О сильной матричной проблеме моментов Гамбургера

Отримано необхідні та достатні умови того, що сильна матрична проблема моментів Гамбургера має розв'язок. Описано всі розв'язки проблеми моментів. При цьому використано фундаментальні результати А. В. Штрауса про узагальнені резольвенти симетричних операторів....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2010
1. Verfasser: Загороднюк, С.М.
Format: Artikel
Sprache:Russian
Veröffentlicht: Інститут математики НАН України 2010
Schriftenreihe:Український математичний журнал
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/165956
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:О сильной матричной проблеме моментов Гамбургера / С.М. Загороднюк // Український математичний журнал. — 2010. — Т. 62, № 4. — С. 471–482. — Бібліогр.: 13 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-165956
record_format dspace
spelling irk-123456789-1659562020-02-18T01:26:56Z О сильной матричной проблеме моментов Гамбургера Загороднюк, С.М. Статті Отримано необхідні та достатні умови того, що сильна матрична проблема моментів Гамбургера має розв'язок. Описано всі розв'язки проблеми моментів. При цьому використано фундаментальні результати А. В. Штрауса про узагальнені резольвенти симетричних операторів. We obtain necessary and sufficient conditions for the solvability of the strong matrix Hamburger moment problem. We describe all solutions of the moment problem by using the fundamental results of A. V. Shtraus on generalized resolvents of symmetric operators. 2010 Article О сильной матричной проблеме моментов Гамбургера / С.М. Загороднюк // Український математичний журнал. — 2010. — Т. 62, № 4. — С. 471–482. — Бібліогр.: 13 назв. — рос. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/165956 517.948 ru Український математичний журнал Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language Russian
topic Статті
Статті
spellingShingle Статті
Статті
Загороднюк, С.М.
О сильной матричной проблеме моментов Гамбургера
Український математичний журнал
description Отримано необхідні та достатні умови того, що сильна матрична проблема моментів Гамбургера має розв'язок. Описано всі розв'язки проблеми моментів. При цьому використано фундаментальні результати А. В. Штрауса про узагальнені резольвенти симетричних операторів.
format Article
author Загороднюк, С.М.
author_facet Загороднюк, С.М.
author_sort Загороднюк, С.М.
title О сильной матричной проблеме моментов Гамбургера
title_short О сильной матричной проблеме моментов Гамбургера
title_full О сильной матричной проблеме моментов Гамбургера
title_fullStr О сильной матричной проблеме моментов Гамбургера
title_full_unstemmed О сильной матричной проблеме моментов Гамбургера
title_sort о сильной матричной проблеме моментов гамбургера
publisher Інститут математики НАН України
publishDate 2010
topic_facet Статті
url http://dspace.nbuv.gov.ua/handle/123456789/165956
citation_txt О сильной матричной проблеме моментов Гамбургера / С.М. Загороднюк // Український математичний журнал. — 2010. — Т. 62, № 4. — С. 471–482. — Бібліогр.: 13 назв. — рос.
series Український математичний журнал
work_keys_str_mv AT zagorodnûksm osilʹnojmatričnojproblememomentovgamburgera
first_indexed 2025-07-14T20:25:17Z
last_indexed 2025-07-14T20:25:17Z
_version_ 1837655358421598208
fulltext UDK 517.948 S. M. Zahorodngk (Xar\kov. nac. un-t) O SYL|NOJ MATRYÇNOJ PROBLEME MOMENTOV HAMBURHERA We obtain necessary and sufficient conditions for the sovability of the strong matrix Hamburger moment problem. We decribe all solutions of the moment problem by using fundamental results of A. V. Shtraus on generalized resolvents of symmetric operators. Otrymano neobxidni ta dostatni umovy toho, wo syl\na matryçna problema momentiv Hamburhera ma[ rozv’qzok. Opysano vsi rozv’qzky problemy momentiv. Pry c\omu vykorystano fundamen- tal\ni rezul\taty A. V. Ítrausa pro uzahal\neni rezol\venty symetryçnyx operatoriv. 1. Vvedenye. Cel\g dannoj rabot¥ qvlqetsq poluçenye uslovyj razreßymos- ty syl\noj matryçnoj problem¥ momentov Hamburhera y opysanye ee reßenyj. Napomnym, çto syl\naq matryçnaq problema momentov Hamburhera sostoyt v naxoΩdenyy neprer¥vnoj sleva neub¥vagwej matryc¥-funkcyy M x( ) = = ( ), ,( )m xk l k l N = − 0 1 na R , M( )−∞ = 0, takoj, çto x dM xn ( ) R ∫ = Sn , n ∈Z , (1) hde { }Sn n∈Z — zadannaq posledovatel\nost\ πrmytov¥x kompleksn¥x ( )N N× -matryc (momentov), N ∈N . Syl\naq (skalqrnaq) problema momentov Hamburhera vperv¥e poqvylas\ v naçale vos\mydesqt¥x hodov proßloho veka v svqzy s yzuçenyem neprer¥vn¥x drobej v rabotax W. B. Jones, O. Njåstad, W. J. Thron [1, 2]. V çastnosty, b¥ly ustanovlen¥ uslovyq razreßymosty πtoj zadaçy [2]. V 1996 hodu v rabote [3] b¥ly opysan¥ reßenyq skalqrnoj syl\noj problem¥ momentov Hamburhera pry nekotorom uslovyy rehulqrnosty (sm. takΩe obzor [4]). Syl\naq matryçnaq problema momentov Hamburhera vperv¥e voznykla v 2006 hodu v rabote K. K. Symonova [5]. Rassmotrym sledugwye bloçn¥e matryc¥, sostavlenn¥e yz momentov: Γn = ( ) ,Si j i j n n + = − = S S S S S S S S S n n n n n n − − − … … … …        2 0 0 0 2 � � � … … � � �        , n ∈ +Z . (2) Pry uslovyy strohoj poloΩytel\nosty matryc Γn K. K. Symonov rassmatry- vaet y yzuçaet matryçn¥e mnohoçlen¥ Lorana. V prostranstve πtyx mnohoçle- nov operator umnoΩenyq na nezavysymug peremennug poroΩdaet symmetryçes- kyj operator. Pry uslovyy vpolne neopredelennosty (yndeks defekta ope- ratora raven ( , )N N ) K.CK.CSymonov¥m ustanovlena parametryzacyq reßenyj syl\noj matryçnoj problem¥ momentov Hamburhera. TakΩe v rabote [5] usta- novlen¥ (pry pozytyvnosty matryc Γn ) neobxodym¥e y dostatoçn¥e uslovyq edynstvennosty reßenyq syl\noj matryçnoj problem¥ momentov Hamburhera. V dannoj rabote m¥ ustanovym, çto uslovyq Γn ≥ 0, n = 0, 1, 2, … , (3) qvlqgtsq neobxodym¥my y dostatoçn¥my uslovyqmy razreßymosty problem¥ momentov (1). V sluçae, kohda πty uslovyq v¥polnen¥, moΩno vvesty nekoto- © S. M. ZAHORODNGK, 2010 ISSN 1027-3190. Ukr. mat. Ωurn., 2010, t. 62, # 4 471 472 S. M. ZAHORODNGK r¥j operator sdvyha v abstraktnom hyl\bertovom prostranstve. ∏tot operator symmetryçen, obratym y eho samosoprqΩenn¥e rasßyrenyq poroΩdagt vse re- ßenyq problem¥ momentov. Takoj podxod, pozvolqgwyj rassmatryvat\ odno- vremenno y v¥roΩdenn¥e sluçay zadaçy, b¥l pryveden v [6] dlq sluçaq klassyçeskoj problem¥ momentov Hamburhera. Dlq opysanyq vsex reßenyj vos- pol\zuemsq fundamental\n¥my rezul\tatamy A. V. Ítrausa ob obobwenn¥x re- zol\ventax symmetryçeskyx operatorov [7]. Vvedem neobxodym¥e oboznaçenyq. Kak ob¥çno, çerez R, C, N, Z, Z+ obo- znaçaem mnoΩestva vewestvenn¥x, kompleksn¥x, natural\n¥x, cel¥x y neotrycatel\n¥x cel¥x çysel sootvetstvenno. Prostranstvo n-mern¥x kompleksn¥x vektorov a = ( ), , ,a a an0 1 1… − oboznaçym çerez Cn , n ∈N ; C+ = = { }: Imz z∈ >C 0 . Esly a n∈C , to a∗ oboznaçaet kompleksno soprqΩen- n¥j vektor. Posredstvom PL oboznaçaem prostranstvo kompleksn¥x mnoho- çlenov Lorana, t. e. funkcyj vyda αk k k a b x =∑ , a, b ∈Z : a b≤ , αk ∈C . Çe- rez PL d, oboznaçaem prostranstvo kompleksn¥x mnohoçlenov Lorana vyda αk k k d d x = −∑ , αk ∈C . Pust\ M x( ) qvlqetsq neprer¥vnoj sleva neub¥vag- wej matrycej-funkcyej M x( ) = ( ), ,( )m xk l k l N = − 0 1 na R, M( )−∞ = 0, y τM x( ) : = : = m xk kk N , ( ) = −∑ 0 1 ; Ψ( )x = ( / ), ,( )dm x dk l M k l Nτ = − 0 1 . Çerez L M2( ) oboznaçaem mnoΩestvo (klassov πkvyvalentnosty) vektornoznaçn¥x funkcyj f n: R C→ , f = ( ), , ,f f fN0 1 1… − , takyx, çto (sm., naprymer, [8]) f L M2 2 ( ) : = f x x f x d xM( ) ( ) ( ) ( )Ψ ∗∫ τ R < ∞ . Prostranstvo L M2( ) qvlqetsq hyl\bertov¥m so skalqrn¥m proyzvedenyem ( ), ( ) f g L M2 : = f x x g x d xM( ) ( ) ( ) ( )Ψ ∗∫ τ R , f, g L M∈ 2( ) . Esly H — hyl\bertovo prostranstvo, to ( , )⋅ ⋅ H y ⋅ H oznaçagt skalqr- noe proyzvedenye y normu v H sootvetstvenno. Yndeks¥ mohut opuskat\sq v oçevydn¥x sluçaqx. Dlq lynejnoho operatora A v H oboznaçaem çerez D A( ) eho oblast\ opre- delenyq, çerez R A( ) eho oblast\ znaçenyj, çerez Ker A eho qdro y çerez A∗ soprqΩenn¥j operator, esly on suwestvuet. Esly A obratym, to A−1 obozna- çaet obratn¥j operator. A oznaçaet zam¥kanye operatora, esly operator do- puskaet zam¥kanye. Esly A ohranyçen, to A oboznaçaet eho normu. Dlq proyzvol\noho nabora πlementov { }xn n A∈ yz H oboznaçaem çerez Lin{ }xn n A∈ y span{ }xn n A∈ lynejnug oboloçku y zamknutug lynejnug oboloçku (v metryke H ) sootvetstvenno ( A — proyzvol\noe mnoΩestvo yndeksov). Dlq mnoΩestva M H⊆ oboznaçaem çerez M zam¥kanye mnoΩestva M po norme H. EH oboznaçaet edynyçn¥j operator v H, t. e. EH x = x , x H∈ . Esly H1 — ISSN 1027-3190. Ukr. mat. Ωurn., 2010, t. 62, # 4 O SYL|NOJ MATRYÇNOJ PROBLEME MOMENTOV HAMBURHERA 473 podprostranstvo v H, to PH1 = PH H 1 qvlqetsq operatorom ortohonal\noho proektyrovanyq na H1 v H. 2. Razreßymost\ y opysanye reßenyj. Rassmotrym syl\nug matryçnug problemu momentov Hamburhera (1). Uslovyq (3) qvlqgtsq neobxodym¥my us- lovyqmy razreßymosty zadaçy (1). Dejstvytel\no, predpoloΩym, çto zadaça ymeet reßenye M x( ) . Voz\mem proyzvol\nug funkcyg vyda a x( ) = = ( )( ), ( ), , ( )a x a x a xN0 1 1… − , hde a xj ( ) = A xj k k k n n , =− ∑ , Aj k, ∈C , n ∈ +Z . ∏ta funkcyq prynadleΩyt L M2( ) y 0 ≤ a x dM x a x( ) ( ) ( )∗∫ R = k l n n k k N k k lA A A x dM x , , , ,( ), , , ( ) =− − +∑ ∫ …0 1 1 R * * ( ), , ,, , ,A A Al l N l0 1 1… − ∗ = k l n n k k N k k lA A A S , , , ,( ), , , =− − +∑ …0 1 1 * * ( ), , ,, , ,A A Al l N l0 1 1… − ∗ = A AnΓ ∗ , hde A = ( , , , , ,, , , , ,A A A A An n N n n n0 1 1 0 1 1 1− − − − − + − +… , … … , A A A AN n n n N n− − + −… …1 1 0 1 1, , , ,, , , , , ) ; zdes\ m¥ vospol\zovalys\ pravylamy umnoΩenyq bloçn¥x matryc. Budem predpolahat\ dalee, çto uslovyq (3) qvlqgtsq v¥polnenn¥my. Pust\ Si = ( ); , ,si k l k l N = − 0 1 , si k l; , ∈C , i ∈Z . Rassmotrym beskoneçnug bloçnug matrycu Γ = ( ) ,Si j i j+ = −∞ ∞ = � � � � � � � � … … … … … … … … … … … … … … … − − − S S S S S S S S n n n n n 2 0 0 0 SS n2 …                       � � � , (4) hde v¥delenn¥j πlement sootvetstvuet i = j = 0. Vzqv v kaçestve nulevoj stroky y nulevoho stolbca tu stroku y tot stolbec, v kotor¥x naxodytsq lev¥j verxnyj πlement v¥delennoj matryc¥ S0 , provedem numeracyg v vozrasta- gwem porqdke strok y stolbcov Γ. ∏lement (kompleksnoe çyslo), stoqwyj v k-j stroke y l-m stolbce, oboznaçym çerez γ k l, , − ∞ < k , l < +∞ . Pry πtom bu- dut v¥polnen¥ ravenstva γ rN j tN n+ +, = sr t j n+ ; , , r, t ∈Z , 0 ≤ j , n N≤ − 1. (5) ISSN 1027-3190. Ukr. mat. Ωurn., 2010, t. 62, # 4 474 S. M. ZAHORODNGK Takym obrazom, bloçnug matrycu Γ moΩno takΩe rassmatryvat\ kak skalqr- nug beskoneçnug matrycu Γ = ( ), ,γ k l k l = −∞ ∞ . Uslovye (3) ravnosyl\no tomu, çto ( ), ,γ k l k l r r = − ≥ 0, r ∈ +Z . (6) Spravedlyva sledugwaq teorema (sm., naprymer, [9, c. 361 – 363]). Teorema+1. Pust\ zadana nekotoraq beskoneçnaq kompleksnaq matryca Γ = = ( ), ,γ k l k l = − ∞ ∞ , γ k l, ∈C . Esly v¥polneno sootnoßenye (6), to najdutsq hyl\- bertovo prostranstvo H y nabor πlementov { }xn n∈Z v H takye, çto ( ),x xn m H = γ n m, , n, m ∈Z . (7) Pry πtom span{ }xn n∈Z = H. Dokazatel\stvo. Rassmotrym prostranstvo V beskoneçn¥x kompleksn¥x posledovatel\nostej ( )un n∈Z = … …( )−, , , ,u u u1 0 1 , un ∈C . Rassmotrym πlement¥ x j πtoho prostranstva, u kotor¥x j-q komponenta ravna edynyce, a ostal\n¥e ravn¥ nulg ( )j ∈Z . Zametym, çto πlement¥ { }xn n∈Z lynejno nezavysym¥ y V = Lin{ }xn n∈Z . Opredelym funkcyonal [ , ]x y = γ n m n m n m a b, , ∈ ∑ Z (8) dlq x, y ∈ V, x = a xn n n∈ ∑ Z , y = b xm m m∈ ∑ Z , a bn m, ∈C . Prostranstvo V s funkcyonalom [ , ]⋅ ⋅ qvlqetsq kvazyhyl\bertov¥m. Provodq faktoryzacyg y popolnqq eho [10], poluçaem hyl\bertovo prostranstvo H y nabor πlementov { }xn n∈Z (m¥ soxranyly dlq klassa πkvyvalentnosty, poroΩ- dennoho πlementom xn , oboznaçenye xn ) v H takye, çto v¥polneno (7). Esly span { }xn n∈Z ≠ H, to trebuem¥m prostranstvom budet span { }xn n∈Z . Teorema dokazana. Yz ravenstv (5) sleduet,C çto γ a N b± , = γ a b N, ± , a b, ∈Z . (9) Dejstvytel\no, dlq proyzvol\n¥x a rN j= + , b tN n= + , 0 ≤ j , n N≤ − 1, r t, ∈Z , spravedlyvo γ a N b± , = γ ( ) ,r N j tN n± + +1 = sr t j n+ ±1; , = γ rN j t N n+ ± +,( )1 = γ a b N, ± . Oboznaçym L : = Lin{ }xn n∈Z . V¥berem proyzvol\n¥j πlement x L∈ . Po- skol\ku πlement¥ { }xn n∈Z ne obqzatel\no lynejno nezavysym¥, πlement¥ ly- nejnoj oboloçky L moΩno predstavlqt\ razlyçn¥my sposobamy v vyde lynej- noj kombynacyy πlementov xn . Pust\ ISSN 1027-3190. Ukr. mat. Ωurn., 2010, t. 62, # 4 O SYL|NOJ MATRYÇNOJ PROBLEME MOMENTOV HAMBURHERA 475 x = αk k k x = − ∞ ∞ ∑ (10) y x = βk k k x = − ∞ ∞ ∑ , (11) hde α βk k, ∈C — dva proyzvol\n¥x predstavlenyq πlementa x . Zdes\ lyß\ koneçnoe çyslo koπffycyentov α βk k, otlyçn¥ ot nulq. ∏to predpolahaetsq y v dal\nejßem pry v¥bore πlementov yz lynejn¥x oboloçek. Yspol\zuq (7), (9), moΩem zapysat\ αk k N k lx x± = − ∞ ∞ ∑      , = αk k k N lx x = − ∞ ∞ ±∑ ( , ) = α γk k N l k ± = − ∞ ∞ ∑ , = = α γk k l N k , ± = − ∞ ∞ ∑ = αk k k l Nx x = − ∞ ∞ ±∑ ( , ) = = αk k k l Nx x = − ∞ ∞ ±∑      , = ( , )x xl N± , l ∈Z . Analohyçn¥m obrazom zaklgçaem, çto βk k N k lx x± = − ∞ ∞ ∑      , = ( , )x xl N± , l ∈Z , y, znaçyt, αk k N k lx x± = ∞ ∑       0 , = βk k N k lx x± = ∞ ∑       0 , , l ∈Z . Poskol\ku L = H, poluçaem αk k N k x ± = − ∞ ∞ ∑ = βk k N k x ± = − ∞ ∞ ∑ . (12) PoloΩym Ax = αk k N k x + = ∞ ∑ 0 , Bx = αk k N k x − = ∞ ∑ 0 , (13) x L∈ , x = αk k k x = − ∞ ∞ ∑ , αk ∈C . (14) Sootnoßenyq (10) – (12) pokaz¥vagt, çto znaçenyq operatorov A y B na vektore x yz L ne zavysqt ot v¥bora predstavlenyq πtoho vektora. Znaçyt, operator¥ A y B korrektno zadan¥. V çastnosty, spravedlyv¥ ravenstva Axk = xk N+ , Bxk = xk N− , k ∈Z . Operator A qvlqetsq obratym¥m y A−1 = B . V¥berem proyzvol\n¥e πle- ISSN 1027-3190. Ukr. mat. Ωurn., 2010, t. 62, # 4 476 S. M. ZAHORODNGK ment¥ x y L, ∈ , x = αk kk x = − ∞ ∞∑ , y = γ n nn x = − ∞ ∞∑ , y zapyßem ( , )Ax y = α γk k N k n n n x x+ = − ∞ ∞ = − ∞ ∞ ∑ ∑      , = α γk n k N n k n x x( , ) , + = − ∞ ∞ ∑ = = α γk n k n N k n x x( , ) , + = − ∞ ∞ ∑ = α γk k k n n N n x x = − ∞ ∞ + = − ∞ ∞ ∑ ∑      , = ( , )x Ay . Takym obrazom, operator A qvlqetsq symmetryçeskym. Analohyçn¥m obrazom proverqetsq symmetryçnost\ B. Pust\ �A A⊇ — proyzvol\noe samosoprqΩennoe rasßyrenye operatora A v hyl\bertovom prostranstve �H H⊇ . Pry πtom moΩno sçytat\, çto Ker �A = = { }0 . V protyvnom sluçae, poskol\ku Ker � �A R A⊥ ( ) , R A L( )� ⊇ , zaklgçaem, çto Ker �A H⊥ . Poπtomu operator �A , suΩenn¥j na � �H A� Ker , takΩe budet samosoprqΩenn¥m rasßyrenyem operatora A s nulev¥m qdrom. Pust\ { }�Eλ λ∈R — neprer¥vnoe sleva ortohonal\noe razloΩenye edynyc¥ operatora �A . V¥berem proyzvol\noe çyslo a ∈Z , a = rN + j, r ∈ Z , 0 ≤ j ≤ N – 1. Yspol\zuq opredelenye operatora A, po yndukcyy lehko proveryt\, çto xa = xrN j+ = A xr j . (15) Na osnovanyy (5), (7) y (15) zapys¥vaem sr t j n+ ; , = γ rN j tN n+ +; = ( ),x xrN j tN n H+ + = ( ),A x A xr j t n H = ( ),� � �A x A xr j t n H , hde r t, ∈Z , 0 ≤ j , n N≤ − 1. Zdes\ m¥ vospol\zovalys\ tem, çto AL L⊆ y, znaçyt, �A Ar r⊇ , r ∈Z . Yzvestno, çto dlq racyonal\n¥x funkcyj, nuly znamenatelq kotor¥x ne leΩat v toçeçnom spektre operatora, neposredstvennoe zadanye πtyx funkcyj ot operatora sohlasovano s zadanyem funkcyj ot operatora spektral\n¥m yntehralom (sm. [11, c. 141]). Znaçyt, moΩno utverΩdat\, çto �A xr j = λ λ r jdE x� R ∫ , r ∈Z . (Zdes\ m¥ vospol\zovalys\ tem, çto λ = 0 ne qvlqetsq sobstvenn¥m çyslom operatora �A .) Znaçyt, sr t j n+ ; , = λ λλ λ r j t n H dE x dE x� � �R R ∫ ∫      , = λ λ r t j n Hd E x x+∫ ( ),� � R , hde poslednee sootnoßenye sleduet yz [12, c. 222]. Sledovatel\no, poluçaem ravenstvo sr t j n+ ; , = λ λ r t H H j n H d P E x x+ ( )∫ � � , R . Zapys¥vaq poslednee sootnoßenye v matryçnom vyde, pryxodym k ravenstvu Sr t+ = λ λr t d M+∫ � ( ) R , r t, ∈Z , (16) ISSN 1027-3190. Ukr. mat. Ωurn., 2010, t. 62, # 4 O SYL|NOJ MATRYÇNOJ PROBLEME MOMENTOV HAMBURHERA 477 hde �M ( )λ : = P E x xH H j n H j n N� � λ , , ( )( ) = − 0 1 . Polahaq v sootnoßenyy (16) t = 0, po- luçaem, çto matryca-funkcyq �M ( )λ qvlqetsq nekotor¥m reßenyem problem¥ momentov (1) (yz svojstv ortohonal\noho razloΩenyq edynyc¥ lehko sleduet, çto �M ( )λ qvlqetsq neprer¥vnoj sleva neub¥vagwej matrycej-funkcyej y �M ( )−∞ = 0 ). Takym obrazom, m¥ dokazaly sledugwug teoremu. Teorema+2. Pust\ zadana syl\naq matryçnaq problema momentov Hambur- hera (1) s nekotor¥m naborom momentov { }Sn n∈Z . Problema momentov yme- et reßenye v tom y tol\ko v tom sluçae, kohda v¥polnen¥ uslovyq (3). ProdolΩym teper\ yzuçenye problem¥ momentov (1), kak y ranee, predpola- haq uslovyq (3) v¥polnenn¥my. Pust\  — proyzvol\noe samosoprqΩennoe rasßyrenye postroennoho v¥ße operatora A v nekotorom hyl\bertovom prostranstve H� . Oboznaçym çerez R Az ( )� rezol\ventu A� , a çerez { }E�λ λ∈R eho ortohonal\noe neprer¥vnoe sleva razloΩenye edynyc¥. Napomnym, çto operatornoznaçnaq funkcyq Rz = = P R AH H z � �( ) naz¥vaetsq obobwennoj rezol\ventoj A, z ∈C R\ . Funkcyq Eλ = P EH H� � λ , λ ∈R , qvlqetsq spektral\noj funkcyej symmetryçeskoho ope- ratora A. MeΩdu obobwenn¥my rezol\ventamy y spektral\n¥my funkcyqmy suwestvuet vzaymno odnoznaçnoe sootvetstvye sohlasno sootnoßenyg [9] ( ),Rz Hf g = 1 λ λ−∫ z d f g H( ),E R , f g H, ∈ , z ∈C R\ . (17) Formula (16) pokaz¥vaet, çto proyzvol\naq spektral\naq funkcyq operatora A poroΩdaet reßenye problem¥ momentov (1) (spektral\naq funkcyq poroΩ- daetsq nekotor¥m samosoprqΩenn¥m rasßyrenyem, kotoroe moΩno sçytat\ ob- ratym¥m). PokaΩem, çto vse reßenyq problem¥ momentov poroΩdagtsq spekt- ral\n¥my funkcyqmy podobn¥m obrazom. Pust\ M x�( ) = ( ), ,( )m xk l k l N� = − 0 1 qvlqetsq proyzvol\n¥m reßenyem problem¥ momentov (1). Rassmotrym prostranstvo L M2( )� , y pust\ Q — operator umno- Ωenyq na nezavysymug peremennug v L M2( )� . Operator Q qvlqetsq samoso- prqΩenn¥m y eho ortohonal\noe razloΩenye edynyc¥ ymeet vyd (sm. [8]) E Eb a− = E a b( )[ , ) : h x( ) → χ[ , ) ( ) ( )a b x h x , (18) hde χ[ , ) ( )a b x — xarakterystyçeskaq funkcyq yntervala [ , )a b , – ∞ ≤ a < b ≤ ≤ + ∞ . PoloΩym � ek = ( ), , ,, , ,e e ek k k N0 1 1… − , ek j, = δk j, , 0 1≤ ≤ −j N , dlq k = 0, 1, … , N – 1, MnoΩestvo (klassov πkvyvalentnosty) funkcyj f L M∈ 2( )� takyx, çto (so- otvetstvugwyj klass vklgçaet) f = ( ), , ,f f fN0 1 1… − , f L∈P , oboznaçaem çe- rez PL M2( )� y naz¥vaem mnoΩestvom vektorn¥x mnohoçlenov Lorana v L M2( )� . Polahaem L ML 2 ( )� = PL M2( )� . ISSN 1027-3190. Ukr. mat. Ωurn., 2010, t. 62, # 4 478 S. M. ZAHORODNGK Dlq proyzvol\noho vektornoho mnohoçlena Lorana f = ( ), , ,f f fN0 1 1… − , f j L∈P , suwestvuet edynstvennoe predstavlenye vyda f x( ) = k N k j j k j x e = − = − ∞ ∞ ∑ ∑ 0 1 α , � , (19) hde lyß\ koneçnoe çyslo koπffycyentov αk j, otlyçno ot nulq. ∏to budet predpolahat\sq y v dal\nejßem v podobn¥x sluçaqx. Pust\ proyzvol\n¥j dru- hoj vektorn¥j mnohoçlen Lorana g ymeet vyd g x( ) = l N l r r l r x e = − = − ∞ ∞ ∑ ∑ 0 1 β , � . (20) Tohda moΩno zapysat\ ( ), ( ) f g L M2 � = k l N k j l r j r k j r lx e d M x e , , , , ( ) = − + = − ∞ ∞ ∑ ∫∑ 0 1 α β R � � �∗∗ = = k l N k j l r j r k l j r x dm x , , , , , ( ) = − + = − ∞ ∞ ∑ ∫∑ 0 1 α β R � = k l N k j l r j r k l j r s , , , ; , ,= − + = − ∞ ∞ ∑ ∑ 0 1 α β . (21) S druhoj storon¥, j k j jN k k N r l r rN l l N x x = − ∞ ∞ + = − = − ∞ ∞ + = − ∑ ∑ ∑α β, ,, 0 1 0 11 ∑       H = k l N k j l r j r, , , ,= − = − ∞ ∞ ∑ ∑ 0 1 α β ∗ ∗ ( ),x xjN k rN l H+ + = k l N k j l r j r jN k rN l , , , , ; = − = − ∞ ∞ + +∑ ∑ 0 1 α β γ = = k l N k j l r j r j r k ls , , , , ; , = − = − ∞ ∞ +∑ ∑ 0 1 α β . (22) Yz sootnoßenyj (21), (22) sleduet, çto ( ), ( ) f g L M2 � = j k j jN k k N r l r rN l l N x x = − ∞ ∞ + = − = − ∞ ∞ + = − ∑ ∑ ∑α β, ,, 0 1 0 11 ∑       H . (23) PoloΩym V f = j k j jN k k N x = − ∞ ∞ + = − ∑ ∑ α , 0 1 dlq f x ML( ) ( )∈P2 � (y sootvetstvugwyj klass πkvyvalentnosty vklgçaet), f x( ) = k N k j j kj x e = − = − ∞ ∞∑ ∑0 1 α , � . Esly f, g qvlqgtsq vektorn¥my mnohoçle- namy Lorana s predstavlenyqmy (19), (20) y pry πtom f g L M − 2 ( )� = 0, to yz sootnoßenyq (23) sleduet, çto V f V g H − 2 = ( )( ), ( )V f g V f g H− − = = ( ), ( ) f g f g L M − − 2 � = f g L M − 2 2 ( )� = 0. ISSN 1027-3190. Ukr. mat. Ωurn., 2010, t. 62, # 4 O SYL|NOJ MATRYÇNOJ PROBLEME MOMENTOV HAMBURHERA 479 Takym obrazom, V qvlqetsq korrektno zadann¥m operatorom yz P2( )M� v H. Sootnoßenye (23) pokaz¥vaet, çto V qvlqetsq yzometryçeskym otobraΩe- nyem PL M2( )� na L . Rasprostranym po neprer¥vnosty V do yzometryçeskoho otobraΩenyq L ML 2 ( )� na H. V çastnosty, zametym, çto V x ej k � = x jN k+ , j ∈Z , 0 1≤ ≤ −k N . Pust\ L M1 2( )� : = L M L ML 2 2( ) ( )� �� y U : = V E L M � 1 2 ( )� . Operator U qvlqetsq yzometryçeskym otobraΩenyem L M2( )� na H L M� 1 2( )� = : H� . PoloΩym A� : = UQU −1. Operator A� qvlqetsq samosoprqΩenn¥m operatorom v H� . Pust\ { }E�λ λ∈R — eho neprer¥vnoe sleva ortohonal\noe razloΩenye edynyc¥. Zametym, çto UQU x jN k − + 1 = VQV x jN k − + 1 = VQx ej k � = V x ej k +1� = x j N k( )+ +1 = = x jN k N+ + = Ax jN k+ , j ∈Z , 0 1≤ ≤ −k N . V sylu lynejnosty spravedlyvo UQU x−1 = Ax , x L D A∈ = ( ) , y, znaçyt, A A� ⊇ . V¥berem proyzvol\n¥j πlement z ∈C R\ y zapyßem 1 λ λ − ( )∫ z d E x xk j H � , ˆ R = 1 λ λ −      ∫ z d E x xk j H � , ˆR = = 1 1 1 2λ λ −       − −∫ z dU E Ue U xk j L M � � � , ( )R = 1 2λ λ−      ∫ z dE e ek j L M � � � , ( )R = = 1 2λ λ−∫ z d E e ek j L M ( ), ( ) � � � R , 0 ≤ k , j N≤ − 1. Yspol\zuq (18), zapys¥vaem ( ), ( ) E e ek j L Mλ � � �2 = mk j� , ( )λ , y, znaçyt, 1 λ λ − ( )∫ z d P E x xH H k j H � � , R = 1 λ λ −∫ z d mk j� , ( ) R , 0 ≤ k , j N≤ − 1. Yspol\zuq formulu obrawenyq Stylt\esa – Perrona (sm., naprymer, [13]), za- klgçaem, çto mk j� , ( )λ = P E x xH H k j H � � λ ,( ) . PokaΩem teper\, çto yndeks defekta A raven ( , )m n , 0 ≤ m , n N≤ . V¥berem proyzvol\n¥j πlement u = c xk kk = − ∞ ∞∑ ∈ L, ck ∈C , y çyslo z ∈C R\ . Pust\ ck = 0 pry k ≤ R− y pry k ≥ R+ , hde R− ≤ – 2, R+ ≥ N + 1. Polahaem po ISSN 1027-3190. Ukr. mat. Ωurn., 2010, t. 62, # 4 480 S. M. ZAHORODNGK opredelenyg dk = 0 pry k ≤ R− y pry k ≥ R N+ − . Polahaem dalee dk = 1 z d N ck k− −( ) , k = R− + 1, … , – 1, dk N− = zd ck k+ , k = R+ − 1, R+ − 2 , … , N. Pust\ v : = d xk kk = − ∞ ∞∑ ∈ L . Tohda neposredstvenno poluçaem ( )A zE uH− −v = ( )d zd c xk N k k k k N − = − − −∑ 0 1 , u = u xz k k k N + = − ∑ α 0 1 , u L∈ , αk ∈C , u Hz z∈ , (24) hde Hz : = ( )A zE LH− = ( ) ( )A zE D AH− . V çastnosty, yz ravenstva (24) sle- duet, çto u = �u yz k k k N + = − ∑ α 0 1 , hde �uz = u P xz k H kk N z + = −∑ α 0 1 , yk = x P xk H kz − . Yz posledneho ravenstva sle- duet, çto H = H yz k k N� span { } = − 0 1 . Sledovatel\no, defektn¥e çysla A ne prev¥ßagt N. Teorema+3. Pust\ zadana syl\naq matryçnaq problema momentov Hambur- hera (1) y v¥polneno uslovye (3). Pust\ operator A postroen dlq problem¥ momentov, kak v (13). Vse reßenyq problem¥ momentov ymegt vyd M( )λ = ( ), ,( )mk j k j Nλ = − 0 1 , mk j, ( )λ = ( ),Eλ x xk j H , hde Eλ qvlqetsq neprer¥vnoj sleva spektral\noj funkcyej operatora A . Pry πtom sootvetstvye meΩdu vsemy neprer¥vn¥my sleva spektral\n¥my funkcyqmy operatora A y vsemy reßenyqmy problem¥ momentov vzaymno odnoznaçno. Dokazatel\stvo. Vse utverΩdenyq teorem¥, krome posledneho, b¥ly dokazan¥ v¥ße. PokaΩem, çto razlyçn¥e neprer¥vn¥e sleva spektral\n¥e funkcyy operatora A poroΩdagt razlyçn¥e reßenyq problem¥ momentov (1). PredpoloΩym, çto dve razlyçn¥e neprer¥vn¥e sleva spektral\n¥e funkcyy poroΩdagt odno y to Ωe reßenye problem¥ momentov. ∏to znaçyt, çto est\ dva samosoprqΩenn¥x operatora A Aj ⊇ v hyl\bertov¥x prostranstvax H Hj ⊇ takye, çto P EH H1 1,λ ≠ P EH H2 2,λ , ( ), ,P E x xH H k j H 1 1 λ = ( ), ,P E x xH H k j H 2 2 λ , 0 ≤ k, j ≤ N – 1, λ ∈R , hde { },En λ λ∈R — ortohonal\n¥e neprer¥vn¥e sleva razloΩenyq edynyc¥ operatorov An , n = 1, 2. PoloΩym LN : = Lin{ }xk k N = − 0 1 . Yspol\zuq lynej- nost\, zapys¥vaem ISSN 1027-3190. Ukr. mat. Ωurn., 2010, t. 62, # 4 O SYL|NOJ MATRYÇNOJ PROBLEME MOMENTOV HAMBURHERA 481 ( ), ,P E x yH H H 1 1 λ = ( ), ,P E x yH H H 2 2 λ , x y LN, ∈ , λ ∈R . (25) Oboznaçym çerez Rn,λ rezol\ventu An y poloΩym Rn,λ : = P RH H n n ,λ , n = 1, 2. Yz (25), (21) sleduet, çto ( ), ,R1 λ x y H = ( ), ,R2 λ x y H , x y LN, ∈ , λ ∈C R\ . (26) V¥berem proyzvol\noe çyslo z ∈C R\ y rassmotrym prostranstvo Hz , opre- delennoe v¥ße. Poskol\ku R A zE xj z H, ( )− = ( ) ( )A zE A zE xj H j Hj j − −−1 = x , x L∈ = D A( ) , to R uz1, = R uz2, ∈ H , u Hz∈ , (27) R1,z u = R2,z u , u Hz∈ , z ∈C R\ . (28) M¥ moΩem zapysat\ ( ), ,Rn z Hx u = ( ), ,Rn z Hx u n = ( ), ,x R un z Hn = ( ), ,x un z HR , hde x LN∈ , u Hz∈ , n = 1, 2, y, znaçyt, ( ), ,R1 z Hx u = ( ), ,R2 z Hx u , x LN∈ , u Hz∈ . (29) Sohlasno (24) proyzvol\n¥j πlement y L∈ moΩno predstavyt\ v vyde y = = y yz + ′ , y Hz z∈ , ′ ∈y LN . Yspol\zuq (26) y (29), poluçaem ( ), ,R1 z Hx u = ( ), ,R1 z z Hx y y+ ′ = ( ), ,R2 z z Hx y y+ ′ = ( ), ,R2 z Hx y , hde x LN∈ , y L∈ . Poskol\ku L = H, ymeem R1,z x = R2,z x , x LN∈ , z ∈C R\ . (30) Dlq proyzvol\noho x L∈ , x = x xz + ′ , x Hz z∈ , ′ ∈x LN , yspol\zuq sootno- ßenyq (28), (30), zapys¥vaem R1,z x = R1, ( )z zx x+ ′ = R2, ( )z zx x+ ′ = R2,z x , x L∈ , z ∈C R\ , y R1,z x = R2,z x , x H∈ , z ∈C R\ . Sohlasno (17) πto oznaçaet, çto sootvetstvugwye spektral\n¥e funkcyy sov- padagt. Poluçennoe protyvoreçye zaverßaet dokazatel\stvo teorem¥. Napomnym nekotor¥e opredelenyq yz [7], neobxodym¥e nam v dal\nejßem. Pust\ B — zamknut¥j symmetryçeskyj operator v hyl\bertovom prostran- stveCCH s oblast\g opredelenyq D B( ) , D B( ) = H . Oboznaçym ∆B( )λ = = ( ) ( )B E D BH− λ y Nλ = N Bλ ( ) = H B� ∆ ( )λ , λ ∈C R\ . Rassmotrym pro- yzvol\n¥j ohranyçenn¥j lynejn¥j operator C, otobraΩagwyj Ni v N i− . Dlq g = f C+ −ψ ψ , f D B∈ ( ) , ψ ∈Ni , polahaem B gC = B f iC i+ +ψ ψ . ISSN 1027-3190. Ukr. mat. Ωurn., 2010, t. 62, # 4 482 S. M. ZAHORODNGK Poskol\ku pereseçenye D A( ) , Ni y N i− sostoyt lyß\ yz nulevoho πlementa, πto opredelenye korrektno. Operator BC naz¥vagt kvazysamosoprqΩenn¥m rasßyrenyem operatora B, opredelqem¥m operatorom C. Yspol\zuq funda- mental\n¥j rezul\tat A. V. Ítrausa [7] (teoremaC7) y teoremuC3, pryxodym k sledugwemu opysanyg reßenyj problem¥ momentov. Teorema+4. Pust\ zadana syl\naq matryçnaq problema momentov Hambur- hera (1) y v¥polneno uslovye (3). Pust\ operator A postroen dlq problem¥ momentov, kak v (13) . Vse reßenyq problem¥ momentov ymegt vyd M x( ) = ( ), ,( )m xk j k j N = − 0 1 , hde mk j, udovletvorqgt sootnoßenyg 1 x dm xk j−∫ λ , ( ) R = ( )( ) ,( )A E x xF H k j Hλ λ− −1 , λ ∈ +C , (31) F( )λ qvlqetsq analytyçeskoj v C+ operatornoznaçnoj funkcyej, znaçenyqmy kotoroj qvlqgtsq sΩatyq, otobraΩagwye N Ai ( ) v N Ai− ( ) F( )λ ≤( )1 , a AF( )λ — kvazysamosoprqΩenn¥m rasßyrenyem A , opredelqem¥m F( )λ . S druhoj storon¥, proyzvol\noj operatornoznaçnoj funkcyy F( )λ s upo- mqnut¥my svojstvamy sootvetstvuet, sohlasno (31), nekotoroe reßenye syl\noj matryçnoj problem¥ momentov Hamburhera. Pry πtom sootvetstvye meΩdu vsemy takymy operatornoznaçn¥my funkcyqmy y reßenyqmy problem¥ momentov, ustanavlyvaemoe sootnoßenyem (31), vzaymno odnoznaçno. 1. Jones W. B., Njåstad O., Thron W. J. Continued fractions and strong Hamburger moment problems // Proc. London Math. Soc.. – 1983. – (3) 47, # 2. – P. 363 – 384. 2. Jones W. B., Thron W. J. Njåstad O. Orthogonal Laurent polynomials and the strong Hamburger moment problem // J. Math. Anal. and Appl. – 1984. – 98, # 2. – P. 528 – 554. 3. Njåstad O. Solutions of the strong Hamburger moment problem // Ibid. – 1996. – 197. – P. 227 – 248. 4. Jones W. B., Njåstad O. Orthogonal Laurent polynomials and strong moment theory: a survey // J. Comput. Appl. Math. – 1999. – 105, # 1-2. – P. 51 – 91. 5. Simonov K. K. Strong matrix moment problem of Hamburger // Meth. Funct. Anal. and Top. – 2006. – 12, # 2. – P. 183 – 196. 6. Zagorodnyuk S. M. Positive definite kernels satisfying difference equations // Ibid. – 2010. – 16, # 1. – P. 83 – 100. 7. Ítraus A. V. Obobwenn¥e rezol\vent¥ symmetryçeskyx operatorov // Yzv. AN SSSR. – 1954. – 18. – S.C51 – 86. 8. Malamud M. M., Malamud S. M. Operatorn¥e mer¥ v hyl\bertovom prostranstve // Alhebra y analyz. – 2003. – 15, # 3. – S.C1 – 52. 9. Axyezer N. Y., Hlazman Y. M. Teoryq lynejn¥x operatorov v hyl\bertovom prostranstve. – M.; L.: Hostexteoryzdat, 1950. – 484 s. 10. Berezanskyj G. M. RazloΩenye po sobstvenn¥m funkcyqm samosoprqΩenn¥x operatorov. – Kyev: Nauk. dumka, 1965. – 800 s. 11. Byrman M. Í., Solomqk M. Z. Spektral\naq teoryq samosoprqΩenn¥x operatorov v hyl\bertovom prostranstve. – L.: Yzd-vo Lenynhrad. un-ta, 1980. – 265 s. 12. Stone M. H. Linear transformations in Hilbert space and their applications to analysis. – Providence, Rhode Island: Amer. Math. Soc. Colloq. Publ., 1932. – Vol. 15. – 622 p. 13. Axyezer N. Y. Klassyçeskaq problema momentov y nekotor¥e vopros¥ analyza, svqzann¥e s neg. – M.: Fyzmathyz, 1961. – 312 s. Poluçeno 07.10.09 ISSN 1027-3190. Ukr. mat. Ωurn., 2010, t. 62, # 4