Conditions of Invertibility for Functional Operators with Shift in Weighted Hölder Spaces

We consider functional operators with shift in weighted Hölder spaces. The main result of the work is the proof of the conditions of invertibility for these operators. We also indicate the forms of the inverse operators. As an application, we propose to use these results for the solution of equation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2015
Hauptverfasser: Tarasenko, G., Karelin, O.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2015
Schriftenreihe:Український математичний журнал
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/165915
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Conditions of Invertibility for Functional Operators with Shift in Weighted Hölder Spaces / G. Tarasenko, O. Karelin // Український математичний журнал. — 2015. — Т. 67, № 11. — С. 1557–1568. — Бібліогр.: 6 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-165915
record_format dspace
spelling irk-123456789-1659152020-02-18T01:27:29Z Conditions of Invertibility for Functional Operators with Shift in Weighted Hölder Spaces Tarasenko, G. Karelin, O. Статті We consider functional operators with shift in weighted Hölder spaces. The main result of the work is the proof of the conditions of invertibility for these operators. We also indicate the forms of the inverse operators. As an application, we propose to use these results for the solution of equations with shift encountered in the study of cyclic models for natural systems with renewable resources. Розглядаються функціональні оператори із зсувом у просторах Гельдера з вагою. Основним результатом роботи є встановлення умов оборотності для цих операторів. Вказано види оберненого оператора. Як застосування запропоновано використовувати отримані результати для розв'язання рівнянь із зсувом, які виникають при дослідженні циклічних моделей природних систем з ресурсами, що відновлюються. 2015 Article Conditions of Invertibility for Functional Operators with Shift in Weighted Hölder Spaces / G. Tarasenko, O. Karelin // Український математичний журнал. — 2015. — Т. 67, № 11. — С. 1557–1568. — Бібліогр.: 6 назв. — англ. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/165915 517.9 en Український математичний журнал Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Статті
Статті
spellingShingle Статті
Статті
Tarasenko, G.
Karelin, O.
Conditions of Invertibility for Functional Operators with Shift in Weighted Hölder Spaces
Український математичний журнал
description We consider functional operators with shift in weighted Hölder spaces. The main result of the work is the proof of the conditions of invertibility for these operators. We also indicate the forms of the inverse operators. As an application, we propose to use these results for the solution of equations with shift encountered in the study of cyclic models for natural systems with renewable resources.
format Article
author Tarasenko, G.
Karelin, O.
author_facet Tarasenko, G.
Karelin, O.
author_sort Tarasenko, G.
title Conditions of Invertibility for Functional Operators with Shift in Weighted Hölder Spaces
title_short Conditions of Invertibility for Functional Operators with Shift in Weighted Hölder Spaces
title_full Conditions of Invertibility for Functional Operators with Shift in Weighted Hölder Spaces
title_fullStr Conditions of Invertibility for Functional Operators with Shift in Weighted Hölder Spaces
title_full_unstemmed Conditions of Invertibility for Functional Operators with Shift in Weighted Hölder Spaces
title_sort conditions of invertibility for functional operators with shift in weighted hölder spaces
publisher Інститут математики НАН України
publishDate 2015
topic_facet Статті
url http://dspace.nbuv.gov.ua/handle/123456789/165915
citation_txt Conditions of Invertibility for Functional Operators with Shift in Weighted Hölder Spaces / G. Tarasenko, O. Karelin // Український математичний журнал. — 2015. — Т. 67, № 11. — С. 1557–1568. — Бібліогр.: 6 назв. — англ.
series Український математичний журнал
work_keys_str_mv AT tarasenkog conditionsofinvertibilityforfunctionaloperatorswithshiftinweightedholderspaces
AT karelino conditionsofinvertibilityforfunctionaloperatorswithshiftinweightedholderspaces
first_indexed 2025-07-14T20:22:19Z
last_indexed 2025-07-14T20:22:19Z
_version_ 1837655176908898304
fulltext UDC 517.9 G. Tarasenko, O. Karelin (Univ. Autonoma del Estado de Hidalgo, México) CONDITIONS OF INVERTIBILITY FOR FUNCTIONAL OPERATORS WITH SHIFT IN WEIGHTED HÖLDER SPACES УМОВИ ОБОРОТНОСТI ДЛЯ ФУНКЦIОНАЛЬНИХ ОПЕРАТОРIВ IЗ ЗСУВОМ У ПРОСТОРАХ ГЕЛЬДЕРА З ВАГОЮ We consider functional operators with shift in weighted Hölder spaces. The main result of this work is the proof of the conditions of invertibility for these operators. We also indicate the forms of the inverse operator. As an application, we propose to use these results for solution of equations with shift which arise in the study of cyclic models for natural systems with renewable resources. Розглядаються функцiональнi оператори iз зсувом у просторах Гельдера з вагою. Основним результатом роботи є встановлення умов оборотностi для цих операторiв. Вказано види оберненого оператора. Як застосування запро- поновано використовувати отриманi результати для розв’язання рiвнянь iз зсувом, якi виникають при дослiдженнi циклiчних моделей природних систем з ресурсами, що вiдновлюються. 1. Introduction. The interest towards the study of functional operators with shift was stipulated by the development of the solvability theory and Fredholm theory for some classes of linear operators, in particular, singular integral operators with Carleman and non-Carleman shift [1 – 3]. Conditions of invertibility for functional operators with shift in weighted Lebesgue spaces were obtained in [1]. Our study of functional operators with shift in the weighted Hölder spaces has an additional motivation: on modeling systems with renewable resources, equations with shift arise in [4, 5], and the theory of linear functional operators with shift is the adequate mathematical instrument for the investigation of such systems. In Section 2, the boundedness of functional operators with shift in the Hölder spaces and in the weighted Hölder spaces is proved. In Section 3, some auxiliary lemmas are proved. They will be used in the proof of invertibility conditions. In Section 4, forms of the inverse operator are given. In Section 5, conditions of invertibility for functional operators with shift in the Hölder spaces with power wight are obtained. At the end of the article, an application to modeling systems with renewable resources is given. 2. Boundedness of shift operators in the weighted Hölder spaces. We introduce [6] the weighted Hölder spaces H0 µ(J, ρ). A function ϕ(x) that satisfies the following condition on J = [0, 1], |ϕ(x1)− ϕ(x2)| ≤ C|x1 − x2|µ, x1 ∈ J, x2 ∈ J, µ ∈ (0, 1), is called a Hölder’s function with exponent µ and constant C on J . Let ρ be a power function which has zeros at the endpoints x = 0, x = 1: ρ(x) = (x− 0)µ0(1− x)µ1 , µ < µ0 < 1 + µ, µ < µ1 < 1 + µ. The functions that become Hölder functions and valued zero at the points x = 0, x = 1, after being multiplied by ρ(x), form a Banach space: c© G. TARASENKO, O. KARELIN, 2015 ISSN 1027-3190. Укр. мат. журн., 2015, т. 67, № 11 1557 1558 G. TARASENKO, O. KARELIN H0 µ(J, ρ), J = [0, 1]. The norm in the space H0 µ(J, ρ) is defined by ‖f(x)‖H0 µ(J,ρ) = ‖ρ(x)f(x)‖Hµ(J), where ‖ρ(x)f(x)‖Hµ(J) = ‖ρ(x)f(x)‖C + ‖ρ(x)f(x)‖µ, and ‖ρ(x)f(x)‖C = max x∈J |ρ(x)f(x)|, ‖ρ(x)f(x)‖µ = sup x1,x2∈J,x1 6=x2 |ρ(x)f(x)|µ, |ρ(x)f(x)|µ = |ρ(x1)f(x1)− ρ(x2)f(x2)| |x1 − x2|µ . Let β(x) be a bijective orientation-preserving shift on J : if x1 < x2, then β(x1) < β(x2) for any x1 ∈ J, x2 ∈ J ; and let β(x) have only two fixed points: β(0) = 0, β(1) = 1, β(x) 6= x, when x 6= 0, x 6= 1. In addition, let β(x) be a differentiable function with d dx β(x) 6= 0 and d dx β(x) ∈ Hµ(J). Let us begin with the shift operator (Bβϕ)(x) = ϕ[β(x)]. Theorem 1. Operator Bβ is bounded on the space Hµ(J), ‖Bβ‖B(Hµ(J)) ≤ ‖β ′‖µC . Operator Bβ is bounded on the space H0 µ(J, ρ), ‖Bβ‖B(H0 µ(J,ρ)) ≤ ∥∥∥∥ ρ ρ[β] ∥∥∥∥ Hµ(J) ‖Bβ‖B(Hµ(J)). Proof. Let ϕ ∈ Hµ(J), ‖Bβϕ‖Hµ(J)=‖Bβϕ‖C + ‖Bβϕ‖µ = = ‖ϕ‖C + sup x1 6=x2 |ϕ[β(x2)]− ϕ[β(x1)]| |β(x2)− β(x1)|µ |x2 − x1|µ |β(x2)− β(x1)|µ ≤ ≤ ‖ϕ‖C + sup x1 6=x2 ∣∣∣∣β(x2)− β(x1) x2 − x1 ∣∣∣∣µ ‖ϕ‖µ. From here, it follows that ISSN 1027-3190. Укр. мат. журн., 2015, т. 67, № 11 CONDITIONS OF INVERTIBILITY FOR FUNCTIONAL OPERATORS WITH SHIFT . . . 1559 ‖Bβ‖B(Hµ(J)) ≤ max { 1, sup x1 6=x2 ∣∣∣∣β(x2)− β(x1) x2 − x1 ∣∣∣∣µ } = = sup x1 6=x2 ∣∣∣∣β(x2)− β(x1) x2 − x1 ∣∣∣∣µ = ‖β′‖µC . Let ϕ ∈ H0 µ(J, ρ); from ∥∥∥∥ ρ ρ[β] Bβ(ρϕ) ∥∥∥∥ µ = sup x1 6=x2 ∣∣∣∣∣∣∣∣ ρ(x1) ρ[β(x1)] (Bβ(ρϕ)) (x1)− ρ(x2) ρ[β(x2)] (Bβ(ρϕ)) (x2) (x1 − x2)µ ∣∣∣∣∣∣∣∣ = = sup x1 6=x2 ∣∣∣∣∣∣∣∣ ( ρ(x1) ρ[β(x1)] − ρ(x2) ρ[β(x2)] ) (Bβ(ρϕ))(x1)+((Bβ(ρϕ))(x1)− (Bβ(ρϕ))(x2)) ( ρ(x2) ρ[β(x2)] ) (x1 − x2)µ ∣∣∣∣∣∣∣∣≤ ≤ ∥∥∥∥ ρ ρ[β] ∥∥∥∥ µ ‖Bβ(ρϕ)‖C + ∥∥∥∥ ρ ρ[β] ∥∥∥∥ C ∥∥Bβ(ρϕ) ∥∥ µ and ∥∥∥∥ ρ ρ[β] ∥∥∥∥ C ≤ ∥∥∥∥ ρ ρ[β] ∥∥∥∥ Hµ(J) , it follows that ‖Bβϕ‖H0 µ(J,ρ) = ‖ρBβϕ‖Hµ(J) = ∥∥∥∥ ρ ρ[β] Bβ(ρϕ) ∥∥∥∥ C + ∥∥∥∥ ρ ρ[β] Bβ(ρϕ) ∥∥∥∥ µ ≤ ≤ ∥∥∥∥ ρ ρ[β] ∥∥∥∥ C ‖Bβ(ρϕ)‖C + ∥∥∥∥ ρ ρ[β] ∥∥∥∥ µ ‖Bβ(ρϕ)‖C + ∥∥∥∥ ρ ρ[β] ∥∥∥∥ C ‖Bβ(ρϕ)‖µ ≤ ≤ ∥∥∥∥ ρ ρ[β] ∥∥∥∥ Hµ(J) ∥∥Bβ(ρϕ) ∥∥ C + ∥∥∥∥ ρ ρ[β] ∥∥∥∥ C ‖Bβ(ρϕ)‖µ ≤ ∥∥∥∥ ρ ρ[β] ∥∥∥∥ Hµ(J) ‖Bβ(ρϕ)‖Hµ(J) ≤ ≤ ∥∥∥∥ ρ ρ[β] ∥∥∥∥ Hµ(J) ‖Bβ‖B(Hµ(J))‖ρϕ‖Hµ(J) = ∥∥∥∥ ρ ρ[β] ∥∥∥∥ Hµ(J) ‖Bβ‖B(Hµ(J))‖ϕ‖H0 µ(J,ρ) . Since ρ(x) ρ[β(x)] = ∣∣∣∣ x β(x) ∣∣∣∣µ0 ∣∣∣∣ 1− x 1− β(x) ∣∣∣∣µ1 ∈ Hµ(J), we complete the proof. Thus the operator A = aI − bBβ, with coefficients a ∈ Hµ(J), b ∈ Hµ(J), is bounded on the space H0 µ(J, ρ). 3. Auxiliary lemmas. We keep the conditions on the shift β given in Section 2. Without loss of generality, we assume also that for any fixed x ∈ (0, 1), lim m→+∞ βm(x) = 0, lim m→+∞ β−m(x) = 1; ISSN 1027-3190. Укр. мат. журн., 2015, т. 67, № 11 1560 G. TARASENKO, O. KARELIN which implies that β ′ (0) ≤ 1 and β ′ (1) ≥ 1. We will use the following notation: r = µ0 − µ, s = µ1 − µ, ρr,s(x) = xr(1− x)s, ρµ,µ(x) = ρµ(x) = xµ(1− x)µ, ρr,s;j(x)=ρr,s[βj(x)], ρµ;j(x)=ρµ,µ;j(x), β(x1, x2) = β(x1)− β(x2) x1 − x2 . Lemma 1. We have (∀β(x), x ∈ J )(∀ε > 0)(∃n0 ∈ N)(∀x ∈ J)(∃n1, n2 ∈ N, n1 < n2, n0 = n2 − n1)[ βn(x) ∈ [0, ε] ⋃ [1− ε, 1], n ∈ N \ [n1, n2] ] . An essential point here is that n0 = n2 − n1 is independent of x. Proof. Follows directly from the properties of β(x). Lemma 2. Under the conditions a(x) 6= 0; ∣∣β′(0) ∣∣−µ0+µ ∣∣∣∣ b(0) a(0) ∣∣∣∣ < 1, ∣∣β′(1) ∣∣−µ1+µ ∣∣∣∣ b(1) a(1) ∣∣∣∣ < 1, (1) the following inequalities hold in some one-sided ε1-neighborhoods of the endpoints x = 0, x = 1:∣∣∣∣u(x) ρr,s(x) ρr,s;1(x) ∣∣∣∣ ≤ q1 < 1, x ∈ [0, ε1] ⋃ [1− ε1, 1]. (2) Proof. Follows from (1) and from the properties of β(x), a(x), b(x). Lemma 3. Under the condition (1), there is ε2 > 0 such that the following inequality holds:∣∣∣∣∣∣∣∣β(x1)− β(x2) x1 − x2 ∣∣∣∣µ u(x2) ρ(x2) ρ[β(x2)] ∣∣∣∣ ≤ q2 < 1, (3) for x1, x2 ∈ [0, ε2] or x1, x2 ∈ [1− ε2, 1], or x1 ∈ [0, ε2], x2 ∈ [1− ε2, 1]. Proof. It is easy to see that the following identity:∣∣∣∣∣∣∣∣β(x1)−β(x2) x1 − x2 ∣∣∣∣µu(x2) ρ(x2) ρ[β(x2)] ∣∣∣∣ = = ∣∣∣∣β(x1)− β(x2) x1 − x2 ∣∣∣∣µ∣∣∣∣ x2 β(x2) ∣∣∣∣µ∣∣∣∣ 1− x2 1− β(x2) ∣∣∣∣µ∣∣∣∣u(x2) ρr,s(x2) ρr,s;1(x2) ∣∣∣∣ (4) holds. We estimate then the expression ∣∣∣∣β(x1)− β(x2) x1 − x2 ∣∣∣∣µ ∣∣∣∣ x2 β(x2) ∣∣∣∣µ ∣∣∣∣ 1− x2 1− β(x2) ∣∣∣∣µ . By (2) of Lemma 2 and limx1,x2→0 ∣∣∣∣β(x1)− β(x2) x1 − x2 ∣∣∣∣µ ∣∣∣∣ x2 β(x2) ∣∣∣∣µ = 1, limx2→0 ∣∣∣∣ x2 − 1 β(x2)− 1 ∣∣∣∣µ = 1, we can choose ε3 > 0 such that the inequality ∣∣∣∣β(x1)− β(x2) x1 − x2 ∣∣∣∣µ ∣∣∣∣ x2 β(x2) ∣∣∣∣µ ∣∣∣∣ 1− x2 1− β(x2) ∣∣∣∣µ q1 ≤ q3 < 1 holds for x1, x2 ∈ [0, ε3]. ISSN 1027-3190. Укр. мат. журн., 2015, т. 67, № 11 CONDITIONS OF INVERTIBILITY FOR FUNCTIONAL OPERATORS WITH SHIFT . . . 1561 By (2) of Lemma 2 and limx1,x2→1 ∣∣∣∣β(x1)− β(x2) x1 − x2 ∣∣∣∣µ ∣∣∣∣ 1− x2 1− β(x2) ∣∣∣∣µ = 1, limx2→1 ∣∣∣∣ x2 β(x2) ∣∣∣∣µ = 1, we can choose ε4 > 0 such that the inequality ∣∣∣∣β(x1)− β(x2) x1 − x2 ∣∣∣∣µ ∣∣∣∣ x2 β(x2) ∣∣∣∣µ ∣∣∣∣ 1− x2 1− β(x2) ∣∣∣∣µ q1 ≤ q4 < 1 holds for x1, x2 ∈ [1− ε4, 1]. As limx1→0,x2→1 ∣∣∣∣β(x1)− β(x2) x1 − x2 ∣∣∣∣µ = 1, limx2→1 ∣∣∣∣ x2 β(x2) ∣∣∣∣µ = 1, limx2→1 ∣∣∣∣ 1− x2 1− β(x2) ∣∣∣∣µ = ∣∣β′(1) ∣∣−µ ≤ 1 we can choose ε5 > 0 such that the inequality∣∣∣∣β(x1)− β(x2) x1 − x2 ∣∣∣∣µ ∣∣∣∣ x2 β(x2) ∣∣∣∣µ ∣∣∣∣ 1− x2 1− β(x2) ∣∣∣∣µ q1 ≤ q5 < 1 holds for x1 ∈ [0, ε5], x2 ∈ [1− ε5, 1]. To prove inequality (3), it is sufficient to choose ε2 = min (ε3, ε4, ε5), take q2 = max (q3, q4, q5) and apply the obtained estimates to expression (4). By Lemma 1, for ε = min(ε1, ε2) there exists a positive integer n0 such that for each x ∈ [0, 1] at most n0 values of βn(x) is outside of [0, ε] ⋃ [1− ε, 1]. Let q = max(q1, q2). Lemma 4. If {w(x)}|x=0 = 0, then ‖w(x)‖Hµ(J) ≥ sup0<x<1 |w(x)| xµ . If {w(x)}|x=1 = 0, then ‖w(x)‖Hµ(J) ≥ sup0<x<1 |w(x)| (1− x)µ . If {w(x)}|x=0 = {w(x)}|x=1 = 0, then ‖w(x)‖Hµ(J) ≥ ( 1 2 )µ sup0<x<1 |w(x)| xµ(1− x)µ . For ϕ ∈ H0 µ(J, ρ), the inequality∥∥∥∥ ρϕρµ,µ ∥∥∥∥ C ≤ 2µ ‖ϕ‖H0 µ(J,ρ) (5) holds. Proof. The proof follows from the inequalities ‖w(x)‖C(J)+ sup x1,x2∈J x1 6=x2 |w(x1)− w(x2)| |x1 − x2|µ ≥ ≥ ‖w(x)‖C(J)+ sup 0<x1<1 |w(x1)− 0| |x1 − 0|µ ≥ sup 0<x<1 |w(x)| xµ , ‖w(x)‖C(J)+ sup x1,x2∈J x1 6=x2 |w(x1)− w(x2)| |x1 − x2|µ ≥ ≥ ‖w(x)‖C(J)+ sup 0<x2<1 |0− w(x2)| |1− x2|µ ≥ sup 0<x<1 |w(x)| (1− x)µ , ISSN 1027-3190. Укр. мат. журн., 2015, т. 67, № 11 1562 G. TARASENKO, O. KARELIN ‖w(x)‖Hµ(J) = 1 2 ( ‖w(x)‖Hµ(J) + ‖w(x)‖Hµ(J) ) ≥ ≥ 1 2 ( sup 0<x<1 |w(x)| xµ + sup 0<x<1 |w(x)| (1− x)µ ) ≥ ≥ 1 2 sup 0<x<1 ((1− x)µ + xµ) |w(x)| xµ(1− x)µ ≥ ( 1 2 )µ sup 0<x<1 |w(x)| xµ(1− x)µ . It remains to prove (5): ∥∥∥∥ ρϕρµ,µ ∥∥∥∥ C ≤ 2µ−1 ∥∥∥∥xµ + (1− x)µ xµ(1− x)µ ρ(x)ϕ(x) ∥∥∥∥ C ≤ ≤ 2µ−1 [ ∥∥∥∥ρ(x)ϕ(x) (1− x)µ ∥∥∥∥ C + ∥∥∥∥ρ(x)ϕ(x) (x)µ ∥∥∥∥ C ] ≤ ≤ 2µ−1 [ ∥∥∥∥ρ(1)ϕ(1)− ρ(x2)ϕ(x2) (1− x2)µ ∥∥∥∥ C + ∥∥∥∥ρ(x1)ϕ(x1)− ρ(0)ϕ(0) (x1 − 0)µ ∥∥∥∥ C ] ≤ ≤ 2µ−1 [ ∥∥∥∥ρ(x1)ϕ(x1)− ρ(x2)ϕ(x2) (x1 − x2)µ ∥∥∥∥ C + ∥∥∥∥ρ(x1)ϕ(x1)− ρ(x2)ϕ(x2) (x1 − x2)µ ∥∥∥∥ C ] = = 2µ‖ρϕ‖µ ≤ 2µ‖ρϕ‖Hµ(J) = 2µ‖ϕ‖H0 µ(J,ρ) . In the above, we use that 1 ≤ 2µ−1 ∣∣xµ + (1− x)µ ∣∣, ρ(0)ϕ(0) = ρ(1)ϕ(1) = 0. We will use these lemmas in the proof of invertibility conditions in Section 5. 4. Structure of the inverse operator. The operators A = aI − bBβ, where a ∈ Hµ, b ∈ Hµ, a 6= 0, and U = I − uBβ, where u = b/a, are invertible simultaneously on the weighted Hölder space H0 µ(J, ρ). If there exists a natural number n such that∥∥∥∥∥∥  n−1∏ j=0 uj(x) Bn β ∥∥∥∥∥∥ B(H0 µ(J,ρ)) < 1, where uj(x) = u [ βj(x) ] , then the operator U is invertible on H0 µ(J, ρ) and U−1 = I + uBβ + . . .+  n−2∏ j=0 uj(x) Bn−1 β I −  n−1∏ j=0 uj(x) Bn β −1 . ISSN 1027-3190. Укр. мат. журн., 2015, т. 67, № 11 CONDITIONS OF INVERTIBILITY FOR FUNCTIONAL OPERATORS WITH SHIFT . . . 1563 This statement was proved in [1] for weighted Lebesgue spaces. The proof for the weighted Hölder spaces literally follows the above one as an application of algebraic operations does not depend on the specific properties of the spaces. We note that the inverse operator U−1 can be written in the form U−1 = I + uBβ + . . .+ m−2∏ j=0 uj(x) Bm−1 β I − m−1∏ j=0 uj(x) Bm β −1 , with any another m, m 6= n, subject to the condition ∥∥∥∏m−1 j=0 uj(x)Bm β ∥∥∥ B(H0 µ(J,ρ)) < 1. Analogously, if b 6= 0 and there exists a natural number n such that∥∥∥∥∥∥ n−1∏ j=0 vj(x) B−nβ ∥∥∥∥∥∥ B(H0 µ(J,ρ)) < 1, where v(x) = a [ β−1(x) ] b [ β−1(x) ] , vj(x) = v [ β−1j (x) ] , then the operator V = I − vB−1β is invertible on the space B(H0 µ(J, ρ)) and its inverse operator is given by V −1 = I + vB−1β + . . .+ n−2∏ j=0 vj(x) B−n+1 β I − n−1∏ j=0 vj(x) B−nβ −1 . It is obvious that A = −bBβ [ I − ( B−1β a b ) B−1β ] , A−1 = −V −1B−1β ( 1 b ) I. 5. Invertibility conditions for the operator A on the weighted Hölder spaces. We will use the following notation: fn(x) = ( Bn βf ) (x), βµn(x1, x2) = ∣∣∣∣βn+1(x1)− βn+1(x2) βn(x1)− βn(x2) ∣∣∣∣µ , ũj(x) = ρj(x) ρj+1(x) uj(x). Theorem 2. Conditions (1) implies that there exists a natural number n for which∥∥∥∥∥∥ n−1∏ j=0 uj Bn β ∥∥∥∥∥∥ H0 µ(J,ρ) < 1. Proof. To prove that∥∥∥∥∥∥ρ n−1∏ j=0 uj Bn βϕ ∥∥∥∥∥∥ C + ∥∥∥∥∥∥ρ n−1∏ j=0 uj Bn βϕ ∥∥∥∥∥∥ µ < ‖ϕ‖H0 µ(J,ρ) , (6) we estimate each summand separately. For the first one we have ISSN 1027-3190. Укр. мат. журн., 2015, т. 67, № 11 1564 G. TARASENKO, O. KARELIN ∥∥∥∥∥∥ρ n−1∏ j=0 uj Bn βϕ ∥∥∥∥∥∥ C = ∥∥∥∥∥∥ρρr,sρr,s n−1∏ j=0 uj  1 ρr,s;n Bn β (ρr,sϕ) ∥∥∥∥∥∥ C ≤ ≤ ∥∥∥∥∥∥ρµ,µ n−1∏ j=0 uj ρr,s;j ρr,s;j+1 ∥∥∥∥∥∥ C ‖ρr,sϕ‖C ≤ ∥∥∥∥∥∥ρµ,µ n−1∏ j=0 uj ρr,s;j ρr,s;j+1 ∥∥∥∥∥∥ C 2µ ‖ϕ‖H0 µ(J,ρ) . (7) We took into account ρ ρr,s = ρµ,µ, ρr,s ρr,s;n = n−1∏ j=0 ρr,s;j ρr,s;j+1 , ∥∥Bn β (ρr,sϕ) ∥∥ C = ‖(ρr,sϕ)‖C and inequality (5) from Lemma 4. By (2) of Lemma 2, it follows that the first factor on the right-hand side of inequality (7)∥∥∥∥ρµ,µ∏n−1 j=0 uj ρr,s;j ρr,s;j+1 ∥∥∥∥ C tends to zero when n→∞. Now, we estimate the second summand of (6). We use the following notation: fn(x) = ( Bn βf ) (x), βµn(x1, x2) = ∣∣∣∣βn+1(x1)− βn+1(x2) βn(x1)− βn(x2) ∣∣∣∣µ , ũj(x) = ρj(x) ρj+1(x) uj(x). We obtain ∥∥∥∥∥∥ρ n−1∏ j=0 uj Bn βϕ ∥∥∥∥∥∥ µ = ∥∥∥∥∥∥ n−1∏ j=0 ũjρnϕn ∥∥∥∥∥∥ µ ≤ ≤ sup x1<x2 ∣∣∣∏n−1 j=0 ũj(x1)ρn(x1)ϕn(x1)− ∏n−1 j=0 ũj(x2)ρn(x2)ϕn(x2) ∣∣∣ |x1 − x2|µ = = sup x1<x2 ∣∣∣(ρnϕn)(x1) (∏n−1 j=0 ũj(x1)− ∏n−1 j=0 ũj(x2) ) + ∏n−1 j=0 ũj(x2) ((ρnϕn)(x1)−(ρnϕn)(x2)) ∣∣∣ |x1 − x2|µ ≤ ≤ sup x1<x2 ∣∣∣(ρnϕn)(x1) (ũ(x1)−ũ(x2)) ∏n−2 j=0 ũj+1(x1)+(ũn−1(x1)−ũn−1(x2)) ∏n−2 j=0 ũj(x2) ∣∣∣ |x1 − x2|µ + + sup x1<x2 ∣∣∣(ρnϕn)(x1) ∑n−3 j=0 ( (ũj+1(x1)−ũj+1(x2)) ∏n−3 i=j ũi+2(x1) ∏j k=0 ũk(x2) )∣∣∣ |x1 − x2|µ + + sup x1<x2 |(ρnϕn)(x1)− (ρnϕn)(x2)| |βn(x1)− βn(x2)|µ sup x1<x2 ∣∣∣∣∣∣ n−1∏ j=0 ũj(x2) |βn(x1)− βn(x2)|µ |x1 − x2|µ ∣∣∣∣∣∣ . ISSN 1027-3190. Укр. мат. журн., 2015, т. 67, № 11 CONDITIONS OF INVERTIBILITY FOR FUNCTIONAL OPERATORS WITH SHIFT . . . 1565 Here, we used the identities n−1∏ j=0 ũj(x1)− n−1∏ j=0 ũj(x2) = = (ũ(x1)− ũ(x2)) n−2∏ j=0 ũj+1(x1) + (ũn−1(x1)− ũn−1(x2)) n−2∏ j=0 ũj(x2)+ +ũ(x2) n−2∏ j=0 ũj+1(x1)− ũn−1(x1) n−2∏ j=0 ũj(x2) and ũ(x2) n−2∏ j=0 ũj+1(x1)− ũn−1(x1)) n−2∏ j=0 ũj(x2) = = n−3∑ j=0 (ũj+1(x1)− ũj+1(x2)) n−3∏ i=j ũi+2(x1) j∏ k=0 ũk(x2) . Finally, taking into account the identities ρµ;n(x1) ρµ;j+2(x1) = n−3∏ i=j ρµ;i+3(x1) ρµ;i+2(x1) , ∣∣∣∣βj+1(x1)− βj+1(x2) x1 − x2 ∣∣∣∣µ = j∏ k=0 βµk (x1, x2), we get ∥∥∥∥∥∥ρ n−1∏ j=0 uj Bn βϕ ∥∥∥∥∥∥ µ ≤‖ũ‖µ sup x1<x2 ∣∣∣∣∣∣ρn(x1)ϕn(x1) ρµ;n(x1) ρµ;1(x1) n−2∏ j=0 ũj+1(x1) ρµ;n(x1) ρµ;1(x1) ∣∣∣∣∣∣+ + sup x1<x2 ∣∣∣∣∣∣ ρn(x1)ϕn(x1) (ũn−1(x1)−ũn−1(x2)) (βn−1(x1)−βn−1(x2))µ n−2∏ j=0 ũj(x2) (βn−1(x1)−βn−1(x2))µ |x1 − x2|µ ∣∣∣∣∣∣+ + sup x1<x2 ∣∣∣∣∣∣ρn(x1)ϕn(x1) ρµ;n(x1) n−3∑ j=0 ( (ũj+1(x1)− ũj+1(x2)) (βj+1(x1)− βj+1(x2))µ (βn−1(x1)−βn−1(x2))µ |x1 − x2|µ × ×ρµ;j+2(x1) n−3∏ i=j ũi+2(x1) ρµ;n(x1) ρµ;j+2(x1) j∏ k=0 ũk(x2) )∣∣∣∣∣∣+ + ∥∥∥∥(ρϕ)(x1)−(ρϕ)(x2)) (βn(x1)−βn(x2)) µ ∥∥∥∥ C sup x1<x2 ∣∣∣∣∣∣ n−1∏ j=0 ũj(x2) (βn(x1)− βn(x2)) µ (x1−x2)µ ∣∣∣∣∣∣ ≤ ISSN 1027-3190. Укр. мат. журн., 2015, т. 67, № 11 1566 G. TARASENKO, O. KARELIN ≤ ‖ũ‖µ ∥∥∥∥ρnϕnρµ;n ∥∥∥∥ C sup x1<x2 ∣∣∣∣∣∣ρµ;1(x1) n−2∏ j=0 ũj+1(x1) ρµ;j+2(x1) ρµ;j+1(x1) ∣∣∣∣∣∣+ + ‖ũ‖µ ‖ρnϕn‖C sup x1<x2 ∣∣∣∣∣∣ n−2∏ j=0 ũj(x2)β µ j (x1, x2) ∣∣∣∣∣∣+ + ‖ũ‖µ ∥∥∥∥ρnϕnρµ;n ∥∥∥∥ C sup x1<x2 ∣∣∣∣∣∣ n−3∑ j=0 ρµ;j+2 n−3∏ i=j ũi+2(x1) ρµ;i+3(x1) ρµ;i+2(x1) j∏ k=0 ũk(x2)β µ k (x1, x2) ∣∣∣∣∣∣+ + ‖ρϕ‖µ sup x1<x2 ∣∣∣∣∣∣ n−1∏ j=0 ũj(x2)β µ j (x1, x2) ∣∣∣∣∣∣ . By (2) of Lemma 2, the inequality∣∣∣∣ũl+1(x1) ρµ;l(x1) ρµ;l+1(x1) ∣∣∣∣ ≤ q < 1 (8) holds for every fixed x1 with a possible exception of n0 values of l. From Lemma 1 it follows that only n0 values of βl(x1) may be outside of the set [0, ε] ⋃ [1−ε, 1], where inequality (8) holds. Here the number n0 is from Lemma 1. By (3) of Lemma 3, the inequality∣∣ũl(x2)βµl (x1, x2) ∣∣ ≤ q < 1 (9) holds for all fixed x1, x2, x1 < x2 with a possible exception of 2n0 values of l. In fact, under x1 < x2, we have only two failures of the condition βl(x1), βl(x2) ∈ [0, ε] ⋃ [1− ε, 1], and βl(x1) ∈ ∈ [0, ε], βl(x2) ∈ [1 − ε, 1], where inequality (9) holds. It means that the failures may occur when βl(x1) ∈ (ε, 1− ε), or βl(x2) ∈ (ε, 1− ε). According to Lemma 1, there are no more than n0 values of βl(x1) in (ε, 1− ε) and there are no more than n0 values of βl(x2) in (ε, 1− ε). We have∥∥∥∥∥∥ρ n−1∏ j=0 uj Bn βϕ ∥∥∥∥∥∥ µ ≤ ‖ũ‖µ 2µ ‖ρµ,µ‖C q n−1−m0Mm0 + ‖ũ‖µ q n−1−2m0M2m0 + +‖ũ‖µ2µ ‖ρµ,µ‖C n−3∑ j=0 qn−2−j−m0Mm0qj+1−2m0M2m0 +qn−2m0M2m0  ‖ϕ‖H0 µ(J,ρ) , (10) where the constant M is given by M = max (∥∥∥∥ũ(x) ρµ;1(x) ρµµ(x) ∥∥∥∥ C , ‖ũ(x2)β µ(x1, x2)‖C ) . Here, inequalities (5), (8) and (9) were used. The factor in the brackets of (10) tends to zero when n→∞. ISSN 1027-3190. Укр. мат. журн., 2015, т. 67, № 11 CONDITIONS OF INVERTIBILITY FOR FUNCTIONAL OPERATORS WITH SHIFT . . . 1567 Thus, there exists n such that∥∥∥∥∥∥ n−1∏ j=0 uj Bn βϕ ∥∥∥∥∥∥ H0 µ(J,ρ) < ‖ϕ‖H0 µ(J,ρ) , which means that the operator U = I − uBβ is invertible on the space H0 µ(J, ρ). Theorem 2 is proved. Theorem 3. The operator A acting on Banach space H0 µ(J, ρ), is invertible if the following condition holds: σβ[a(x), b(x)] 6= 0, x ∈ J, where the function σβ is defined by σβ[a(x), b(x)] =  a(x), when |a(i)| > [β′(i)]−µi+µ |b(i)|, i = 0, 1, b(x), when |a(i)| < [β′(i)]−µi+µ ∣∣b(i)∣∣, i = 0, 1, 0, otherwise. Proof. We consider only the case a(x) 6= 0, x ∈ J, |a(i)| > |β′(i)|−µi+µ|b(i)|, i = 0, 1. (11) The case b(x) 6= 0, x ∈ J, |a(i)| < |β′(i)|−µi+µ|b(i)|, i = 0, 1, can be considered analogously. Recall that the operators aI−bBβ and U = I−uBβ,where u = b/a, are invertible simultaneously on H0 µ(J, ρ). Thus, there exists n such that∥∥∥∥∥∥  n−1∏ j=0 uj Bn βϕ ∥∥∥∥∥∥ H0 µ(J,ρ) < ||ϕ||H0 µ(J,ρ) , which means that operator U = I − uBβ is invertible in space H0 µ(J, ρ). Theorem 3 is proved. Now, we will focus on the application of the above results to a modeling of systems with renewable resources. For the study of such systems, cyclic models based on functional operators with shift were elaborated in [4]. The Balance relation describing the state of cyclic equilibrium is the equation aIν − bBβν = g for the unknown distribution function ν ∈ H0 µ(J, ρ). In [5], a reproductive summand has been added for a more accurate description of the process of reproduction; this term has been expressed by integrals with degenerate kernels. ISSN 1027-3190. Укр. мат. журн., 2015, т. 67, № 11 1568 G. TARASENKO, O. KARELIN If we model the behavior of a system with two resources, taking into account the interaction between them, by integrals with degenerate kernels and follow the principles of modeling from [4], we will obtain two equations with two unknowns, ν1 and ν2: a1(x)ν1(x)− b1(x)ν1[β1(x)] + Σ1(x) + Γ1(x) = g1(x), (12) a2(x)ν2(x)− b2(x)ν2[β2(x)] + Σ2(x) + Γ2(x) = g2(x), (13) where ν1 and ν2 are the densities of the distributions of the first and second resources by their respective individual parameters (such as weight or length), and Σ1(x) = m1∑ i=1 ∫ J ζ1,i(x)ξ1,i(t)ν1(t)dt, Γ1(x) = n1∑ i=1 ∫ J %1,i(x)δ1,i(t)ν2(t)dt, Σ2(x) = m2∑ i=1 ∫ J ζ2,i(x)ξ2,i(t)ν2(t)dt, Γ2(x) = n2∑ i=1 ∫ J %2,i(x)δ2,i(t)ν1(t)dt, are the terms of reproduction and interaction process respectively. We consider our model on the space H0 µ(J, ρ). Suppose that for A1 = a1(x)ν1(x)− b1(x)ν1[β1(x)], A2 = a2(x)ν2(x)− b2(x)ν2[β2(x)] on H0 µ(J, ρ) the invertibility conditions of Theorem 3 hold. Thus, the inverse operators A−11 and A−12 for A1 and A2 exist. We apply these inverse operators to the left-hand side of equations (12), (13) and obtain Fredholm equations of the second type with degenerate kernels. Using a known method of solving such equations, we can find densities ν1 and ν2 of the cyclic equilibrium of the system. 1. Karlovich Yu. I., Kravchenko V. G. Singular integral equations with non-Carleman shift on an open contour // Different. Equat. – 1981. – 17, № 2. – P. 2212 – 2223. 2. Litvinchuk G. S. Solvability theory of boundary value problems and singular integral equations with shift. – Dordrecht etc.: Kluwer Acad. Publ., 2000. – 378 p. 3. Kravchenko V. G., Litvinchuk G. S. Introduction to the theory of singular integral operators with shift. – Dordrecht etc.: Kluwer Acad. Publ., 1994. – 288 p. 4. Tarasenko A., Karelin A., Lechuga G. P., Hernández M. G. Modelling systems with renewable resources based on functional operators with shift // Appl. Math. and Comput. – 2010. – 216, № 7. – P. 1938 – 1944. 5. Karelin O., Tarasenko A., Hernández M. G. Application of functional operators with shift to the study of renewable systems when the reproductive processed is describedby integrals with degenerate kernels // Appl. Math. – 2013. – 4. – P. 1376 – 1380. 6. Duduchava R. V. Unidimensional singular integral operator algebras in spaces of Holder functions with weight (in Russian) // Trudy Tbilisskogo Mat. Inst. Acad. Nauk Gruz.SSR. – 1973. – 43. – P. 19 – 52. Received 13.10.14 ISSN 1027-3190. Укр. мат. журн., 2015, т. 67, № 11