Multidimensional random motion with uniformly distributed changes of direction and Erlang steps

In this paper we study transport processes in Rⁿ, n≥1, having non-exponential distributed sojourn times or non-Markovian step durations. We use the idea that the probabilistic properties of a random vector are completely determined by those of its projection on a fixed line, and using this idea we a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2011
Hauptverfasser: Pogorui, A.O., Rodriguez-Dagnino, R.M.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2011
Schriftenreihe:Український математичний журнал
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/166033
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Multidimensional random motion with uniformly distributed changes of direction and Erlang steps / A.О. Pogorui, R.M. Rodriguez-Dagnino // Український математичний журнал. — 2011. — Т. 63, № 4. — С. 572–577. — Бібліогр.: 10 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-166033
record_format dspace
spelling irk-123456789-1660332020-02-19T01:25:39Z Multidimensional random motion with uniformly distributed changes of direction and Erlang steps Pogorui, A.O. Rodriguez-Dagnino, R.M. Короткі повідомлення In this paper we study transport processes in Rⁿ, n≥1, having non-exponential distributed sojourn times or non-Markovian step durations. We use the idea that the probabilistic properties of a random vector are completely determined by those of its projection on a fixed line, and using this idea we avoid many of the difficulties appearing in the analysis of these problems in higher dimensions. As a particular case, we find the probability density function in three dimensions for 2-Erlang distributed sojourn times. Дослiджено процеси переносу в Rⁿ, n≥1, що мають неекспоненцiально розподiлений час перебування або немарковську тривалiсть крокiв. Використано iдею про те, що ймовiрнiснi властивостi випадкового вектора цiлком визначаються такими самими властивостями його проекцiй на фiксовану пряму. Цей пiдхiд дозволив уникнути багатьох складностей, що з’являються при дослiдженнi цих проблем у вимiрностях вищого порядку. Як окремий випадок, знайдено функцiю щiльностi ймовiрностi у тривимiрному випадку для часу перебування з 2-розподiлом Ерланга. 2011 Article Multidimensional random motion with uniformly distributed changes of direction and Erlang steps / A.О. Pogorui, R.M. Rodriguez-Dagnino // Український математичний журнал. — 2011. — Т. 63, № 4. — С. 572–577. — Бібліогр.: 10 назв. — англ. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/166033 519.21 en Український математичний журнал Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Короткі повідомлення
Короткі повідомлення
spellingShingle Короткі повідомлення
Короткі повідомлення
Pogorui, A.O.
Rodriguez-Dagnino, R.M.
Multidimensional random motion with uniformly distributed changes of direction and Erlang steps
Український математичний журнал
description In this paper we study transport processes in Rⁿ, n≥1, having non-exponential distributed sojourn times or non-Markovian step durations. We use the idea that the probabilistic properties of a random vector are completely determined by those of its projection on a fixed line, and using this idea we avoid many of the difficulties appearing in the analysis of these problems in higher dimensions. As a particular case, we find the probability density function in three dimensions for 2-Erlang distributed sojourn times.
format Article
author Pogorui, A.O.
Rodriguez-Dagnino, R.M.
author_facet Pogorui, A.O.
Rodriguez-Dagnino, R.M.
author_sort Pogorui, A.O.
title Multidimensional random motion with uniformly distributed changes of direction and Erlang steps
title_short Multidimensional random motion with uniformly distributed changes of direction and Erlang steps
title_full Multidimensional random motion with uniformly distributed changes of direction and Erlang steps
title_fullStr Multidimensional random motion with uniformly distributed changes of direction and Erlang steps
title_full_unstemmed Multidimensional random motion with uniformly distributed changes of direction and Erlang steps
title_sort multidimensional random motion with uniformly distributed changes of direction and erlang steps
publisher Інститут математики НАН України
publishDate 2011
topic_facet Короткі повідомлення
url http://dspace.nbuv.gov.ua/handle/123456789/166033
citation_txt Multidimensional random motion with uniformly distributed changes of direction and Erlang steps / A.О. Pogorui, R.M. Rodriguez-Dagnino // Український математичний журнал. — 2011. — Т. 63, № 4. — С. 572–577. — Бібліогр.: 10 назв. — англ.
series Український математичний журнал
work_keys_str_mv AT pogoruiao multidimensionalrandommotionwithuniformlydistributedchangesofdirectionanderlangsteps
AT rodriguezdagninorm multidimensionalrandommotionwithuniformlydistributedchangesofdirectionanderlangsteps
first_indexed 2025-07-14T20:31:13Z
last_indexed 2025-07-14T20:31:13Z
_version_ 1837655732838727680
fulltext UDC 519.21 A. A. Pogorui (Zhytomyr State Univ., Ukraine), R. M. Rodrı́guez-Dagnino (Monterrey Inst. Technol., Mexico) MULTIDIMENSIONAL RANDOM MOTION WITH UNIFORMLY DISTRIBUTED CHANGES OF DIRECTION AND ERLANG STEPS БАГАТОВИМIРНИЙ ВИПАДКОВИЙ РУХ IЗ РIВНОМIРНО РОЗПОДIЛЕНИМИ ЗМIНАМИ НАПРЯМКУ ТА КРОКАМИ ЕРЛАНГА In this paper we study transport processes in Rn, n ≥ 1, having non-exponential distributed sojourn times or non-Markovian step durations. We use the idea that the probabilistic properties of a random vector are completely determined by those of its projection on a fixed line, and using this idea we avoid many of the difficulties appearing in the analysis of these problems in higher dimensions. As a particular case, we find the probability density function in three dimensions for 2-Erlang distributed sojourn times. Дослiджено процеси переносу в Rn, n ≥ 1, що мають неекспоненцiально розподiлений час перебування або немарковську тривалiсть крокiв. Використано iдею про те, що ймовiрнiснi властивостi випадкового вектора цiлком визначаються такими самими властивостями його проекцiй на фiксовану пряму. Цей пiдхiд дозволив уникнути багатьох складностей, що з’являються при дослiдженнi цих проблем у вимiр- ностях вищого порядку. Як окремий випадок, знайдено функцiю щiльностi ймовiрностi у тривимiрному випадку для часу перебування з 2-розподiлом Ерланга. 1. Introduction. One-dimensional non-Markovian generalizations of the telegrapher’s random process were obtained in [1, 2] with velocities alternating at Erlang-distributed sojourn times. Uniformly distributed direction of motion or isotropic motion has been studied by Pinsky [3] for transport processes on Riemannian manifold and by Orsingher and De Gregorio in higher dimensions [4]. However, most of the papers on multidimen- sional random motion are devoted to analysis of models in which motions are driven by a homogeneous Poisson process (see [3 – 6] and references therein). The recent work of Le Caer [7] departs from this trend since he is studying uniformly distributed orientation random motion with Pearson – Dirichlet distributed steps in a multidimensional random walk setting. In this work, we consider random motions with uniformly distributed di- rections on the multidimensional space Rn, n ≥ 1, with Erlang distributed step lengths. Our analysis is based on random evolutions on a semi-Markov media. Let us consider the renewal process ξ(t) = max{m ≥ 0: τm ≤ t}, t ≥ 0, where τm = ∑m k=1 θk, τ0 = 0 and θk ≥ 0, k = 1, 2, ..., are i.i.d. random variables with a distribution function G(t) such that there exists the probability density function (pdf) g(t) = d dt G(t). We assume that a particle starting from the coordinate origin (0, 0, . . . , 0) of the space Rn, at time t = 0, continues its motion with a constant absolute velocity v along the direction η (n) 0 , where η (n) 0 = (x1, x2, . . . , xn) is a random n-dimensional vector uniformly distributed on the unit sphere Ωn−1 1 = {(x1, x2, . . . , xn) : x2 1+x2 2+. . .+x2 n = = 1}. At instant τ1 the particle changes its direction to η (n) 1 , where η (n) 0 and η (n) 1 are i.i.d. random vectors on Ωn−1 1 . Then, at instant τ2 the particle changes its direction to η (n) 2 , c© A. A. POGORUI, R. M. RODRÍGUEZ-DAGNINO, 2011 572 ISSN 1027-3190. Укр. мат. журн., 2011, т. 63, № 4 MULTIDIMENSIONAL RANDOM MOTION WITH UNIFORMLY DISTRIBUTED CHANGES . . . 573 where η (n) 2 is also uniformly distributed on Ωn−1 1 and independent of η (n) 0 and η (n) 1 , and so on. Denote by x(n)(t), t ≥ 0, the particle position at time t. We have that x(n)(t) = v ξ(t)∑ i=0 η (n) i θi + v η (n) ξ(t) (t− τξ(t)). (1) Basically, Eq. (1) determines the random evolution in the semi-Markov medium ξ(t). Lemma 1. The probability distribution of the random vector x(n)(t) is determined by the probability distribution of its projection x(n)(t) = v ∑ξ(t) i=0 η (n) i θi + v η (n) ξ(t)(t − − τξ(t)) on a fixed line, where η(n) i is the projection of η(n) i on the line. Proof. Let us consider the cumulative distribution function (cdf) Fx(n)(t)(y) = = P (x(n)(t) ≤ y). Then, the characteristic function ϕx(n)(t)(α) of x(n)(t) is given by ϕx(n)(t) = E exp { i ( α,x(n)(t) )} = E exp { i ‖α‖ ( e,x(n)(t) )} = = E exp { i ‖α‖x ′(n)(t) } = ∞∫ 0 exp {i ‖α‖y} dFx(n)(t)(y), where ‖α‖ = √ α2 1 + α2 2 + . . .+ α2 n, x (n)(t) is the projection of x(n)(t) onto the unit vector e and it has a cdf Fx(n)(t)(y). Lemma 1 is proved. It is well known that if f(x1, x2, . . . , xn) ∈ L1(Rn) depends only on ‖x‖ = = √ x2 1 + x2 2 + . . .+ x2 n, i.e., f(x1, x2, . . . , xn) = g(r), then the function ϕ(s1, s2, . . . , sn) = ∫ Rn f(x) exp { −i n∑ k=1 skxk } dx depends only on s = ‖s‖. Such functions are called radial functions and for these functions the Fourier transform in several variables goes over into the “Bessel transform” in one variable as follows: ϕ(s) = (2π)n/2 s(n−2)/2 ∞∫ 0 g(r) rn/2J(n−2)/2(sr)dr, where Jp(x) denotes the Bessel function, of the first kind, of order p [10]. Since ϕx(α) depends only on α = ‖α‖, meaning that ϕx(α) = ϕ(α) then the pdf fx(t)(y) corresponding to the distribution Fx(t)(y) = P v ξ(t)+1∑ i=0 η (n) i θi + v η (n) ξ(t) (t− τξ(t)) ≤ y  depends only on r = ‖y‖, that is, fx(t)(y) = h(r) and we have ISSN 1027-3190. Укр. мат. журн., 2011, т. 63, № 4 574 A. A. POGORUI, R. M. RODRÍGUEZ-DAGNINO ϕx(t)(α) = (2π)n/2 α(n−2)/2 ∞∫ 0 h(r) rn/2J(n−2)/2(αr)dr. It also follows that if h(r) is continuous on [0,+∞) and ∫ ∞ 0 rn−1h(r)dr <∞, and if∫ ∞ 0 αn−1ϕ(α)dα <∞, then [10] fx(t)(y) = h(r) = 1 (2π)n/2 r(n−2)/2 ∞∫ 0 ϕ(α)αn/2J(n−2)/2(αr)dα. Now, let us define x̂(n)(t) = v ∑ξ(t) i=0 η (n) i θi and ∆(t) = v η (n) ξ(t) (t − τξ(t)), and we will denote as Fx̂(n)(t)(y) (resp. F∆(t)(y)) the cdf of x̂(n)(t) (resp. ∆(t)). It is easy to verify that x̂(n)(t) and ∆(t) are independent. Hence, we have Fx(n)(t)(y) = = Fx̂(n)(t)(y) ∗ F∆(t)(y). Therefore, by using Lemma 1 we can study the cdf of x(n)(t) but we need to know the cdf of x̂(n)(t) and ∆(t). Lemma 2. Let Fn(t) be the cdf of η(n) i θi and it is of the following form: Fn(t) =  1 2 + Γ ( n 2 ) √ π Γ ( n−1 2 ) 1∫ 0 G ( t x ) (1− x2)(n−3)/2dx, if t ≥ 0, 1 2 − Γ ( n 2 ) √ π Γ ( n−1 2 ) 1∫ 0 G ( − t x ) (1− x2)(n−3)/2dx, if t < 0. (2) Proof. Let us denote by fηi(x) the pdf of the projection η(n) i of the vector η(n) i onto a fixed line. It is showed in [8] that fηi(x) is of the following form: f η (n) i (x) =  Γ ( n 2 ) √ π Γ ( n−1 2 ) (1− x2)(n−3)/2, if x ∈ [−1, 1], 0, if x /∈ [−1, 1]. (3) Since η(n) i and θi are independent it is easy to verify that the cdf of η(n) i θi is of the form (2). Lemma 2 is proved. The process γ(t) = t− τξ(t) is a Markov process and it has the following generator operator A [9]: Aϕ(s) = ϕ′(s) + g(s) 1−G(s) (ϕ(0)− ϕ(s)) , s ≥ 0, where ϕ ∈ C1(R). Lemma 3. The cdf F∆(t)(s) = P ( v η (n) ξ(t) (t− τξ(t)) ≤ s ) is given by ISSN 1027-3190. Укр. мат. журн., 2011, т. 63, № 4 MULTIDIMENSIONAL RANDOM MOTION WITH UNIFORMLY DISTRIBUTED CHANGES . . . 575 F∆(t)(s) =  1 2 + Γ ( n 2 ) √ π Γ ( n−1 2 ) 1∫ 0 Fγ(t) ( s vx ) (1− x2)(n−3)/2dx, if s ≥ 0, 1 2 − Γ ( n 2 ) √ π Γ ( n−1 2 ) 1∫ 0 Fγ(t) ( − s vx ) (1− x2)(n−3)/2dx, if s < 0. Proof. The cdf Fγ(t)(u) = P(γ(t) ≤ u) satisfies the following Markov renewal equation [9] Fγ(t)(u) = V (t, u) + t∫ 0 g(s)Fγ(t−s)(u)ds, (4) where V (t, u) = P(γ(t) ≤ u, τ1 > t) = (1−G(t)) I{t≤u}. Let us define the function R(t) = ∑∞ k=0 g∗(k)(t), where the symbol ∗(n) denotes the k-fold convolution of g(t) with itself. Then, Eq. (4) can be rewritten as Fγ(t)(u) = (V ∗R)(t, u) = t∫ 0 V (t− s, u)dR(s). Since v η(n) ξ(t) and γ(t) are independent that concludes the proof. 2. Evolution in odd-dimensional spaces. Now, let us assume that n = 2l + 3, l = = 0, 1, 2, . . . , and θk has a (n−1)-Erlang distribution, that is g(t) = λn−1 Γ(n− 1) tn−2e−λt. It follows from Lemma 2 that the pdf fn(t) of the random variable η(n) i θi has the form fn(t) = Γ ( n 2 ) √ π Γ ( n−1 2 ) Γ(n− 1) λ 1∫ 0 (λt)2l+1 x2l+2 e−λt/x(1− x2)ldx or equivalently, fn(t) = λΓ ( l + 3 2 ) √ π Γ(l + 1)Γ(2l + 2) l∑ k=0 ( l k ) (−1)k(λt)2k ∞∫ λt s2(l−k)e−sds, for t ≥ 0. Furthermore, the following equivalent expression can be found after some algebraic simplifications fn(t) = λe−λt l! 22l+1 l∑ k=0 (−1)k (2(l − k)!) k!(l − k)! 2(l−k)∑ m=0 (λt)2k+m m! . (5) We have fn(t) = fn(−t) for the case when t < 0. 3. Evolution in three dimensions. Let us consider the particular case when n = 3. Thus, by taking into account Lemma 2, we have that η(3) i is uniformly distributed on [−1, 1]. Let random variables θk, k = 0, 1, 2, . . . , be 2-Erlang distributed, i.e., g(t) = = λ2te−λt, λ > 0, t ≥ 0. For this particular case, the Laplace transform of R(t), say R̂(s), is of the form ISSN 1027-3190. Укр. мат. журн., 2011, т. 63, № 4 576 A. A. POGORUI, R. M. RODRÍGUEZ-DAGNINO R̂(s) = ∞∫ 0 R(t)e−stdt = ∞∑ k=0 ∞∫ 0 g∗(k)(t)e−stdt = ∞∑ k=0 ( λ λ+ s )2k = (λ+ s)2 s2 + 2λs , and the Laplace transform V̂ (s, u) of V (t, u) can be written as V̂ (s, u) = 2λ+ s− (λus+ λ2us+ s+ 2)e−(λ+s)u (λ+ s)2 . Therefore, the Laplace transform F̂γ(s, u) of Fγ(t)(u) is given by F̂γ(s, u) = R̂(s)V̂ (s, u) = 2λ+ s− (λus+ λ2us+ s+ 2)e−(λ+s)u s(s+ 2λ) . (6) After applying the inverse Laplace transform to F̂γ(s, u), we obtain for t > u > 0 Fγ(t)(u) = e−2λt−(2+λu)e−λt sinh (λ(t− u))+2e−λt sinh(λt)−(λu+1)e−λ(2t−u). Thus, we have the limit result lim t→+∞ Fγ(t)(u) = 1− e−λu − λu 2 e−λu. Taking into account Lemma 3 we can obtain the corresponding expression for F∆(t)(s). It follows from Eq. (5) that ηiθi has the Laplace distribution with pdf f3(t) = = 1 2 λe−λ|t|. Therefore, the Fourier transform of P ( v ∑k i=0 ηiθi ≤ y ) is given by ∞∫ −∞ e−iλydP ( v k∑ i=0 ηiθi ≤ y ) = ( λ2 λ2 + v2α2 )k . On the other hand, since Fx̂(3)(t)(y) = P v ξ(t)∑ i=0 η (3) i θi ≤ y  = ∞∑ k=0 P ( v k∑ i=0 η (3) i θi ≤ y ) P(ξ(t) = k) then the characteristic function of x̂(3)(t), say, ϕx̂(3)(t)(α) = E[e−iαx̂ (3)(t)] = ∞∫ −∞ e−iαydFx̂(3)(t)(y) can be calculated as follows ϕx̂(3)(t)(α) = ∞∑ k=0 ( λ2 λ2 + v2α2 )k P(ξ(t) = k) = = e−λt ∞∑ k=0 ( λ2 λ2 + v2α2 )k ( (λt)2k 2k! + (λt)2k+1 (2k + 1)! ) . ISSN 1027-3190. Укр. мат. журн., 2011, т. 63, № 4 Let us define Φ = λ2 √ λ2 + v2α2 , then ϕx̂(3)(t)(α) = e−λt [ cosh Φt+ λ2 + v2α2 λ2 sinh Φt ] . Therefore, by using the inverse Fourier transform, we can obtain Fx̂(3)(t)(y). 1. Di Crescenzo A. On random motions with velocities alternating at Erlang-distributed random times // Adv. Appl. Probab. – 2001. – 61. – P. 690 – 701. 2. Pogorui A. A., Rodriguez-Dagnino R. M. One-dimensional semi-Markov evolutions with general Erlang sojourn times // Random Operators and Stochast. Equat. – 2005. – 13. – P. 1720 – 1724. 3. Pinsky M. Isotropic transport process on a Riemann manifold // Trans. Amer. Math. Soc. – 1976. – 218. – P. 353 – 360. 4. Orsingher E., De Gregorio A. Random flights in higher spaces // J. Theor. Probab. – 2007. – 20. – P. 769 – 806. 5. Kolesnik A. D. Random motions at finite speed in higher dimensions // J. Statist. Phys. – 2008. – 131. – P. 1039 – 1065. 6. Stadje W. Exact solution for non-correlated random walk models // Ibid. – 1989. – 56. – P. 415 – 435. 7. Le Caer G. A Pearson – Dirichlet random walk // Ibid. – 2010. – 40. – P. 728 – 751. 8. Pogorui A. A. Fading evolution in multidimensional spaces // Ukr. Math. J. – 2010. – 62, № 11. – P. 1577 – 1582. 9. Korolyuk V. S., Limnios N. Stochastic systems in merging phase space. – World Sci. Publ., 2005. 10. Bochner S., Chandrasekharan K. Fourier transforms // Ann. Math. Stud. – 1949. – № 19. Received 04.11.10