldínanv obernenazadačadlârívnânnâteploprovídnostízvirodžennâm
first_indexed 2025-07-14T20:21:00Z
last_indexed 2025-07-14T20:21:00Z
_version_ 1837655100614508544
fulltext UDK 517.95 M.�I.�Ivançov, N.�V.�Saldina (L\viv. nac. un-t) OBERNENA ZADAÇA DLQ RIVNQNNQ TEPLOPROVIDNOSTI Z VYRODÛENNQM We consider an inverse problem of the determination of time-dependent heat conduction coefficient which vanishes at the initial time. We establish conditions for the existence and uniqueness of the classical solution of the problem considered. Rozhlqnuto obernenu zadaçu vyznaçennq zaleΩnoho vid çasu koefici[nta temperaturoprovid- nosti, qkyj dorivng[ nulg u poçatkovyj moment çasu. Vstanovleno umovy isnuvannq ta [dynosti klasyçnoho rozv’qzku vkazano] zadaçi. Do paraboliçnyx rivnqn\ z vyrodΩennqm zvodyt\sq rqd praktyçno vaΩlyvyx zadaç, sered qkyx zadaça pro oprisnennq mors\kyx vod, rux ridyn i haziv u porys- tomu seredovywi, qvywa v plazmi [1, 2] ta in. Prqmi zadaçi dlq paraboliçnyx rivnqn\ z vyrodΩennqm doslidΩuvalys\ bahat\ma avtoramy [3 – 11]. Prote ober- nenym zadaçam dlq c\oho praktyçno vaΩlyvoho klasu zadaç prydilqlos\ malo uvahy. Sered ostannix moΩna bulo b vidznaçyty zadaçu vyznaçennq vil\noho çlena v eliptyçnomu rivnqnni z vyrodΩennqm [12]. U danij roboti doslidΩu[t\sq obernena zadaça dlq rivnqnnq teploprovid- nosti, v qkomu nevidomyj zaleΩnyj vid çasu koefici[nt temperaturoprovidnosti prqmu[ do nulq pry t → 0 za stepenevym zakonom. Rozhlqnuto vypadok slab- koho vyrodΩennq, dlq qkoho znajdeno umovy isnuvannq ta [dynosti hladkoho (klasyçnoho) rozv’qzku. 1. Formulgvannq zadaçi ta osnovni rezul\taty. V oblasti QT ≡ { ( x , t ) : 0 < x < h , 0 < t < T } rozhlqda[mo rivnqnnq teploprovidnosti ut = a ( t ) uxx + f ( x , t ) (1) z nevidomym koefici[ntom a ( t ) > 0, t ∈ ( 0 , T ] , z poçatkovog umovog u ( x , 0 ) = ϕ ( x ) , x ∈ [ 0 , h ] , (2) krajovymy umovamy u ( 0 , t ) = µ1 ( t ) , u ( h , t ) = µ2 ( t ) , t ∈ [ 0 , T ] , (3) ta umovog perevyznaçennq a ( t ) ux ( 0 , t ) = µ3 ( t ) , t ∈ [ 0 , T ] . (4) Pid rozv’qzkom zadaçi (1) – (4) rozumi[mo paru funkcij ( a ( t ) , u ( x , t ) ) z kla- su C [ 0 , T ] × C2, 1 ( QT ) ∩ C QT 1 0, ( ) , a ( t ) > 0, t ∈ ( 0 , T ] , takyx, wo isnu[ hranycq lim ( ) t a t t→+0 β > 0, de 0 < β < 1 — zadane çyslo, i zadovol\nqgt\sq rivnqnnq (1) ta umovy (2) – (4). Otrymani umovy isnuvannq ta [dynosti rozv’qzku zadaçi (1) – (4) sformul\o- vano u nastupnyx teoremax. Teorema 1. Nexaj vykonugt\sq umovy: 1) ϕ ∈ C1 [ 0 , h ] , µi ∈ C1 [ 0 , T ] , i = 1, 2, µ3 ∈ C [ 0 , T ] , f ∈ C QT 1 0, ( ) ; 2) ϕ′ ( x ) > 0, x ∈ [ 0 , h ] , ′µ1( )t ≤ 0, ′µ2( )t ≥ 0, t ∈ [ 0 , T ] , µ3 ( t ) > 0, t ∈ ( 0 , T ] , isnu[ hranycq lim ( ) t t t→+0 3µ β > 0, f ( x , t ) ≥ 0, ( x , t ) ∈ QT ; 3) ϕ ( 0 ) = µ1 ( 0 ) , ϕ ( h ) = µ2 ( 0 ) . Todi isnu[ rozv’qzok zadaçi (1) – (4). © M.7I.7IVANÇOV, N.7V.7SALDINA, 2005 ISSN 1027-3190. Ukr. mat. Ωurn., 2005, t. 57, # 11 1563 1564 M.7I.7IVANÇOV, N.7V.7SALDINA Teorema 2. Nexaj vykonugt\sq umovy: 1) ϕ ∈ C2 [ 0 , h ] , µi ∈ C1 [ 0 , T ] , i = 1, 2, f ∈ C QT 1 0, ( ) ; 2) µ β 3( )t t ≠ 0, t ∈ ( 0 , T ] . Todi rozv’qzok zadaçi (1) – (4) [ [dynym. 2. Dovedennq teoremy isnuvannq rozv’qzku. Poznaçymo çerez G x tk ( , , , )ξ τ , k = 1, 2, funkci] Hrina perßo] ta druho] krajovo] zadaçi dlq rivnqnnq (1), qki magt\ vyhlqd Gk ( x , t , ξ , τ ) = 1 2 2 4 2 π θ θ τ ξ θ θ τ( ) ( )( ) ( ) exp ( ) ( ) ( )t x nh tn− − − + −      =−∞ ∞ ∑ + + ( ) exp ( ) ( ) ( )( ) − − + + −       1 2 4 2 k x nh t ξ θ θ τ , (5) de θ ( t ) = a d t ( )τ τ 0∫ . Tymçasovo vvaΩagçy funkcig a ( t ) vidomog, rozv’qzok za- daçi (1) – (3) podamo u vyhlqdi u ( x , t ) = G x t d G x t a d h t 1 0 1 1 0 0 0( , , , ) ( ) ( , , , ) ( ) ( )ξ ϕ ξ ξ τ τ µ τ τξ∫ ∫+ – – G x t h a d G x t f d d t ht 1 2 0 1 00 ξ τ τ µ τ τ ξ τ ξ τ ξ τ( , , , ) ( ) ( ) ( , , , ) ( , )∫ ∫∫+ . (6) Dlq pidstanovky v umovu perevyznaçennq prodyferencig[mo cej vyraz. Vykorystovugçy vlastyvosti funkci] Hrina G x t G x tx1 2( , , , ) ( , , , )ξ τ ξ τξ= − , G x t G x t a2 2 ξξ τξ τ ξ τ τ ( , , , ) ( , , , ) ( ) = − , (7) intehrugçy çastynamy i beruçy do uvahy umovy uzhodΩenosti, znaxodymo ux ( x , t ) = G x t d G x t d h t 2 0 2 1 0 0 0( , , , ) ( ) ( , , , ) ( )ξ ϕ ξ ξ τ µ τ τ′ − ′∫ ∫ + + G x t h d G x t f d d t x ht 2 2 0 1 00 ( , , , ) ( ) ( , , , ) ( , )τ µ τ τ ξ τ ξ τ ξ τ′ +∫ ∫∫ . Pidstavyvßy cej vyraz v umovu perevyznaçennq (4), otryma[mo rivnqnnq wodo a ( t ) : a ( t ) = µ ξ ϕ ξ ξ τ µ τ τ3 2 0 2 1 0 0 0 0 0( ) ( , , , ) ( ) ( , , , ) ( )t G t d G t d h t ′ − ′   ∫ ∫ + + G t h d G t f d d t x ht 2 2 0 1 00 1 0 0( , , , ) ( ) ( , , , ) ( , )τ µ τ τ ξ τ ξ τ ξ τ′ +  ∫ ∫∫ − , t ∈ [ 0 , T ] . (8) OtΩe, obernenu zadaçu (1) – (4) zvedeno do rivnqnnq (8). Dlq dovedennq isnu- vannq rozv’qzku rivnqnnq (8) zastosu[mo do n\oho teoremu Íaudera pro neruxo- mu toçku cilkom neperervnoho operatora. Vstanovymo ocinky rozv’qzkiv rivnqnnq (8). Vraxovugçy umovy teoremy ta rivnist\ ISSN 1027-3190. Ukr. mat. Ωurn., 2005, t. 57, # 11 OBERNENA ZADAÇA DLQ RIVNQNNQ TEPLOPROVIDNOSTI Z VYRODÛENNQM 1565 G x t d h 2 0 0( , , , )ξ ξ∫ = 1, (9) qku lehko pereviryty, vyxodqçy z oznaçennq (5) funkci] Hrina, ma[mo G t d h 2 0 0 0( , , , ) ( )ξ ϕ ξ ξ′∫ ≥ min ( ) ( , , , ) min ( ) [ , ] [ , ]0 2 0 0 0 0 h h h x G t d x′ = ′∫ϕ ξ ξ ϕ . Todi otryma[mo ocinku dlq a ( t ) zverxu: a ( t ) ≤ µ ϕ 3 0 ( ) min ( ) [ , ] t x h ′ ≤ A1 t β, (10) de A1 — dodatna stala. Dlq ocinky funkci] a ( t ) znyzu spoçatku ocinymo koΩnyj dodanok znamen- nyka (8). Vraxovugçy (9), znaxodymo G t d h 2 0 0 0( , , , ) ( )ξ ϕ ξ ξ′∫ ≤ max ( ) [ , ]0 h x′ϕ . Z obmeΩenosti funkci] G t h2 0( , , , )τ ma[mo G t h d t 2 2 0 0( , , , ) ( )τ µ τ τ′∫ ≤ C1 . Nerivnist\ dlq funkci] Hrina [13] G2 ( 0 , t , 0 , τ ) ≤ 1 π θ θ τ( )( ) ( )t − + C2 da[ moΩlyvist\ vstanovyty ocinku G t d t 2 1 0 0 0( , , , ) ( )τ µ τ τ′∫ ≤ C d t t 3 0 τ θ θ τ( ) ( )−∫ + C4 z vidomymy stalymy C3 , C4 > 0. Vykorystavßy vlastyvosti funkci] Hrina, oci- nymo ostannij intehral z (8): G t f d dx ht 1 00 0( , , , ) ( , )ξ τ ξ τ ξ τ∫∫ ≤ max ( , ) ( , , , ) Q ht T f x t G t d d−( )∫∫ 2 00 0ξ ξ τ ξ τ = = max ( , ) ( , , , ) ( , , , ) Q t T f x t G t G t h d2 2 0 0 0 0τ τ τ−( )∫ ≤ C d t t 5 0 τ θ θ τ( ) ( )−∫ . OtΩe, funkciq a ( t ) obmeΩena znyzu vyrazom a ( t ) ≥ µ τ θ θ τ 3 6 7 0 ( ) ( ) ( ) t C C d t t + −∫ . (11) Vvedemo poznaçennq a0 ( t ) = a t t ( ) β , min ( ) [ , ]0 0T a t = amin , µ0 ( t ) = µ β 3( )t t . (12) Zhidno z cymy poznaçennqmy z (11) otryma[mo a0 ( t ) t β ≥ µ τ σ σ σ β β τ 0 6 7 00 ( ) ( ) t t C C d a d t t + ∫ ∫ ≥ µ β τ τ β β β 0 6 7 1 1 0 1 ( ) min t t C C a d t t + + −+ +∫ . ISSN 1027-3190. Ukr. mat. Ωurn., 2005, t. 57, # 11 1566 M.7I.7IVANÇOV, N.7V.7SALDINA Vykonavßy v intehrali zaminu zminnyx z = τ t , oderΩymo d t t τ τβ β+ +−∫ 1 1 0 = t dz z 1 2 1 0 1 1 − +−∫ β β ≤ C8 , t ∈ [ 0 , T ] . Povertagçys\ do ocinky a ( t ) znyzu, pryxodymo do nerivnosti a0 ( t ) ≥ C C C a 9 6 10+ min . Nerivnist\ spravdΩu[t\sq dlq vsix t ∈ [ 0 , T ] , vidpovidno dlq amin otrymu[mo nerivnist\ C6 amin + C10 amin – C9 ≥ 0, z qko] znaxodymo amin ≥ 2 4 9 10 2 6 9 10 2 C C C C C+ +     ≡ A0 > 0. OtΩe, dlq funkci] a ( t ) vykonu[t\sq nerivnist\ a ( t ) ≥ A0 t β, t ∈ [ 0 , T ] , (13) de A0 — vidoma stala. Dovedemo isnuvannq hranyci lim ( ) t a t t→+0 β > 0. Dlq c\oho skorysta[mosq formu- lamy (12), qki pidstavymo v umovu perevyznaçennq a0 ( t ) = µ0 0 ( ) ( , ) t u tx . Isnuvannq potribno] hranyci zaleΩyt\ vid isnuvannq lim ( , ) t xu t →+0 0 . Z umov teore- my, vlastyvostej intehrala Puassona ta vstanovlenyx vywe ocinok vyplyva[ isnuvannq hranyci lim ( , , , ) ( ) t h G t d →+ ′∫0 2 0 0 0ξ ϕ ξ ξ = ϕ′ ( 0 ) . OtΩe, lim ( ) t a t t→+0 β = lim ( ) t a t →+0 0 = lim ( ) ( , )t x t u t→+0 0 0 µ = µ ϕ 0 0 ( ) ( ) t ′ > 0. Vyznaçymo mnoΩynu N = a t C T A a t t A( ) [ , ] : ( )∈ ≤ ≤{ }0 0 1β . Rozhlqnemo (8) qk operatorne rivnqnnq a ( t ) = P a ( t ) wodo a ( t ) z operatorom P, qkyj vyznaça- [t\sq rivnistg P a ( t ) = µ3 0 ( ) ( , ) t u tx i, zhidno z ocinkamy (10), (13), vidobraΩa[ mno- Ωynu N v sebe. PokaΩemo, wo operator P [ cilkom neperervnym na N . Zhidno z teoremog Arcela, vstanovymo odnostajnu neperervnist\ mnoΩyny N . Zadamo dovil\ne ε > 0 i vyznaçymo isnuvannq takoho δ > 0, wo | P a ( t2 ) – P a ( t1 ) | < ε pry | t2 – t1 | < δ . (14) ZvaΩagçy na te, wo ISSN 1027-3190. Ukr. mat. Ωurn., 2005, t. 57, # 11 OBERNENA ZADAÇA DLQ RIVNQNNQ TEPLOPROVIDNOSTI Z VYRODÛENNQM 1567 | P a ( t2 ) – P a ( t1 ) | = µ µ3 2 2 3 1 10 0 ( ) ( , ) ( ) ( , ) t u t t u tx x − ≤ ≤ µ µ µ3 2 3 1 2 3 1 2 1 2 10 0 0 0 0 ( ) ( ) ( , ) ( ) ( , ) ( , ) ( , ) ( , ) t t u t t u t u t u t u tx x x x x − + −( ) , i beruçy do uvahy ocinku u t xx h ( , ) min ( ) [ , ] 0 0 ≥ ′ϕ ≡ M1 > 0, nerivnist\ (14) dovodymo tak samo, qk i v nevyrodΩenomu vypadku [13]. OtΩe, umovy teoremy Íaudera dlq rivnqnnq (8) vykonugt\sq, i tomu isnu[ rozv’qzok a = a ( t ) rivnqnnq (8) z klasu C [ 0 , T ] , qkyj zadovol\nq[ ocinky (10), (13) i dlq qkoho isnu[ dodatna hranycq lim ( ) t a t t→+0 β . Pidstavlqgçy joho v rivnqn- nq (1), za formulog (6) znaxodymo funkcig u = u ( x , t ) , qka, qk ce vyplyva[ z dovedennq teoremy, ma[ potribnu hladkist\. Teoremu 1 dovedeno. ZauvaΩennq 1. Teorema 1 poßyrg[t\sq i na vypadok β = 1, u çomu lehko perekonatys\, povtoryvßy ]] dovedennq. Krim c\oho, teorema 1 zalyßa[t\sq spravedlyvog, qkwo zamist\ analohiçnyx umov teoremy prypustyty, wo ϕ′ ( x ) ≥ ≥ 0, x ∈ [ 0 , h ] , ′µ1( )t < 0, t ∈ [ 0 , T ] . Ocinka znamennyka rivnqnnq (8) matyme vyhlqd ux ( 0 , t ) ≥ − ′ ≥ − ′( ) −∫ ∫G t d t d t t T t 2 1 0 0 1 0 0 0 1( , , , ) ( ) min ( ) ( ) ( )[ , ] τ µ τ τ π µ τ θ θ τ ≥ ≥ C d t C t 11 2 2 0 11 2 τ τ π − =∫ > 0. Inßi mirkuvannq z dovedennq teoremy 1 zalyßagt\sq bez zmin. 3. Dovedennq teoremy [dynosti rozv’qzku. Prypustymo, wo isnugt\ dva rozv’qzky ( ai ( t ) , ui ( x , t )) , i = 1, 2, zadaçi (1) – (4). Dlq riznyci rozv’qzkiv a ( t ) ≡ ≡ a1 ( t ) – a2 ( t ) , u ( x , t ) ≡ u1 ( x , t ) – u2 ( x , t ) otryma[mo zadaçu ut = a1 ( t ) uxx + a ( t ) u2xx , ( x , t ) ∈ QT , (15) u ( x , 0 ) = 0, x ∈ [ 0 , h ] , (16) u ( 0 , t ) = u ( h , t ) = 0, t ∈ [ 0 , T ] , (17) a1 ( t ) ux ( 0 , t ) = – a ( t ) u2x ( 0 , t ) , t ∈ [ 0 , T ] . (18) Za dopomohog funkci] Hrina G x t1 1( )( , , , )ξ τ rozv’qzok zadaçi (15) – (17) poda- mo u vyhlqdi u ( x , t ) = G x t a u d d ht 1 1 2 00 ( )( , , , ) ( ) ( , )ξ τ τ ξ τ ξ τξξ∫∫ . (19) Pidstavlqgçy (19) v umovu (18), otrymu[mo intehral\ne rivnqnnq wodo a ( t ) : a ( t ) u2x ( 0 , t ) = − ∫∫a t G t a u d dx ht 1 1 1 2 00 0( ) ( , , , ) ( ) ( , )( ) ξ τ τ ξ τ ξ τξξ , t ∈ [ 0 , T ] . (20) Podamo a ( t ) u vyhlqdi (12). Todi rivnqnnq (20) perepyßet\sq tak: a0 ( t ) = − ∫∫a t t u t G t a u d d x x ht 1 2 1 1 0 2 000 0 ( ) ( , ) ( , , , ) ( ) ( , )( ) β β ξξξ τ τ τ ξ τ ξ τ , (21) abo ISSN 1027-3190. Ukr. mat. Ωurn., 2005, t. 57, # 11 1568 M.7I.7IVANÇOV, N.7V.7SALDINA a0 ( t ) = K t a d t ( , ) ( )τ τ τ0 0 ∫ , t ∈ [ 0 , T ] , (22) de K ( t , τ ) = − ∫a t t u t G t u d x x h 1 2 1 1 2 00 0 ( ) ( , ) ( , , , ) ( , )( )τ ξ τ ξ τ ξ β β ξξ . Vstanovymo ocinku dlq qdra K ( t , τ ) . Dlq c\oho zapyßemo rozv’qzok u2 ( x , t ) zadaçi (1) – (3) u vyhlqdi (6), vykorystavßy funkcig Hrina G1 2( ) dlq rivnqnnq ut = a2 ( t ) uxx . Vzqvßy do uvahy vlastyvosti funkci] Hrina (7) ta prointehruvav- ßy çastynamy, znajdemo u2xx ( x , t ) = G x t d G x t f d h t 1 2 0 1 2 1 0 0 0 0( ) ( )( , , , ) ( ) ( , , , ) ( ) ( , )ξ ϕ ξ ξ τ µ τ τ τξ′′ + ′ −( )∫ ∫ + + G x t h f h d G x t f d d t ht 1 2 2 0 1 2 00 ξ ξ ξτ τ µ τ τ ξ τ ξ τ ξ τ( ) ( )( , , , ) ( , ) ( ) ( , , , ) ( , )− ′( ) −∫ ∫∫ . (23) Ocinymo koΩnyj dodanok formuly (23). Vraxovugçy (9), znaxodymo G x t d h 1 2 0 0( )( , , , ) ( )ξ ϕ ξ ξ′′∫ ≤ max ( ) [ , ]0 h x′′ϕ . Vykorystovugçy zobraΩennq funkci] Hrina (5), otrymu[mo G x t f d t 1 2 1 0 0 0ξ τ µ τ τ τ( )( , , , ) ( ) ( , )′ −( )∫ ≤ 1 2 0 0 1π µmax ( ) ( , ) [ , ]T t f t′ − × × 1 2 2 42 2 3 2 0 2 2 2θ θ τ θ θ τ τ ( ) ( ) ( ) exp ( ) ( ) ( )/t x nh x nh t d t n−( ) + − + −( )    ∫ ∑ =−∞ ∞ . Vydilymo dodanok, wo vidpovida[ n = 0, i rozhlqnemo intehral I1 ≡ x t x t d t θ θ τ θ θ τ τ 2 2 3 2 0 2 2 24( ) ( ) exp ( ) ( )/−( ) − −( )    ∫ . Z oznaçennq funkci] θ ( t ) ta vlastyvostej funkci] a2 ( t ) otrymu[mo I1 ≤ C x t x C t d t 1 1 1 3 2 0 2 2 1 1β β β β τ τ τ + + + + −( ) − −( )      ∫ / exp . V ostann\omu intehrali vykona[mo zaminu zminnyx z = x C t2 1 1( )β βτ+ +− . Todi I1 ≤ C z dz t x C z x C t 3 2 1 2 2 2 1 2 1 exp( )− −    + + ∞ + ∫ β β β β = = C t z z dz z x C t z x C t x C t 3 2 1 2 2 1 1 2 1 1 2 1 β β β β β β β β β β + + + + + ∞ − −     +     + ∫ exp( ) ≤ ISSN 1027-3190. Ukr. mat. Ωurn., 2005, t. 57, # 11 OBERNENA ZADAÇA DLQ RIVNQNNQ TEPLOPROVIDNOSTI Z VYRODÛENNQM 1569 ≤ C t z z dz z x C t x C t 3 1 2 2 1 1 2 1 β β β β β β β + + + ∞ − −     + ∫ exp( ) . Zaminog z – x C t2 1β+ = y zvedemo ocinku I1 do vyhlqdu I1 ≤ C t y y x C t y x C t dy3 1 2 1 1 2 1 2 0 β β β β β β β − + + + + ∞ +     − +          ∫ exp . Vykorysta[mo nerivnist\ x ep qx− 2 ≤ Cp q, , x ≥ 0, p ≥ 0, q > 0. Todi I1 ≤ C t y y x C t dy C t y y dy4 1 2 1 2 0 4 1 2 0 1 2 2β β β β β β β − + + ∞ − + ∞ − +           ≤ −   ∫ ∫exp exp ≤ C t 5 β . Analohiçno do poperedn\oho ma[mo G x t h f h d t 1 2 2 0 ξ τ τ µ τ τ( )( , , , ) ( , ) ( )− ′( )∫ ≤ C t 6 β . Rozhlqnemo intehral G x t f d d ht 1 2 00 ξ ξξ τ ξ τ ξ τ( )( , , , ) ( , )∫∫ ≤ 1 4 1 2 2 3 2 00 π θ θ τ max ( , ) ( ) ( ) /Q x ht T f x t t −( )∫∫ × × x nh x nh t x nh n − + − − + −( )       + + + =−∞ ∞ ∑ ξ ξ θ θ τ ξ2 2 4 2 2 2 2 exp ( ) ( ) ( ) × × exp ( ) ( ) ( ) − + + −( )       x nh t d d ξ θ θ τ ξ τ2 4 2 2 2 ≡ I2, 1 + I2, 2 . Zaminog z = x nh t − + − ξ θ θ τ 2 2 2 2( ) ( ) peretvorymo I2, 1 : I2, 1 ≤ C d t z z dz t n x n h t x nh t 7 2 20 2 1 2 2 2 2 2 2 2 2τ θ θ τ θ θ τ θ θ τ ( ) ( ) exp ( ) ( ) ( ) ( ) ( ) − −( )∫∑ ∫ =−∞ ∞ + − − + − ≤ ≤ C d t z z dz C d t C t t t 7 2 20 2 8 2 20 9 1 2τ θ θ τ τ θ θ τ β ( ) ( ) exp ( ) ( )− −( ) ≤ − ≤∫ ∫ ∫ −∞ ∞ − . Analohiçno ocing[mo I2, 2 . Ostatoçno otrymu[mo ocinku | u2xx ( x , t ) | ≤ C t 10 β , ( x , t ) ∈ [ 0 , h ] × ( 0 , T ] . (24) Podamo a1 ( t ) u vyhlqdi a1 ( t ) = a01 ( t ) t β. Z umovy perevyznaçennq (4) ta pry- puwen\ teoremy ma[mo u2x ( 0 , t ) = µ3 2 ( ) ( ) t a t ≠ 0, t ∈ [ 0 , T ] . ISSN 1027-3190. Ukr. mat. Ωurn., 2005, t. 57, # 11 1570 M.7I.7IVANÇOV, N.7V.7SALDINA Vraxovugçy ce, a takoΩ ocinku (24), vstanovlg[mo ocinku qdra intehral\noho rivnqnnq (22) | K ( t , τ ) | ≤ C t 11 1 1β βτ+ +− . Todi K t d t ( , )τ τ 0 ∫ ≤ C t d 12 1 2 1 0 1 1 − +−∫ β β σ σ , (25) tobto qdro K ( t , τ ) [ intehrovnym. Za vlastyvostqmy intehral\nyx rivnqn\ Vol\terra druhoho rodu rivnqnnq (22) ma[ lyße tryvial\nyj rozv’qzok a0 ( t ) ≡ ≡ 0. Zvidsy a ( t ) ≡ 0, t ∈ [ 0 , T ] , i u ( x , t ) ≡ 0, ( x , t ) ∈ QT , qk rozv’qzok odno- ridno] zadaçi (15) – (17). Teoremu 2 dovedeno. ZauvaΩennq. 2. Zhidno z ocinkog (25), dovedennq teoremy 2 ne7poßyrg[t\- sq na vypadok β = 1. 3. Qkwo v teoremi 1 prypustyty, wo ϕ ∈ C2 [ 0 , h ] , to, povtorggçy doveden- nq teoremy 1 ta vykorystovugçy vyhlqd druho] poxidno] uxx ( x , t ) z dovedennq teoremy 2, lehko perekonatys\, wo zadaça (1) – (4) ma[ rozv’qzok ( a ( t ) , u ( x , t ) ) , komponenta a ( t ) ma[ taki Ω vlastyvosti, wo j u teoremi 1, a druha komponenta u ( x , t ) naleΩyt\ do klasu C2,1 ( [ 0 , h ] × ( 0 , T ] ) , pryçomu funkci] u t ( x , t ) , t β uxx ( x , t ) [ neperervnymy v QT . 1. Podhaev(A.(H. O kraev¥x zadaçax dlq nekotor¥x kvazylynejn¥x parabolyçeskyx uravnenyj s neklassyçeskym v¥roΩdenyem // Syb. mat. Ωurn. – 1987. – 28, #72. – S.7129 – 139. 2. Caffarelli L. A., Friedman A. Continuity of the density of a gas flow in a porous medium // Trans. Amer. Math. Soc. – 1979. – 252. – P. 99 – 113. 3. Hlußko(V.(P. V¥roΩdagwyesq lynejn¥e dyfferencyal\n¥e uravnenyq // Dyfferenc. uravnenyq. – 1968. – 4,7#711. – S.71957 – 1966. 4. Kalaßnykov(A.(S. O rastuwyx reßenyqx lynejn¥x uravnenyj vtoroho porqdka s neotryca- tel\noj xarakterystyçeskoj formoj // Mat. zametky. – 1968. – 3, 7#72. – S.7171 – 178. 5. Kalaßnykov(A.(S. Zadaça bez naçal\n¥x uslovyj v klassax rastuwyx reßenyj dlq nekoto- r¥x lynejn¥x v¥roΩdagwyxsq parabolyçeskyx system vtoroho porqdka. I // Vestn. Mosk. un-ta. Ser. mat., mex. – 1971. – #72. – S.742 – 48. 6. Kalaßnykov(A.(S. Zadaça bez naçal\n¥x uslovyj v klassax rastuwyx reßenyj dlq nekoto- r¥x lynejn¥x v¥roΩdagwyxsq parabolyçeskyx system vtoroho porqdka. II // Tam Ωe. – #73. – S.73 – 9. 7. Olejnyk(O.(A., Radkevyç(E.(V. Uravnenyq vtoroho porqdka s neotrycatel\noj xarakterys- tyçeskoj formoj // Ytohy nauky y texnyky. „Mat. analyz. 1969” / VYNYTY. – 1971. – S.77 – 252. 8. DΩuraev(T.(D. O kraev¥x zadaçax dlq lynejn¥x parabolyçeskyx uravnenyj, v¥roΩdag- wyxsq na hranyce oblasty // Mat. zametky. – 1972. – 12, #75. – S.7643 – 652. 9. Hlußko(V.(P. O razreßymosty smeßann¥x zadaç dlq parabolyçeskyx uravnenyj vtoroho porqdka s v¥roΩdenyem // Dokl. AN SSSR. – 1972. – 207, #72. – S.7266 – 269. 10. Hlußak(A.(V., Ímulevyç(S.(D. O nekotor¥x korrektn¥x zadaçax dlq parabolyçeskyx urav- nenyj v¥sokoho porqdka, v¥roΩdagwyxsq po vremennoj peremennoj // Dyfferenc. urav- nenyq. – 1986. – 22, #76. – S.71065 – 1068. 11. Voznqk(O.(I., Ivasyßen(S.(D. Zadaça Koßi dlq paraboliçnyx system z vyrodΩennqm na poçatkovij hiperplowyni // Dopov. NAN Ukra]ny. – 1994. – #76. – S.77 – 11. 12. HadΩyev(M.(M. Obratnaq zadaça dlq v¥roΩdagwehosq πllyptyçeskoho uravnenyq // Prymenenye metodov funkcyon. analyza v uravnenyqx mat. fyzyky. – Novosybyrsk, 1987. – S.766 – 71. 13. Ivanchov M. Inverse problems for equations of parabolic type. – VNTL Publ., 2003. – 238 p. OderΩano 15.07.2004 ISSN 1027-3190. Ukr. mat. Ωurn., 2005, t. 57, # 11