Про міру інтегрального квадратичного відхилення із узагальненою вагою для оцінки щільності розподілу ймовірностей Розеньлатта - Парзена

Про міру інтегрального квадратичного відхилення із узагальненою вагою для оцінки щільності розподілу ймовірностей Розеньлатта - Парзена

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Бабілуа, П.К., Надарая, Е.А., Сохадзе, Г.А.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Інститут математики НАН України 2010
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/165960
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Про міру інтегрального квадратичного відхилення із узагальненою вагою для оцінки щільності розподілу ймовірностей Розеньлатта - Парзена / П.К. Бабілуа // Український математичний журнал. — 2010. — Т. 62, № 4. — С. 514–535. — Бібліогр.: 6 назв. — укр.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-165960
record_format dspace
spelling irk-123456789-1659602020-02-18T01:27:06Z Про міру інтегрального квадратичного відхилення із узагальненою вагою для оцінки щільності розподілу ймовірностей Розеньлатта - Парзена Бабілуа, П.К. Надарая, Е.А. Сохадзе, Г.А. Статті Про міру інтегрального квадратичного відхилення із узагальненою вагою для оцінки щільності розподілу ймовірностей Розеньлатта - Парзена On a measure of integral square deviation with generalized weight for the Rosenblatt–Parzen probability density estimator 2010 Article Про міру інтегрального квадратичного відхилення із узагальненою вагою для оцінки щільності розподілу ймовірностей Розеньлатта - Парзена / П.К. Бабілуа // Український математичний журнал. — 2010. — Т. 62, № 4. — С. 514–535. — Бібліогр.: 6 назв. — укр. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/165960 519.21 uk Український математичний журнал Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language Ukrainian
topic Статті
Статті
spellingShingle Статті
Статті
Бабілуа, П.К.
Надарая, Е.А.
Сохадзе, Г.А.
Про міру інтегрального квадратичного відхилення із узагальненою вагою для оцінки щільності розподілу ймовірностей Розеньлатта - Парзена
Український математичний журнал
description Про міру інтегрального квадратичного відхилення із узагальненою вагою для оцінки щільності розподілу ймовірностей Розеньлатта - Парзена
format Article
author Бабілуа, П.К.
Надарая, Е.А.
Сохадзе, Г.А.
author_facet Бабілуа, П.К.
Надарая, Е.А.
Сохадзе, Г.А.
author_sort Бабілуа, П.К.
title Про міру інтегрального квадратичного відхилення із узагальненою вагою для оцінки щільності розподілу ймовірностей Розеньлатта - Парзена
title_short Про міру інтегрального квадратичного відхилення із узагальненою вагою для оцінки щільності розподілу ймовірностей Розеньлатта - Парзена
title_full Про міру інтегрального квадратичного відхилення із узагальненою вагою для оцінки щільності розподілу ймовірностей Розеньлатта - Парзена
title_fullStr Про міру інтегрального квадратичного відхилення із узагальненою вагою для оцінки щільності розподілу ймовірностей Розеньлатта - Парзена
title_full_unstemmed Про міру інтегрального квадратичного відхилення із узагальненою вагою для оцінки щільності розподілу ймовірностей Розеньлатта - Парзена
title_sort про міру інтегрального квадратичного відхилення із узагальненою вагою для оцінки щільності розподілу ймовірностей розеньлатта - парзена
publisher Інститут математики НАН України
publishDate 2010
topic_facet Статті
url http://dspace.nbuv.gov.ua/handle/123456789/165960
citation_txt Про міру інтегрального квадратичного відхилення із узагальненою вагою для оцінки щільності розподілу ймовірностей Розеньлатта - Парзена / П.К. Бабілуа // Український математичний журнал. — 2010. — Т. 62, № 4. — С. 514–535. — Бібліогр.: 6 назв. — укр.
series Український математичний журнал
work_keys_str_mv AT babíluapk promíruíntegralʹnogokvadratičnogovídhilennâízuzagalʹnenoûvagoûdlâocínkiŝílʹnostírozpodílujmovírnostejrozenʹlattaparzena
AT nadaraâea promíruíntegralʹnogokvadratičnogovídhilennâízuzagalʹnenoûvagoûdlâocínkiŝílʹnostírozpodílujmovírnostejrozenʹlattaparzena
AT sohadzega promíruíntegralʹnogokvadratičnogovídhilennâízuzagalʹnenoûvagoûdlâocínkiŝílʹnostírozpodílujmovírnostejrozenʹlattaparzena
first_indexed 2025-07-14T20:25:33Z
last_indexed 2025-07-14T20:25:33Z
_version_ 1837655375075082240
fulltext UDC 519.21 E. Nadaraya, P. Babilua (Tbilisi State Univ., Georgia), G. Sokhadze (A. Tsereteli Kutaisi State Univ., Georgia) ON AN INTEGRAL SQUARE DEVIATION MEASURE WITH THE GENERALIZED WEIGHT OF THE ROSENBLATT – PARZEN PROBABILITY DENSITY ESTIMATOR ПРО МIРУ IНТЕГРАЛЬНОГО КВАДРАТИЧНОГО ВIДХИЛЕННЯ IЗ УЗАГАЛЬНЕНОЮ ВАГОЮ ДЛЯ ОЦIНКИ ЩIЛЬНОСТI РОЗПОДIЛУ ЙМОВIРНОСТЕЙ РОЗЕНБЛАТТА – ПАРЗЕНА The limit distribution of an integral square deviation with the weight of “delta-functions” of the Rosenblatt – Parzen probability density estimator is defined. Also, the limit power of the goodness-of-fit test constructed by means of this deviation is investigated. Встановлено граничний розподiл iнтегрального квадратичного вiдхилення з вагою типу дельта-функцiй для оцiнки щiльностi розподiлу ймовiрностей Розенблатта – Парзена. Також дослiджено граничну по- тужнiсть критерiю, побудованого за допомогою цього вiдхилення. It is well known that the limit distributions of some global measures of deviation of esti- mates fn(x) of a density f(x), for example, the integral quadratic deviation constructed by means of the so-called weight function W (x) not depending on n were studied in the works of P. Bickel and M. Rosenblatt [1], M. Rosenblatt [2], E. Nadaraya [3], P. Hall [4] and others. In T. Tony Cai and Mark G. Low [5], the theory of obtaining the asymptotic behavior of the mean square error R(fn, f ;Wn) = E ∫ Wn(x) ( fn(x)− f(x) )2 dx, (1) is developed, whereWn(x) = anW (an(x−`0)), {an} is a sequence of positive integers, W (x) ≥ 0 is a Borel-measurable function and `0 is some fixed point. If in (1) we take W (x) = 1 2 I (−1 ≤ x ≤ 1), and pass to the limit as an → ∞ for fixed n, then, roughly speaking, R(fn, f ;Wn) ' E ( fn(`0)− f(`0) )2 , i.e., we come to the mean square error of the nonparametric estimate of the density fn(x) at the point `0. If however in (1) we take an ≡ 1 for all n, `0 = 0 and assume that W (x) ≥ 0 is an arbitrary bounded function, then R(fn, f ;W ) = E‖fn − f‖2L2(W ), i.e., we obtain a usual integral mean square error of the estimate fn(x). Therefore the value R(fn, f ;Wn) can be regarded as a generalization of the measure of density estimation precision covering a mean square deviation of the estimate of the density c© E. NADARAYA, P. BABILUA, G. SOKHADZE, 2010 514 ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 4 ON AN INTEGRAL SQUARE DEVIATION MEASURE WITH THE GENERALIZED WEIGHT . . . 515 fn(x) at the fixed point and an integral mean square deviation. Hence it is natural to pose the question on the limit distribution of the value ‖fn − f‖2L2(Wn) , Wn(x) = = anW (an(x− `0)). Let us give the corresponding result for the case where fn(x) is the nonparametric estimate of the Rosenblatt – Parsen density distribution and an → ∞ as n → ∞. The case an → a0 <∞ is of no interest since it follows from the results of [1 – 4]. Let X1, X2, . . . , Xn be independent, equally distributed random values having the unknown density function of f(x). Assume that the sought density f(x) ∈ L2(Wn) (Wn(x) is a weight function) and consider the ways of empirical approximation of this density when measuring the error value in the metric L2(Wn) of the following form: fn(x) = λn n n∑ i=1 K ( λn(x−Xi) ) , where K(x) is a function belonging to the class of functions H = { K : K(x) ≥ 0, ∫ K(x) = 1, K(−x) = K(x), sup x∈(−∞,∞) K(x) <∞, x2K(x) ∈ L1(−∞,∞) } , and {λn} is a sequence of numbers converging to infinity. Denote by F the set of bounded functions on (−∞,∞) having bounded derivatives up to second order inclusive. In this paper we consider the problem of finding the limit distribution of the functional Un = n λn ∫ ( fn(x)− f(x) )2 Wn(x) dx. We also study the properties of the power of the goodness-of-fit test constructed by means of the statistic Un. 1. Limit distribution of Un. We will need the following notation: U (1) n = n ∫ ( fn(x)− Efn(x) )2 Wn(x) dx, ∆n(f) = EU (1) n , αn(x, y) = λn [ K ( λn(x− y) ) − EK ( λn(x−X1) )] , σ2 n(f) = 2 ∫∫ ( Eαn(u1, X1)αn(u2, X1) )2 Wn(u1)Wn(u2) du1 du2, Wn(x) = anW ( an(x− `0) ) , η (n) ij = 2 nσn(f) ∫ αn(x,Xi)αn(x,Xj)Wn(x) dx, ξ (n) j = j−1∑ i=1 η (n) ij , j = 2, . . . , n, ξ (n) 1 = 0, ξ (n) j = 0, j > n, ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 4 516 E. NADARAYA, P. BABILUA, G. SOKHADZE Y (n) k = k∑ i=1 ξ (n) i , Fk = σ(ω : X1, . . . , Xk), where Fk is the σ-algebra generated by random values X1, X2, . . . , Xk and F0 = = {∅,Ω}. In the sequel, for the sake of simplicity, instead of ξ(n)j , η (n) ij and Y (n) j we will write respectively ξj , ηij and Yj . Lemma 1. A stochastic sequence (Yj ,Fj)j≥1 is a martingale, while a sequence (ξj ,Fj)j≥1 is a difference-martingale. The proof follows from the representation E ( Yj+1 | Fj ) = E ( j+1∑ i=1 ξi | Fj ) = = E ( j∑ i=1 ξi | Fj ) + E ( ξj+1 | Fj ) = Yj a.s., since E(ξj+1 | Fj) = 0 and for all j ≥ 1 we have E|Yj | <∞. Furthermore, since ξj+1 = Yj+1 − Yj and E(ξj+1 | Fj) = 0 a.s., (ξj ,Fj)j≥1 is a difference-martingale. Lemma 2. Let K(x) ∈ H, f(x) ∈ F, W (x) be bounded and W (x) ∈ L2(R). If λn →∞, an →∞ and an/λn → 0 as n→∞, then (λnan)−1σ2 n(f) −→ σ2(f) = 2f2(`0) ∫ K2 0 (z) dz ∫ W 2(v) dv, where K0 = K ∗K, f(`0) 6= 0. Proof. We have σ2 n(f) = 2λ4n ∫∫ [ λ−1n ∫ K(t)K ( λn(u2 − u1)− t ) f ( u1 − t λn ) dt− −λ−2n ∫ K(t1)f ( u1 − t1 λ ) t1 ∫ K(t2)f ( u2 − t2 λn ) dt2 ]2 × ×a2nW ( an(u1 − `0) ) W ( an(u2 − `0) ) du1 du2. (2) Next performing the change of variables in (2) we obtain σ2 n(f) = In1 + In2 + In3, where In1 = 2λna 2 n ∫∫ [ ∫ K(t)K(z − t)f ( u1 − t λn ) dt ]2 × ×W ( an(u1 − `0) ) W ( an ( u1 + z λn − `0 )) du1 dz, In2 = −4a2n ∫∫ [ ∫ K(t)K(z − t)f ( u1 − t λn ) dt× ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 4 ON AN INTEGRAL SQUARE DEVIATION MEASURE WITH THE GENERALIZED WEIGHT . . . 517 × ∫ K(t1)f ( u1 − t1 λn ) dt1 ∫ K(t2)f ( u1 + z λn − t2 λn ) dt2 ] × ×W ( an(u1 − `0) ) W ( an ( u1 + z λn − `0 )) du1 dz, In3 = 2λ−1n a2n ∫∫ [ ∫ K(t1)f ( u1 − t1 λn ) dt1× × ∫ K(t2)f ( u1 + z λn − t2 λn ) dt2 ]2 × ×W (an(u1 − `0))W ( an ( u1 + z λn − `0 )) du1 dz. It is easy to see that In2 ≤ 4c1a 2 n ∫ [ ∫ K(t)K(z − t) dt× × (∫ K(t1) dt1 )2 ∫ W (an(u1 − `0)) du1 ] dz ≤ ≤ c2an, In3 ≤ 2c3λ −1 n a2n ∫ [ W (an(u1 − `0))× × ∫ W ( an ( u1 − z λn − `0 )) dz ] du1 ≤ c4. Therefore, σ2 n(f) = In1 +O(an) +O(1), and also In1 = 2λna 2 n ∫∫ f2(u1)K2 0 (z)W (an(u1 − `0))× ×W ( an ( u1 + z λn − `0 )) du1 dz +An1 +An2, An1 = 2λna 2 n ∫∫ [ ∫ K(t)K(z − t) ( f ( u1 − t λn ) − f(u1) ) dt ]2 × ×W (an(u1 − `0))W ( an ( u1 + z λn − `0 )) du1 dz ≤ ≤ c5 an λn ∫ t2K(t) dt = O ( an λn ) , An2 ≤ c6λna2n ∫∫ [ ∫ K(t1)K(z − t1) |t1| λn dt1 ∫ K(t2)K(z − t2) dt2 ] × ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 4 518 E. NADARAYA, P. BABILUA, G. SOKHADZE ×W (an(u1 − `0))W ( an ( u1 + z λn − `0 )) du1 dz ≤ ≤ c7a2n ∫ [ ∫ |t|K(t) dt ∫ W (an(u1 − `0)) du1 ] ≤ c8an. Thus (λnan)−1σ2 n(f) = 2 ∫∫ f2 ( `0 + v an ) K2 0 (z)W 2(v) dv dz+ +An3 +O ( 1 λn ) +O ( 1 λnan ) , (3) where An3 = 2 ∫∫ f2 ( `0 + v an ) K2 0 (z)W 2(v) [ W ( v + an λn z ) −W (v) ] dv dz, and also |An3| ≤ 2 ∫∫ f2 ( `0 + v an ) K2 0 (z)W (v) ∣∣∣∣W ( v + an λn z ) −W (v) ∣∣∣∣ dz dv ≤ ≤ c9 ∫ K2 0 (z)ω1 ( an λn z ) dz. (4) The expression ω1(h) = ∫ ∣∣W (v + h) −W (v) ∣∣ dv is the L1-modulus of continuity of the function W (x). It is evidently bounded as a function of h since ω1(h) ≤ 2‖W‖L1 . Moreover, ω1(h) → 0 as h → 0. Therefore, by the Lebesque theorem on majorized convergence, the integral in the right-hand part of (4) converges to zero as n→∞. So, using this fact and (3) we obtain (λnan)−1σ2 n(f) −→ σ2(f). The lemma is proved. Theorem 1. Let K(x) ∈ H, f(x) ∈ F, W (x) be bounded and W (x) ∈ L1(−∞, ∞). If λn →∞, an →∞, an/λn → 0 and λna 2 n n → 0 as n→∞, then U (1) n −∆n(f) σn(f) d−→ N(0, 1), where d denoted convergence in distribution, and N(a, σ) a random value having a normal distribution with mean a and dispersion σ2. Proof. We have σ−1n (U (1) n −∆n) = √ n− 1 n H(1) n +H(2) n , where H(1) n = n∑ j=1 ξj , ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 4 ON AN INTEGRAL SQUARE DEVIATION MEASURE WITH THE GENERALIZED WEIGHT . . . 519 H(2) n = 1 nσn n∑ j=1 (∫ α2 n(x,Xj)anW (an(x− `0)) dx− −E ∫ α2 n(x−Xj)anW (an(x− `0)) dx ) , σ2 n ≡ σ2 n(f). We will first establish the convergence of H(2) n to zero in probability. Indeed, VarH(2) n ≤ c10n−1σ−2n λ4nE [ ∫ K2 (λn(x−X1)) anW (an(x− `0)) dx+ + ∫ (EK (λn(x−X1))) 2 anW (an(x− `0)) dx ]2 ≤ ≤ c11n−1σ−2n λ4n { E [ ∫ K2 (λn(x−X1)) anW (an(x− `0)) dx ]2 + + [ ∫ (EK (λn(x−X1))) 2 anW (an(x− `0)) dx ]2} = = I(1)n + I(2)n , and also I(1)n ≤ c12λ4nn−1σ−2n λ−2n a2n = c12 ( λnan σ2 n ) λnan n −→ 0, I(2)n ≤ c13n−1σ−2n −→ 0. Therefore, VarH(2) n = O ( λnan n ) +O ( 1 nσ2 n ) . Hence H(2) n P−→ 0 as n→∞ (here and in the sequel the letter p above the arrow denote convergence in probability). To prove the assertion of Theorem 1 we need to show that H(1) n d−→ N(0, 1). To this end, we use Theorem 4 from [6, p. 580] which contains the conditions of the central limit theorem for sequences that form a difference-martingale. Let us show that our sequence {ξk,Fk} satisfies these conditions. Note that ∑n j=1 Eξ2j = 1 since, as can be easily verified, Eξ2j = 2(j − 1) [ n(n − 1) ]−1 . Asymptotic normality takes place if for every ε ∈ (0, 1] and n→∞ n∑ k=1 E [ ξ2kI (|ξk| ≥ ε) ∣∣∣Fk−1] P−→ 0 (the Lindeberg condition) and ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 4 520 E. NADARAYA, P. BABILUA, G. SOKHADZE V 2 n = n∑ k=1 E ( ξ2k | Fk−1 ) P−→ 1, i.e., then H(1) n = n∑ k=1 ξk d−→ N(0, 1). In the first place we verify that V 2 n = n∑ k=1 E ( ξ2k | Fk−1 ) P−→ 1 as n→∞. (5) Taking the definition of ξj into account, we represent V 2 n in the form V 2 n = n∑ j=2 E ( ξ2j | X1, . . . , Xj−1 ) = = n∑ j=2 E (j−1∑ i=1 ηij )2 ∣∣∣∣X1, . . . , Xj−1  = = n∑ j=2 E ( j−1∑ i=1 η2ij ∣∣∣∣X1, . . . , Xj−1 ) + 2 ∑ i<` E ( ηijη`j ∣∣∣∣X1, . . . , Xj−1 ) = = n∑ j=2 E ( j−1∑ i=1 η2ij ∣∣∣∣X1, . . . , Xj−1 ) + +2 n∑ j=3 E ( j−2∑ i=1 j−1∑ `=i+1 ηijη`j ∣∣∣∣X1, . . . , Xj−1 ) = = Vn1 + Vn2. Let us show that Vn1 P−→ 1 and Vn2 P−→ 0 as n→∞. Denote Φn(x, y) = EK (λn(x−X1))K (λn(y −X1))− −EK (λn(x−X1))EK (λn(y −X1)) , εi = λ−2n ∫∫ [ αn(x,Xi)αn(y,Xi)Φn(x, y)Wn(x)Wn(y) ] dx dy, σn = ∫∫ Φ2 n(x, y)Wn(x)Wn(y) dx dy, Zj = j−1∑ i=1 (εi − σn). Further, the definition of ηij implies that ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 4 ON AN INTEGRAL SQUARE DEVIATION MEASURE WITH THE GENERALIZED WEIGHT . . . 521 Vn1 = 4 n2σ2 n n∑ j=2 E ( j−1∑ i=1 ∫∫ αn(x,Xi)αn(y,Xi)αn(x,Xj)αn(y,Xj)× ×Wn(x)Wn(y) dx dy ∣∣∣X1, . . . , Xj−1 ) = = 4 n2σ2 n n∑ j=2 j−1∑ i=1 ∫∫ αn(x,Xi)αn(y,Xi)Eαn(x,Xj)αn(y,Xj)Wn(x)Wn(y) dx dy and since Eαn(x,Xi)αn(y,Xi) = λ2n ( E (K (λn(x−X1))K (λn(y −X1)))− −EK (λn(x−X1))EK (λn(y −X1)) ) we have Vn1 = 4λ2n n2σ2 n n∑ j=2 j−1∑ i=1 ∫∫ αn(x,Xi)αn(y,Xi)Φn(x, y)Wn(x)Wn(y) dx dy. Therefore, VarVn1 = E(Vn1 − EVn1)2 = 16λ8n n4σ4 n E  n∑ j=2 j−1∑ i=1 (εi − σn) 2 = = Dn n∑ j=2 E ( j−1∑ i=1 (εi − σn) )2 + 2Dn n−1∑ i=2 E (Zi(Zi+1 + . . .+ Zn)) , where Dn = 16λ8n n4σ4 n . It is obvious that Zi+1 = Zi + (εi − σn), Zi+2 = Zi + (εi − σn) + (εi+1 − σn), .............................................................. Zn = Zi + (εi − σn) + . . .+ (εn−1 − σn). Hence E(Vn1 − EVn1)2 = = Dn n∑ j=2 E ( j−1∑ i=1 (εi − σn) )2 + 2Dn n−1∑ i=2 EZ2 i (n− i) = ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 4 522 E. NADARAYA, P. BABILUA, G. SOKHADZE = Dn n∑ j=2 (j − 1)E(ε1 − σn)2 + 2Dn n−1∑ i=2 EZ2 i (n− i) = Bn1 +Bn2. Let us estimate Bn1 and Bn2. We have Bn1 ≤ c14 λ8n n2σ4 n E(ε1 − σn)2. (6) But E(ε1 − σn)2 = ∫ {∫∫ [ K (λn(x− t))− EK (λn(x−X1)) ] × × [ K (λn(y − t))− EK (λn(y −X1)) ] × ×Φn(x, y)Wn(x)Wn(y) dx dy }2 f(t) dt = = c15 λ8n n2σ4 n (An1 +An2 +An3 +An4) , (7) where An1 = ∫ [ ∫∫ K (λn(x− t))K (λn(y − t)) Φn(x, y)× ×Wn(x)Wn(y) dx dy ]2 f(t) dt, An2 = ∫ [ ∫∫ K (λn(x− t))EK (λn(y −X1)) Φn(x, y)× ×Wn(x)Wn(y) dx dy ]2 f(t) dt, An3 = ∫ [ ∫∫ K (λn(y − t))EK (λn(x−X1)) Φn(x, y)× ×Wn(x)Wn(y) dx dy ]2 f(t) dt, An4 = ∫ [ ∫∫ EK (λn(x−X1))EK (λn(y −X1)) Φn(x, y)× ×Wn(x)Wn(y) dx dy ]2 f(t) dt. Since |Φn(x, y)| ≤ c16λ−1n , it can be easily established that An1 ≤ c17 a4n λ6n , An2 ≤ c18 a2n λ6n , An3 ≤ c18 a2n λ6n , An4 ≤ c19λ−6n . (8) ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 4 ON AN INTEGRAL SQUARE DEVIATION MEASURE WITH THE GENERALIZED WEIGHT . . . 523 Using (7) and (8) we obtain E(ε1 − σn)2 ≤ c20 ( a4n λ6n + a2n λ6n + 1 λ6n ) . (9) This and (6) imply Bn1 ≤ c21 ( λnan σ2 n )2 a2n n2 −→ 0. (10) Further, it is not difficult to see that Bn2 = 32λ8n n4σ4 n n−1∑ i=2 EZ2 i (n− i) = 32λ8n n4σ4 n n−1∑ i=2 (n− i)(i− 1)E(ε1 − σn)2. This and (9) imply that Bn2 ≤ c22 λ2na 4 n nσ4 n = c22 ( λnan σ2 n )2 a2n n −→ 0. Therefore, VarVn1 = E(Vn1 − EVn1)2 −→ 0. On the other hand, EVn1 = 4λ2n n2σ2 n n∑ j=2 j−1∑ i=1 ∫∫ Eαn(x,Xi)αn(y,Xi)Φn(x, y)Wn(x)Wn(y) dx dy = = 4 n2σ2 n n∑ j=2 j−1∑ i=1 ∫∫ (Eαn(x,X1)αn(y,X1)) 2 Wn(x)Wn(y) dx dy = = n2 − n n2 = 1− 1 n −→ 1. Therefore, Vn1 P−→ 1. Now let consider Vn2 and show that Vn2 P−→ 0. Taking the inequality E ( m∑ i=1 Zi )2 ≤ ( n∑ i=1 (EZ2 i )1/2 )2 , into account, we obtain EV 2 n2 = DnE ( n∑ j=3 j−2∑ i=1 j−1∑ `=i+1 ∫∫ αn(x,Xi)αn(y,X`)Φn(x, y)× ×Wn(x)Wn(y) dx dy )2 = = DnE ( n∑ j=3 ∫∫ j−2∑ i=1 αn(x,Xi)gi(y)Φn(x, y)Wn(x)Wn(y) dx dy )2 ≤ ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 4 524 E. NADARAYA, P. BABILUA, G. SOKHADZE ≤ Dn [ n∑ j=3 { E (∫∫ j−1∑ i=1 αn(x,Xi)gi(y)Φn(x, y)× ×Wn(x)Wn(y) dx dy )2}1/2]2 , (11) where Dn = 16λ8n n4σ4 n , αn(x,Xi) = K (λn(x−Xi))− EK (λn(x−X1)) , gi(y) = j−1∑ `=i+1 αn(y,X`). Since E αn(x,Xi)gi(y)αn(y,Xr)gr(y) = 0 as i < r, (11) takes the form EV 2 n2 = = Dn [ n∑ j=3 { j−2∑ i=1 E (∫∫ αn(x,Xi)gi(y)Φn(x, y)Wn(x)Wn(y) dx dy )2}1/2]2 . (12) Next, elementary calculations show that E j−2∑ i=1 (∫∫ αn(x,Xi)gi(y)Φn(x, y)Wn(x)Wn(y) dx dy )2 = = j−2∑ i=1 E ∫∫∫∫ αn(x1, Xi)αn(x2, Xi)× × j−1∑ `1=i+1 j−1∑ `2=i+1 αn(y1, X`1)αn(y2, X`2)Φn(x1, y1)Φn(x2, y2)× ×Wn(x1)Wn(x2)Wn(y1)Wn(y2) dx1 dx2 dy1 dy2 = = j−2∑ i=1 ∫∫∫∫ E αn(x1, Xi)αn(x2, Xi)× × j−1∑ `1=i+1 E αn(y1, X`)αn(y2, X`)Φn(x1, y1)Φn(x2, y2)× ×Wn(x1)Wn(x2)Wn(y1)Wn(y2) dx1 dx2 dy1 dy2 = ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 4 ON AN INTEGRAL SQUARE DEVIATION MEASURE WITH THE GENERALIZED WEIGHT . . . 525 = O ( j2 ∫∫∫∫ ∣∣∣E αn(x1, X1)αn(x2, X1)E αn(y1, X1)αn(y2, X1) ∣∣∣× ×Wn(x1)Wn(x2)Wn(y1)Wn(y2) dx1 dx2 dy1 dy2 ) . (13) Recalling the definition of αn(x, y) and performing the change of variables, we obtain∫∫∫∫ ∣∣∣E αn(x1, X1)αn(x2, X1)E αn(y1, X1)αn(y2, X1) ∣∣∣× ×Wn(x1)Wn(x2)Wn(y1)Wn(y2) dx1 dx2 dy1 dy2 ≤ ≤ c23λ−7n ∫∫∫∫ [ ∫ K(w1)K(z1 − w1)f ( x1 − w1 λn ) dw1+ +λnEK (λn(x1 −X1))EK (λn(x1 −X1) + z1) ] × × [ ∫ K(w2)K(z2 − z3 − w2)f ( x1 + z2 λn − w2 λn ) dw2+ +λnEK (λn(x1 −X1) + z2)EK (λn(x1 −X1) + z3) ] × × [ ∫ K(w3)K(z2 − w3)f ( x1 − w3 λn ) dw3+ +λnEK (λn(x1 −X1))EK (λn(x1 −X1) + z2) ] × × [ ∫ K(w4)K(z3 − z1 − w4)f ( x1 + z1 λn − w4 λn ) dw4+ +λnEK (λn(x1 −X1) + z1)EK (λn(x1 −X1) + z3) ] × ×a4nW (an(x1 − `0))W (( x1 + z1 λn − `0 ) an ) × ×W ( an ( x1 + z2 λn − `0 )) W ( an ( x1 + z3 λn − `0 )) dx1 dz1 dz2 dz3 ≤ ≤ c24λ−7n a3n, (14) since the integrals contained in (12) are majorised by the value a3n. Thus, by virtue of (13) and (14), from (12) it follows that EV 2 n2 ≤ c25 ( λnan σ2 n )2 an λn −→ 0. Therefore, n∑ j=1 E ( ξ2j | Fk−1 ) = Vn1 + Vn2 P−→ 0. (15) ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 4 526 E. NADARAYA, P. BABILUA, G. SOKHADZE Let us now proceed to establishing the validity of the Lindeberg condition n∑ k=1 E [ ξ2kI (|ξk| ≥ ε) | Fk−1 ] P−→ 0. (16) For (16) to be valid it suffices to show that n∑ j=1 Eξ4j −→ 0 as n→∞. (17) Indeed, P { n∑ k=1 E [ ξ2kI (|ξk| ≥ ε) ∣∣∣Fk−1] ≥ δ} ≤ ≤ δ−1 n∑ j=1 E ( E [ ξ2j (I(ξj ≥ ε)) ∣∣∣Fk−1]) = δ−1 n∑ j=1 E [ ξ2j (I(ξj ≥ ε)) ] ≤ ≤ δ−1ε−2 n∑ j=1 E ( ξ4j I(ξj ≥ ε) ) ≤ δ−1ε−2 4∑ j=1 Eξ4j . We will prove (17). By the definitions of ηik and ξk, we obtain n∑ k=1 Eξ4k = 16 n4σ4 n ( M (1) n +M (2) n ) , (18) where M (1) n = n∑ k=1 (k − 1) ∫ [ E 4∏ i=1 αn(xi, X1) ]4 4∏ i=1 Wn(xi) dx, M (2) n = 3 n∑ k=1 (k − 1)(k − 2) ∫ [ E 1∏ i=0 αn(xi+1, X1)αn(xi+3, X2)× ×E 4∏ i=1 αn(xi, X1)Wn(xi) ] dx, dx = dx1 . . . dx4. Let us estimate M (1) n and M (2) n . We have M (1) n = = n∑ k=1 (k − 1) ∫∫ (∫ αn(x1, u)αn(x1, v)Wn(x1) dx1 )4 f(u)f(v) du dv ≤ ≤ c26n2 ∫∫ [ δ4(u, v) + (∫ f(t)δ(u, t) dt )4 + + (∫ f(t)δ(v, t) dt )4 + (∫∫ δ(x, y)f(x)f(y) dx dy )4] f(u)f(v) du dv, (19) ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 4 ON AN INTEGRAL SQUARE DEVIATION MEASURE WITH THE GENERALIZED WEIGHT . . . 527 where δ(x, y) = λ2n ∫ K (λn(x− u))K (λn(x− v))Wn(x) dx. Since sup v ∫ δs(u, v)f(u) du ≤ c27asnλsn sup v ∫ Ks 0 (λn(u− v)) du ≤ c28asnλs−1n , s = 2, 4, formula (19) implies M (1) n ≤ c29n2a4nλ3n, (20) and also M (2) n = 3 n∑ k=1 (k − 1)(k − 2) ∫∫∫∫ (∫ αn(x1, u)αn(x1, t)Wn(x1) dx1 )2 × × (∫ αn(x2, v)αn(x2, t)Wn(x2) dx2 )2 f(u)f(v)f(t) du dv dt ≤ ≤ 3 n∑ k=1 (k − 1)(k − 2) ∫∫∫ ( δ2n(u, t) +O(a4nλn) ) × × ( δ2n(v, t) +O(λna 4 n) ) f(u)f(v)f(t) du dv dt ≤ ≤ c30n3a4nλ3n. (21) From (18), (20) and (21) it follows that n∑ k=1 Eξ4k ≤ c31 λ3na 4 n nσ4 n = c31 ( anλn σ2 n )2 a2nλn n . Therefore, lim n→∞ n∑ k=1 Eξ4k = 0. The theorem is proved. Theorem 2. Let K(x) ∈ H, f(x) ∈ F, W (x) be bounded and W (x) ∈ L1(−∞, ∞). If λn →∞, an →∞, an λn → 0 and λna 2 n n → 0 as n→∞, then (λnan)−1/2σ−1(f) ( U (1) n −∆n(f) ) d−→ N(0, 1), where σ2(f) = 2f2(`0) ∫ K2 0 (z) dz ∫ W 2(v) dv, f(`0) 6= 0. Proof. Follows from Lemma 2 and Theorem 1. Theorem 3. Let K(x) ∈ H, f(x) ∈ F, W (x) be bounded, W (−x) = W (x), x ∈ R and x2W (x) ∈ L1(R). If λn → ∞, an → ∞, an λn → 0, λna 2 n n → 0 and λna −5 n → 0, then ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 4 528 E. NADARAYA, P. BABILUA, G. SOKHADZE ( λn an )1/2 σ−1(f) ( U (2) n −∆(f) ) d−→ N(0, 1), where ∆(f) = f(`0) ∫ K2(u) du ∫ W (x) dx, U (2) n = λ−1n U (1) n . Proof. We have ∆n(f) = n ∫ E (fn(x)− Efn(x)) 2 Wn(x) dx = = λn ∫∫ K2(u)f ( x− u λn ) anW (an(x− `0)) du dx− − ∫ (∫ K(v)f ( x− v λn ) dv )2 anW (an(x− `0)) dx. (22) Since λn ∫∫ K2(u)f ( x− u λn ) anW (an(x− `0)) du dx = = λn ∫ K2(u) du ∫ f ( `0 + v an ) W (v) dv +O(1) = = f(`0)λn ∫ K2(u) du ∫ W (u) du+O ( λn a2n ) +O(1) and ∫ (∫ K(v)f ( x− v λn ) dv )2 anW (an(x− `0)) dx = O(1), from these formulas and (22) we obtain ∆n(f) = λn [ f(`0) ∫ K2(u) du ∫ W (v) dv +O ( 1 a2n ) +O ( 1 λn )] = = λn [ ∆(f) +O(a−2n ) +O(λ−1n ) ] . Therefore, (λnan)−1/2σ−1 ( U (1) n −∆n ) − √ λn an σ−1 ( U (2) n −∆ ) = = O ( √ λn√ an a2n ) +O (( 1 λnan )1/2) . Since the right-hand part of the latter equality tends to zero by virtue of the condition λn/a −5 n → 0. The theorem is proved. The case where in U (2) n Efn(x) is replaced by f(x) is more natural for applications. ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 4 ON AN INTEGRAL SQUARE DEVIATION MEASURE WITH THE GENERALIZED WEIGHT . . . 529 Theorem 4. Let K(x), f(x) and W (x) satisfy the conditions of Theorem 3. If λn →∞, an →∞, an λn → 0, λna 2 n n → 0, λn a5n → 0, √ nan λ −5/2 n → 0 and n √ an λ−9/2n → 0, then ( λn an )1/2 σ−1(f) (Un −∆(f)) d−→ N(0, 1), Un = n λn ∫ (fn(x)− f(x)) 2 Wn(x) dx. Proof. We have√ λn an ( Un − U (2) n ) = √ λn an Θn + √ λn an Rn, where Θn = n λn ∫ (Efn(x)− f(x)) 2 Wn(x) dx, Rn = 2 n λn ∫ (fn(x)− Efn(x)) (Efn(x)− f(x))Wn(x) dx. Let us estimate √ λn/anE|Rn|. Since cov (fn(x), fn(y)) = n−1λ2n {∫ K (λn(x− u))K (λn(y − u)) f(u) du− − ∫ K (λn(x− u)) f(u) du ∫ K (λn(y − u)) f(u) du } , we obtain √ λn an E|Rn| ≤ ≤ 2 n√ anλn { λ2n n E [ ∫ K (λn(x−X1)) (Efn(x)− f(x))Wn(x) dx ]2 − −λ 2 n n [ ∫ EK (λn(x−X1)) (Efn(x)− f(x))Wn(x) dx ]2}1/2 ≤ ≤ 2 n√ anλn { λ2n n ∫ f(u) du [ ∫ K (λn(x− u)) (Efn(x)− f(x))Wn(x) dx ]2}1/2 . (23) Further, since Efn(x)− f(x) = O(λ−2n ), ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 4 530 E. NADARAYA, P. BABILUA, G. SOKHADZE uniformly with respect to x ∈ R = (−∞,∞), from (23) we obtain√ λn an E|Rn| ≤ c32 √ nan λ −5/2 n −→ 0, and also √ λn an Θn ≤ c33 n √ an λ−9/2n −→ 0. The theorem is proved. The conditions of Theorem 4 for λn and an are fulfilled, for instance, if it is assumed that λn = n1/2+ε and an = nε, 1/8 < ε < 1/6. 2. Asymptotic power of the goodness-of-fit test based on Un. The assertion of Theorem 4 enables us to construct tests of an asymptotic level α for verifying the hypothesis H0 by which f(x) = f0(x) and f0(`0) 6= 0. To this end, we should calculate Un and discard H0 if Un ≥ dn(α) = ∆(f0) + ( λn an )−1/2 εασ(f0), (24) where ∆(f0) = f0(`0) ∫ K2(u) du ∫ W (x) dx, σ2(f0) = 2f20 (`0) ∫ K2 0 (z) dz ∫ W 2(v) dv, K0 = K ∗K, εα is the quantile of the level α of the standard normal distribution Φ(x). Now we will investigate the asymptotic behavior of test (24) or, more exactly, the behavior of the power function for n→∞. Let us consider the question whether test (24) is consistent. The following statement is true. Theorem 5. Let the conditions of Theorem 4 be fulfilled. Then for n→∞ Πn(f1) = PH1 { Un ≥ dn(α) } −→ 1. Therefore the test defined in (24) is consistent against any alternativeH1 : f(x) = f1(x), f1(x) 6= f0(x) on the set of a positive Lebesgue measure and f1(`0) 6= f0(`0). Proof. It is easy to see that Πn(f1) = = PH1 { n λn ∫ (fn(x)− f0(x)) 2 Wn(x) dx ≥ ∆(f0) + ( λn an )−1/2 σ(f0)εα } = = PH1 { n λn ∫ (fn(x)− f1(x)) 2 Wn(x) dx ≥ ≥ ∆(f0) + ( λn an )−1/2 σ(f0)εα − n λn Rn− ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 4 ON AN INTEGRAL SQUARE DEVIATION MEASURE WITH THE GENERALIZED WEIGHT . . . 531 −2 ∫ (fn(x)− f1(x))Wn(x)ψn(x) dx n λn } = = PH1 {√ λn an σ−1(f1) (U∗n −∆(f1)) ≥ ≥ √ λn an [ ∆(f0)−∆(f1) ] σ−1(f1) + σ(f0) σ(f1) εα − n√ λnan σ−1(f1)Rn− −2 n√ λnan ∫ (fn(x)− f1(x))Wn(x)ψn(x) dxσ−1(f1) } = = PH1 {√ λn an σ−1(f1) (U∗n −∆(f1)) ≥ ≥ − n√ λnan [ σ−1(f1)Rn + λn n (∆(f1)−∆(f0))σ−1(f1)+ +2σ−1(f1) ∫ (fn(x)− f1(x))ψn(x)Wn(x) dx+ √ λnan n σ(f0)σ−1(f1)εα ]} , (25) where U∗n = n λn ∫ (fn(x)− f1(x)) 2 Wn(x) dx, ψn(x) = (f1(x)− f0(x))Wn(x), Wn(x) = anW (an(x− `0)) , Rn = ∫ (f1(x)− f0(x)) 2 Wn(x) dx. Furthermore, using the inequalities E (∫ (fn(x)− f1(x)) 2 ( f21 (x) + f20 (x) ) dx ) ≤ c34 λn n + c35 λ −4 n and ∫ W 2 n(x) dx ≤ c36an, we can state that ∫ (fn(x)− f1(x))ψn(x) dx P−→ 0. Therefore, (25) implies Πn(f1) = PH1 {√ λn an σ−1(f1) (U∗n −∆(f1)) ≥ ≥ − n√ λnan ( σ−1(f1)Rn + op(1) )} . (26) ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 4 532 E. NADARAYA, P. BABILUA, G. SOKHADZE Since √ λn an σ−1(f1)(U∗n − ∆(f1)) is distributes assimptotically normally to (0, 1) in the case of the hypothesis H1, n√ λnan −→∞ and Rn −→ (f1(`0)− f0(`0)) 2 ∫ W (u) du > 0 as n→∞, from (26) it follows that Πn(f1)→ 1. The theorem is proved. Thus the power of test (24) for any fixed alternative tends to 1 as n → ∞. Nevertheless more profound properties of the test are revealed when investigating the question how the test reacts to “small” deviations from the verified hypothesis, i.e., when instead of the fixed alternative we consider the sequence of alternatives {H1n} approaching with the basic hypothesis H0 as n → ∞. Let us consider the sequence of alternatives of the form [2, 3] H1 : f1(x) = f0(x) + αnϕ ( x− `n γn ) + o(αnγn), `n = `0 + o(γn), where αn ↓ 0, γn ↓ 0, the function ϕ(x) ∈ F and ∫ ϕ(x) dx = 0. Theorem 6. LetK(x), f1(x), W (x), λn and an satisfy the conditions of Theorem 4. If, in addition to this, W (0) 6= 0, αnγn = o(n−1/2), nλ−1/2n a1/2n γnα 2 n −→ γ0, λna −1 n α2 n −→ 0, anγn −→ 0, √ nαn √ an λ −5/2 n γ−2n −→ 0, λ4nγ 5 nan −→∞, and anλnαn −→∞ as n→∞, then PH1 { Un ≥ dn(α) } −→ 1− Φ ( εα − γ0W (0) σ(f0) ∫ ϕ2(x) dx ) . Proof. We write Un as a sum Un = U (2) n +An1 +An2, U (2) n = n λn ∫ (fn(x)− Efn(x)) 2 Wn(x) dx, An1 = n λn ∫ (Efn(x)− f0(x)) 2 Wn(x) dx, An2 = 2 n λn ∫ (fn(x)− Efn(x)) (Efn(x)− f0(x))Wn(x) dx, where E(· ) is the mathematical expectation under the hypothesis H1. Therefore, we obtain ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 4 ON AN INTEGRAL SQUARE DEVIATION MEASURE WITH THE GENERALIZED WEIGHT . . . 533 PH1 { Un ≥ dn(α) } = PH1 { 1√ anλn σ−1(f1) [ U (1) n − EU (1) n ] ≥ ≥ σ(f0) σ(f1) εα + √ λ an σ−1(f1) [ λ−1n ∆n(f1)−∆(f0) ] − − √ λn an σ−1(f1)An1 + √ λn an σ−1(f1)An2 } . (27) Tracing the proofs of Theorems 1 and 2, it is not difficult to make sure that 1√ anλn σ−1(f1) [ U (1) n − EU (1) n ] d−→ N(0, 1). Let us show that √ λn an σ−1(f1)An2 P−→ 0. Indeed, √ λn an σ−1(f1)E|An2| ≤ ≤ c1 1√ anλn { λ2n n ∫ f1(u) du [ ∫ K (λn(x− u)) (Efn(x)− f1(x))Wn(x) dx ]2}1/2 and also Efn(x) = f1(x) +O(λ−2n ) +O ( αn λ2nγ 2 n ) . Hence √ λn an σ−1(f1)E|An2| = O (( nan λ5n )1/2) +O (√ nαn √ an λ 5/2 n γ2n ) . Therefore, √ λn an σ−1(f1)An2 P−→ 0. (28) Next, by using the condition nλ−1/2n a 1/2 n γnα 2 n −→ γ0 it is not difficult to establish that√ λn an An1 = nα2 n√ λnan ∫ ϕ2 ( x− `n γn ) Wn(x) dx+O(na−1/2n λ−9/2n )+ +O(λ−4n γ−5n a−1n ) +O ( 1 αnλ2n ) +O ( 1 λnγn ) +O(a−1n α−1n λ−1n ). From this and the Lebesgue theorem on majorized convergence it follows that√ λn an σ−1(f1)An1 = = σ−1(f1)nλ−1/2n a1/2n α2 nγn 1 anγn ∫ ϕ2 ( t anγn ) W (t) dt+ +O ( na−1/2n λ−9/2n ) +O ( λ−4n γ−5n a−1n ) +O ( 1 αnλ2n ) +O ( 1 λnγn ) + ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 4 534 E. NADARAYA, P. BABILUA, G. SOKHADZE +O ( a−1n α−1n λ−1n ) −→ γ0W (0) σ(f0) ∫ ϕ2(u) du. (29) Finally, we can easily show that√ λn an σ−1(f1) [ λ−1n ∆n(f1)−∆(f0) ] = O (( λn a5n )1/2) +O ( λnα 2 n an ) . (30) Thus (27) – (30) imply PH1 { Un ≥ dn(α) } −→ 1− Φ ( εα − γ0(W0) σ(f0) ∫ ϕ2(u) du ) . The theorem is proved. It is well known that the limit power of the Rosenblatt – Bickel test [1 – 3] Tn ≥ ∫ f0(x)W (x) dx ∫ K2(u) du+ λ−1/2n εασ0, Tn = n λn ∫ (fn(x)− f0(x)) 2 W (x) dx, (31) σ2 0 = 2 ∫ f20 (x)W 2(x) dx ∫ K2 0 (u) du. For verifying the hypothesis H0 : f(x) = f0(x) against the alternative H1 : f1(x) = f0(x) + αnϕ ( x− `n γn ) + o(αnγn), `n = `0 + o(γn), where λn = nδ, αn = n−α, γn = n−β for some α, β and δ, for which α + β > 1/2, 1− 2α − β = δ/2 (for example, α = 9/35, β = 2/7, δ = 2/5 or α = 1/6, β = 5/12, δ = 1/2), is equal to, γ(T ) = 1− Φ ( εα − W (`0) σ0 ∫ ϕ2(u) du ) , while the limit power γ(U) of test (24) is equal to 1 (see (29)) for an = nε, ε < δ. However, for some α, β, δ and ε, for which α+ β > 1/2, 1− 2α− β + ε/2 = δ/2 (for example, α = 9/35, β = 2/7, ε = 1/6, δ = 17/30), the limit power of test (24), by Theorem 6, is equal to γ(U) = 1− Φ ( εα − W (0) σ(f0) ∫ ϕ2(u) du ) , while the limit power γ(T ) of test (31) is equal to 1−Φ(εα). Therefore, choosing between (31) and (24), we will prefer the test based on Un.Moreover, for weight functionsW (x), for which W (0) > 0, the goodness-of-fit test of the hypothesis H0 against alternatives of form H1 are asymptotically strictly unbiased since the mathematical expectation γ0W (0) ∫ ϕ2(u) du > 0 is equal to zero if and only if ϕ(x) = 0, x ∈ (−∞,∞). ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 4 ON AN INTEGRAL SQUARE DEVIATION MEASURE WITH THE GENERALIZED WEIGHT . . . 535 1. Bickel P. J., Rosenblatt M. On some global measures of the deviations of density function estimates // Ann. Statist. – 1973. – 1. – P. 1071 – 1095. 2. Rosenblatt M. A quadratic measure of deviation of two-dimensional density estimates and a test of independence // Ibid. – 1975. – 3. – P. 1 – 14. 3. Nadaraya E. A. Nonparametric estimation of probability densities and regression curves. – Dordrecht: Kluwer Acad. Publ. Group, 1989. 4. Hall P. Central limit theorem for integrated square error of multivariate nonparametric density estimators // J. Multivar. Anal. – 1984. – 14, № 1. – P. 1 – 16. 5. Cai T. Tony, Low Mark G. Nonparametric estimation over shrinking neighborhoods: superefficiency and adaptation // Ann. Statist. – 2005. – 33, № 1. – P. 184 – 213. 6. Shiryaev A. N. Probability (in Russian). – Moscow: Nauka, 1989. Received 03.03.09 ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 4