Stabilization of the Cauchy problem for integro-differential equations

In the present paper, we obtain a criterion for the stabilization of the Cauchy problem for an integro-differential equation in the class of functions of polynomial growth γ ≥ 0.

Gespeichert in:
Bibliographische Detailangaben
Datum:2005
Hauptverfasser: Kengne, E., Tayou Simo, J.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2005
Schriftenreihe:Український математичний журнал
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/165904
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Stabilization of the Cauchy problem for integro-differential equations / E. Kengne, J. Tayou Simo // Український математичний журнал. — 2005. — Т. 57, № 11. — С. 1571–1576. — Бібліогр.: 11 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-165904
record_format dspace
spelling irk-123456789-1659042020-02-19T01:25:54Z Stabilization of the Cauchy problem for integro-differential equations Kengne, E. Tayou Simo, J. Короткі повідомлення In the present paper, we obtain a criterion for the stabilization of the Cauchy problem for an integro-differential equation in the class of functions of polynomial growth γ ≥ 0. Одержано критерій стабілізації задачі Коші для інтегро-диференціального рівняння у класі функцій з поліноміальним зростанням γ ≥ 0. 2005 Article Stabilization of the Cauchy problem for integro-differential equations / E. Kengne, J. Tayou Simo // Український математичний журнал. — 2005. — Т. 57, № 11. — С. 1571–1576. — Бібліогр.: 11 назв. — англ. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/165904 517.9 en Український математичний журнал Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Короткі повідомлення
Короткі повідомлення
spellingShingle Короткі повідомлення
Короткі повідомлення
Kengne, E.
Tayou Simo, J.
Stabilization of the Cauchy problem for integro-differential equations
Український математичний журнал
description In the present paper, we obtain a criterion for the stabilization of the Cauchy problem for an integro-differential equation in the class of functions of polynomial growth γ ≥ 0.
format Article
author Kengne, E.
Tayou Simo, J.
author_facet Kengne, E.
Tayou Simo, J.
author_sort Kengne, E.
title Stabilization of the Cauchy problem for integro-differential equations
title_short Stabilization of the Cauchy problem for integro-differential equations
title_full Stabilization of the Cauchy problem for integro-differential equations
title_fullStr Stabilization of the Cauchy problem for integro-differential equations
title_full_unstemmed Stabilization of the Cauchy problem for integro-differential equations
title_sort stabilization of the cauchy problem for integro-differential equations
publisher Інститут математики НАН України
publishDate 2005
topic_facet Короткі повідомлення
url http://dspace.nbuv.gov.ua/handle/123456789/165904
citation_txt Stabilization of the Cauchy problem for integro-differential equations / E. Kengne, J. Tayou Simo // Український математичний журнал. — 2005. — Т. 57, № 11. — С. 1571–1576. — Бібліогр.: 11 назв. — англ.
series Український математичний журнал
work_keys_str_mv AT kengnee stabilizationofthecauchyproblemforintegrodifferentialequations
AT tayousimoj stabilizationofthecauchyproblemforintegrodifferentialequations
first_indexed 2025-07-14T20:21:12Z
last_indexed 2025-07-14T20:21:12Z
_version_ 1837655102431690752
fulltext UDC 517.9 E. Kengne (Univ. Dschang, Cameroon), J. Tayou Simo (Univ. Yaoundé, Cameroon) STABILIZATION OF CAUCHY PROBLEM FOR INTEGRO-DIFFERENTIAL EQUATIONS STABILIZACIQ ZADAÇI KOÍI DLQ INTEHRO-DYFERENCIAL|NYX RIVNQN| In the present paper, we obtain the criterion of stabilization of Cauchy problem for an integro-differential equation in the class of functions of polynomial growth γ ≥ 0. OderΩano kryterij stabilizaci] zadaçi Koßi dlq intehro-dyferencial\noho rivnqnnq u klasi funkcij z polinomial\nym zrostannqm γ ≥ 0. 1. Introduction. In the present paper, we consider the integro-differential equation ∂ ∂ u x t t ( , ) = P x u x t Q x u x d t∂ ∂     + ∂ ∂     ∫( , ) ( , ) 0 τ τ, ( x, t ) ∈ Π∞ = Rn × [0, + ∞), (1.1) under the initial condition u ( x, 0 ) = u0 ( x ) , x ∈ Rn, (1.2) where P ( σ ) and Q ( σ ) are arbitrary polynomials with complex constant coefficients (σ ∈ Rn ); here u : Π∞ → C is the unknown function; u0 : R n → C is a given function; ∂ ∂x = ∂ ∂ ∂ ∂ … ∂ ∂( )x x xn1 2 , , , . We study problem (1.1), (1.2) under the condi- tion Q ( σ ) ≠ 0 (∀ σ ∈ Rn). Here 0 t u x d∫ ( , )τ τ is a control (the system input). Introduce the following Banach space of functions of some polynomial growth γ ≥ 0: Hm, γ = f C f f x x xm n m m n ∈ = ∂ ∂ +( ) < + ∞     ≤ −( ) : max sup ( ) ,R R γ α α α γ1 , where α = (α1, α2, … , αn ) is a multiindex α = α1 + α2 + … + αn and ∂ ∂ α αx = = ∂ ∂ … ∂ ∂       α α α α 1 1 1x x n n n , , . Definition 1.1. We say that problem (1.1), (1.2) is stable in the class of functions of polynomial growth γ ≥ 0 if for every nonnegative integer m there exists a nonnegative integer l, so that for every initial function u0 ( x ) of space Hl, γ , each solution u ( x, t ) of problem (1.1), (1.2) belongs to the space Hm , γ for each t ∈ ∈ [ 0, T ] , and ∂ ⋅ ∂ j j m u t t (, ) , γ → 0, t → + ∞, j = 0, 1. (1.3) If we consider problem (1.1), (1.2) in the space S (where S is the Schwartz space and S′ is the dual space of tempered distribution [1]) and apply the Fourier transform, we obtain © E. KENGNE, J. TAYOU SIMO, 2005 ISSN 1027-3190. Ukr. mat. Ωurn., 2005, t. 57, # 11 1571 1572 E. KENGNE, J. TAYOU SIMO ∂ ∂ v( , )σ t t = P i t Q i d t ( ) ( , ) ( ) ( , )σ σ σ σ τ τv v+ ∫ 0 (in S′), (1.4) v ( σ, 0 ) = v0 ( σ ) (in S′), (1.5) where v ( σ , t ) and v 0 ( σ ) are the Fourier transforms of u ( x, t ) and u 0 ( x ) respectively: v ( ⋅, t ) = Fx {u ( ⋅, t )}, v0 = Fx {u0} (Fx is the operator of Fourier transform with respect to x). If we introduce the vector function v ( σ, t ) = v v , d dt T    , it is easily seen from (1.4) and (1.5) that v ( σ, t ) is a solution of the following Cauchy problem: d t dt v( , )σ = A ( σ ) v, v ( σ, 0 ) = v0 ( σ ) (in S′), (1.6) where A ( σ ) = 0 1 Q i P i( ) ( )σ σ     and v0 ( σ ) = v0 1( )( , ( ))σ σP i T . In Section 2, we prove some auxiliary lemmas. The criterion of stabilization of problem (1.1), (1.2) in the class of functions of polynomial growth is established in Section 3. 2. Preliminaries. Let λ1 ( σ ) and λ2 ( σ ) be the eigenvalues of matrix A ( σ ) and let Λ ( σ ) = max Re ( ), Re ( )λ σ λ σ1 2{ }; here Re z is the real part of the complex z . Because Q ( i σ ) ≠ 0 for every σ ∈ Rn, we conclude that λ1 ( σ ) λ2 ( σ ) ≠ 0 (∀ σ ∈ Rn ). Lemma 2.1. Let the function Λ ( σ ) satisfy the condition Λ ( σ ) < 0 (∀ σ ∈ Rn ). (2.1) Then there exist constants β < 0 and q ∈ Q such that Λ ( σ ) < β σ1 2+( )q (∀ σ ∈ Rn ). (2.2) Proof. Let δ ( r ) be a real function defined as δ ( r ) = sup ( ) :σ σ σ ∈ = { } R n r Λ . It is obvious that δ ( r ) is defined on [0, + ∞) . It follows from (2.1) that δ ( r ) < 0 for all r ≥ 0. By applying the results of [2] (Appendix A) to δ ( r ) , we find that δ ( r ) is piecewise continuous on [0, + ∞) and for some constants M < 0 and q ∈ Q, δ ( r ) = M r oq 1 1+( )( ) (r → + ∞) ; therefore there exists β < 0 such that δ ( r ) ≤ β 1 2+( )r q for all r ≥ 0, which implies the estimate (2.2) and Lemma 2.1 is proved. ISSN 1027-3190. Ukr. mat. Ωurn., 2005, t. 57, # 11 STABILIZATION OF CAUCHY PROBLEM FOR INTEGRO-DIFFERENTIAL EQUATIONS 1573 Lemma 2.2. Let the function Λ ( σ ) satisfy condition (2.1). Then R ( σ, t ) = 1 4 0 1 1 2 2 1 2 1 2 1 2 1 2 1 2 2 1 1 1 1 2 2 1 2 2 1 1 2 2 1 1 λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ − − − − −     + ≠ + + +     + P e e e e P e e e e if P Q t t e if P t t t t t t t t t ( ) ( ) ( ) , , ( ) ( ) , 44 0Q =       (2.3) is a multiplicator in S (here λj = λj ( σ ) , P = P ( i σ ) and Q = Q ( i σ )). Proof. By using the estimate of a matrix exponential in [3] (Chap. 1, Sect. 6) (see also [4]) and estimate (2.2), we obtain R( , )σ t ≤ C ed t q 1 1+( ) +( )σ β σ (∀ σ ∈ Rn, ∀ t ≥ 0), where C > 0, and d = max (deg P, deg Q). Therefore ∂ ∂ α α σ σ R( , )t ≤ C ed t q α α α β σσ1 1 1+( ) +( ) − +( ) (∀ σ ∈ Rn, ∀ t ≥ 0) (2.4) for any miltiindex α and some Cα > 0. Hence, R ( σ, t ) is a multiplicator in S. Corollary 2.1. If conditions (2.1) is satisfied, then the solution of Cauchy problem (1.6) in S ′ reads v ( σ, t ) = R( , )( , ) ( )σ σt T1 1 0v (in S′) (t ≥ 0) . (2.5) In fact, if conditions (2.1) is valid, then function R ( σ, t ) given by (2.3) will be a multiplicator in S, and (2.5) follows from estimate (2.4). 3. Criterion of the stabilization of problem (1.1), (1.2). Theorem 3.1. In order that the Cauchy problem (1.1), (1.2) should be stable in the space of functions of polynomial growth γ ≥ 0, it is necessary and sufficient that condition (2.1) should be valid. Proof. Necessity. Let problem (1.1), (1.2) be stable in the space of functions of polynomial growth γ ≥ 0. Assume on contrary that condition (2.1) is violated. Then for some σ0 ∈ Rn we have Λ ( σ0 ) > 0. Without loss of generality, suppose that Re λ1 ( σ0 ) = Λ ( σ0 ) ≥ 0 and Re λ1 ( σ0 ) ≥ Re λ2 ( σ0 ). Further we find the solution of the Cauchy problem for equation (1.1) with the initial condition u ( x, 0 ) = λ σ λ σ λ σ λ σ λ σ λ σ λ σ σ σ 1 0 2 0 1 0 1 0 2 0 1 0 2 0 0 0 ( ) ( ) ( ) , ( ) ( ), , ( ) ( ); . . − ≠ =     e e ix ix if if here x . σ0 = i n i ix = ∑ 1 0σ , if x = ( x1, … , xn ) , σ0 = ( σ01, … , σ0n ) . Obviously, the solution of this problem reads u ( x, t ) = e e t e t ix t ix t ix λ σ σ λ σ σ λ σ σ λ σ λ σ λ σ λ σ λ σ λ σ λ σ 1 0 0 2 0 0 1 0 0 2 0 1 0 1 0 2 0 1 0 1 0 2 01 ( ) . ( ) . ( ) . ( ) ( ) , ( ) ( ), ( ) , ( ) ( ). + + + − ≠ +( ) =     if if If λ1 ( σ0 ) = λ2 ( σ0 ) then ISSN 1027-3190. Ukr. mat. Ωurn., 2005, t. 57, # 11 1574 E. KENGNE, J. TAYOU SIMO | u ( x, t ) | = 1 1 0 0+ λ σ σ( ) ( )t et∆ and we have lim ( , ) t u x t → + ∞ > 0, which contradicts the hypothesis that problem (1.1), (1.2) is stable in the space of functions of polynomial growth γ ≥ 0. If λ1 ( σ0 ) ≠ λ2 ( σ0 ) then | u ( x, t ) | = e et tΛ( ) ( ( ) ( ))( ) ( ) σ λ σ λ σλ σ λ σ 0 2 0 1 01 2 0 1 0 − − ≥ ≥ e et tΛ( ) (Re ( ) Re ( ))( ) ( ) σ λ σ λ σλ σ λ σ 0 2 0 1 01 2 0 1 0 − − > 0, and we have lim ( , ) t u x t → + ∞ > 0, which contradicts the hypothesis that problem (1.1), (1.2) is stable in the space of functions of polynomial growth γ ≥ 0. Sufficiency. Consider for equation (1.1) the Cauchy problem with the initial condition u ( x, 0 ) = u0 ( x ) , x ∈ Rn. (3.1) Because of the fulfillment of condition (2.1), the solution of Cauchy problem (1.6) associated to the Cauchy problem (1.1), (3.1) is given by (2.5) and the first component of vector v ( σ, t ) is the solution (in S′) of the Cauchy problem for equation (1.4) with the initial condition v ( σ, 0 ) = v0 ( σ ) = F ux{ }0 : v ( σ, t ) = 1 1 1 2 1 2 2 1 0 1 2 1 0 1 2 1 2 1 λ σ λ σ σ λ σ λ σ σ σ λ σ λ σ λ σ σ λ σ λ σ λ σ λ σ λ σ ( ) ( ) ( ) ( ) ( ) ( ) ( ), ( ) ( ), ( )( ) ( ), ( ) ( ). ( ) ( ) ( ) − −( ) + −( )[ ] ≠ + +[ ] ≠       P i e P i t e t t t v v if if    Therefore the function u ( x, t ) = F tσ σ− { }1 v( , ) (σ ∈ Rn ) is the unique solution of Cauchy problem (1.1), (3.1) in S′ (see [3, 5 – 6]). Let m ∈ ∈ N0 = N ∪ {0} and show that for some large l ∈ N the function u ( x, t ) belongs (with respect to x) to the class Hm, γ (for every t ≥ 0) and satisfies condition (1.3) as soon as u0 ∈ Hl, γ . Let e ( x ) be a compactly supported infinitely differentiable function on Rn satisfying the condition j n e x j ∈ ∑ − Z ( ) ≡ 1 and whose support lies in x xn∈ ≤{ }R : 1 (see [7 – 11]). Let u xj 0( ) = e x u x j( ) ( )0 + and v j 0( )σ = F ux j{ }0 . Then the function ISSN 1027-3190. Ukr. mat. Ωurn., 2005, t. 57, # 11 STABILIZATION OF CAUCHY PROBLEM FOR INTEGRO-DIFFERENTIAL EQUATIONS 1575 vj ( σ, t ) = 1 1 1 2 1 2 2 1 0 1 2 1 0 1 2 1 2 1 λ σ λ σ σ λ σ λ σ σ σ λ σ λ σ λ σ σ λ σ λ σ λ σ λ σ λ σ ( ) ( ) ( ) ( ) ( ) ( ) ( ), ( ) ( ), ( )( ) ( ), ( ) ( ), ( ) ( ) ( ) − −( ) + −( )[ ] ≠ + +[ ] ≠     P i e P i t e t t j t j v v if if      is the solution of the Cauchy problem (1.4), (1.5) in which the initial function v0 ( σ ) is replaced by v j 0( )σ . Therefore uj ( x, t ) = F tjσ − ⋅1{ ( , )}v is the solution of problem (1.1), (3.1) with u0 ( x ) replaced by u xj 0( ) ; here j ∈ Z n. Because u xj 0( ) ≡ e x u x j( ) ( )0 + , it is evident that for some M > 0 that does not depend on j ∈ Z n, we have uj l 0 ,γ ≤ M u j l 0 1 ,γ γ+( ) . From estimate (2.4) and estimate σ σ σ σλ α α ν∂ ∂ ( )v j 0( ) ≤ C u j lα ν λ γ γ , , , 0 1 +( ) , σ ∈ R n, α = (α1, … , αn ) an arbitrary multiindex, | ν | + | λ | ≤ l, it follows that ∂ ∂ ( ) α α ν σ σ σvj( , )t ≤ M u e j l d t q 1 0 1 11 1( , , ) ,α ν λ γ α α λ β σ γσ+( ) +( )+( ) − − +( ) , where | ν | + | λ | ≤ l and α is arbitrary. If we choose λ from the condition | λ | = α α+( ) − + +1 1d n , then we obtain x x u x tj α α α ∂ ∂ ( , ) ≤ M t u j l2 0 1( , ) , ( )α ν γ γρ +( ) , where α is arbitrary, | ν | < l d n− +( ) + − −α α1 1, and ρ ( t ) = ( ) , exp( ) . /1 0 0 1+ < ≥    t q t q q for forβ Because 1 +( )j γ ≤ 1 1+ +( ) +( )x j xγ γ , if we choose an α from the condition | α | = n – E ( – γ ) + 1 (here E ( – γ ) stands for the integer part of –γ), we obtain ∂ ∂ α αx u x tj ( , ) ≤ M t u x j x l n ν γ γρ( ) , 0 11 1+ +( ) +( )− − , (3.2) where ν ≤ m, l ≥ m n E d E+ − +( ) + −(– ) ( )γ γ2 ; consequently u ( x, t ) = j ju x j t ∈ ∑ − Z ( , ) (3.3) is solution of the Cauchy problem (1.1), (3.1), belongs to Hm, γ for all t ≥ 0 and satisfies the condition ISSN 1027-3190. Ukr. mat. Ωurn., 2005, t. 57, # 11 1576 E. KENGNE, J. TAYOU SIMO u t m( , )⋅ , γ ≤ M t um l ρ γ ( ) 0 , (∀ t ≥ 0) . (3.4) Because ρ ( t ) → 0 as t → + ∞, we conclude from (3.2) – (3.4) that u t( , )⋅ ∈ Hm, γ (t ≥ 0). By analogy, we prove that ∂ ∂ ⋅u t t( , ) ≤ ′M t um l ρ γ ( ) 0 , (∀ t ≥ 0) . (3.5) It is sufficient to notice that the Cauchy problem (1.6) is equivalent to the Cauchy problem d t dt 2 2 v( , )σ = P i d t dt Q i t( ) ( , ) ( ) ( , )σ σ σ σv v+ , v ( σ, 0 ) = v0 ( σ ) , ′vt ( , )σ 0 = P i( ) ( )σ σv0 . It follows from (3.4) and (3.5) that u ( x, t ) satisfies the condition (1.3). Hence Cauchy problem (1.1), (1.2) is stable in the class of functions of some polynomial growth γ ≥ 0 and Theorem 3.1 is proved. Example 3.1. Consider the heat conduction equation ∂ ∂ u t = ∂ ∂ − ∫ 2 2 0 4u t u x d t ( , )τ τ, x ∈ R, t ≥ 0. For this equation, P ( i σ ) = – σ2 , Q ( i σ ) = – 4, and Λ ( σ ) = − + − ∈ −∞ − + ∞ − ∈ −    σ σ σ σ σ 2 4 2 16 2 2 2 2 for for ( , ] [ , ), ( , ). ∪ Therefore Λ ( σ ) < 0 for every σ ∈ R , and by Theorem 3.1, the Cauchy problem for this equation is stable in the classes of polynomial growth. 1. Bremerman G. Distribution, complex variables, and Fourier transformation. – Moscow, 1968. 2. Hörmander L. The analysis of linear differential operators, Vol. 2. Differential operators with constant coefficients. – Berlin, 1983. 3. Hel\fand Y. M., Íylov H. E. Nekotor¥e vopros¥ teoryy dyfferencyal\n¥x uravnenyj. – M., 1958. 4. Hörmander L. On the division of generalized functions by polynomials // Math. – 1959. – 3, #5. – P. 117 – 130. 5. Schwartz L. Ann. Inst. Fourier. – 1950. – 2. – P. 19 – 49. 6. Petrovskyj Y. H. O zadaçe Koßy dlq system lynejn¥x uravnenyj s çastn¥my proyzvodn¥- my v oblasty ne analytyçeskyx funkcyj // Bgl. Mosk. un-ta. Ser. A. – 1938. – 1, # 7. – S.61 – 72. 7. Hel\fand Y. M., Íylov H. E. Preobrazovanyq Fur\e b¥stro rastuwyx funkcyj y vopros¥ edynstvennosty reßenyj zadaçy Koßy // Uspexy mat. nauk. – 1953. – 8, # 6. – S.63 – 54. 8. Kengne E. Boundary problem with integral in the boundary condition: Ph. D. thesis. – Kharkov, 1993. 9. Kengne E., Pelap F. B. Regularity of two-point boundary-value problem // Afr. Math. Ser. 3. – 2001. – 12. 10. Kengne E. Properly posed and regular nonlocal boundary-value problems for partial differential equations // Ukr. Math. J. – 2002. – 54, # 8. 11. Kenne ∏. Asymptotyçesky korrektn¥e kraev¥e zadaçy // Ukr. mat. Ωurn. – 2004. – 56, # 2. – S. 169 – 18 4. Received 22.01.2004 ISSN 1027-3190. Ukr. mat. Ωurn., 2005, t. 57, # 11