Some approximation properties of Szasz–Mirakyan–Bernstein operators of the Chlodovsky type

We motivate a new sequence of positive linear operators by means of the Chlodovsky-type Szasz–Mirakyan–Bernstein operators and investigate some approximation properties of these operators in the space of continuous functions defined on the right semiaxis. We also find the order of this approximation...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Tunc, T., Simsek, E.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/166081
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Some approximation properties of Szasz–Mirakyan–Bernstein operators of the Chlodovsky type / T. Tunc, E. Simsek // Український математичний журнал. — 2014. — Т. 66, № 6. — С. 826–834. — Бібліогр.: 12 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-166081
record_format dspace
spelling irk-123456789-1660812020-02-19T01:26:17Z Some approximation properties of Szasz–Mirakyan–Bernstein operators of the Chlodovsky type Tunc, T. Simsek, E. Статті We motivate a new sequence of positive linear operators by means of the Chlodovsky-type Szasz–Mirakyan–Bernstein operators and investigate some approximation properties of these operators in the space of continuous functions defined on the right semiaxis. We also find the order of this approximation by using the modulus of continuity and present the Voronovskaya-type theorem. Метою даної статті є обґрунтування нової послідовності додатних лінійних onepaTopiB за допомогою onepaTopiB Сaсa-Мiрaкянa-Бернштейнa типу Хлодовського та дослідження деяких апроксимаційних властивостей цих операторів у просторі неперервних функцій, заданих на правій півосі. Крім того, встановлено порядок таких наближень за допомогою модуля неперервності та наведено теорему типу Вороновської. 2014 Article Some approximation properties of Szasz–Mirakyan–Bernstein operators of the Chlodovsky type / T. Tunc, E. Simsek // Український математичний журнал. — 2014. — Т. 66, № 6. — С. 826–834. — Бібліогр.: 12 назв. — англ. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/166081 517.5 en Український математичний журнал Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Статті
Статті
spellingShingle Статті
Статті
Tunc, T.
Simsek, E.
Some approximation properties of Szasz–Mirakyan–Bernstein operators of the Chlodovsky type
Український математичний журнал
description We motivate a new sequence of positive linear operators by means of the Chlodovsky-type Szasz–Mirakyan–Bernstein operators and investigate some approximation properties of these operators in the space of continuous functions defined on the right semiaxis. We also find the order of this approximation by using the modulus of continuity and present the Voronovskaya-type theorem.
format Article
author Tunc, T.
Simsek, E.
author_facet Tunc, T.
Simsek, E.
author_sort Tunc, T.
title Some approximation properties of Szasz–Mirakyan–Bernstein operators of the Chlodovsky type
title_short Some approximation properties of Szasz–Mirakyan–Bernstein operators of the Chlodovsky type
title_full Some approximation properties of Szasz–Mirakyan–Bernstein operators of the Chlodovsky type
title_fullStr Some approximation properties of Szasz–Mirakyan–Bernstein operators of the Chlodovsky type
title_full_unstemmed Some approximation properties of Szasz–Mirakyan–Bernstein operators of the Chlodovsky type
title_sort some approximation properties of szasz–mirakyan–bernstein operators of the chlodovsky type
publisher Інститут математики НАН України
publishDate 2014
topic_facet Статті
url http://dspace.nbuv.gov.ua/handle/123456789/166081
citation_txt Some approximation properties of Szasz–Mirakyan–Bernstein operators of the Chlodovsky type / T. Tunc, E. Simsek // Український математичний журнал. — 2014. — Т. 66, № 6. — С. 826–834. — Бібліогр.: 12 назв. — англ.
series Український математичний журнал
work_keys_str_mv AT tunct someapproximationpropertiesofszaszmirakyanbernsteinoperatorsofthechlodovskytype
AT simseke someapproximationpropertiesofszaszmirakyanbernsteinoperatorsofthechlodovskytype
first_indexed 2025-07-14T20:43:29Z
last_indexed 2025-07-14T20:43:29Z
_version_ 1837656510155456512
fulltext UDC 517.5 T. Tunc, E. Simsek (Mersin Univ., Turkey) SOME APPROXIMATION PROPERTIES OF SZASZ – MIRAKYAN – BERNSTEIN OPERATORS OF CHLODOVSKY-TYPE ДЕЯКI АПРОКСИМАЦIЙНI ВЛАСТИВОСТI ОПЕРАТОРIВ САСА – МIРАКЯНА – БЕРНШТЕЙНА ТИПУ ХЛОДОВСЬКОГО The aim of this paper is to motivate a new sequence of positive linear operators by means of Chlodovsky-type Szasz – Mirakyan – Bernstein operators and to investigate some approximation properties of these operators in the space of conti- nuous functions defined on the right semiaxis. We also find the order of this approximation by using the modulus of continuity and give the Voronovskаya-type theorem. Метою даної статтi є обґрунтування нової послiдовностi додатних лiнiйних операторiв за допомогою операторiв Саса – Мiракяна – Бернштейна типу Хлодовського та дослiдження деяких апроксимацiйних властивостей цих опера- торiв у просторi неперервних функцiй, заданих на правiй пiвосi. Крiм того, встановлено порядок таких наближень за допомогою модуля неперервностi та наведено теорему типу Вороновської. 1. Introduction. Let N denotes the set of natural numbers and let N0 = N∪{0}. Let f be real-valued function defined on the closed interval [0, 1]. The nth Bernstein operator of f, Bn(f) is defined as Bn (f ;x) = n∑ k=0 pn,k(x)f ( k n ) , x ∈ [0, 1], n ∈ N, where pn,k(x) = ( n k ) xk(1− x)n−k, 0 ≤ k ≤ n. (1) The Bernstein polynomials Bn(f) was introduced to prove the Weierstrass approximation theorem by S. N. Bernstein [1] in 1912. They have been studied intensively and their connection with different branches of analysis, such as convex and numerical analysis, total positivity and the theory of mono- tone operators have been investigated. Basic facts on Bernstein polynomials and their generalizations can be found in [2, 7 – 9] and references therein. In 1937, I. Chlodovsky [3] introduced a generalization of the Bernstein polynomials for un- bounded intervals. This generalization is named as the Bernstein – Chlodovsky polynomials in the literature and have the following form: Cn (f ;x) = n∑ k=0 pn,k ( x bn ) f ( k n bn ) , x ∈ [0, bn], n ∈ N0, (2) where pn,k is defined in (1) and (bn) is a increasing sequence of positive real numbers such that limn→∞ bn =∞, limn→∞ bn/n = 0. If we take the case bn = 1, n ∈ N0, these polynomials become the classical Bernstein polynomials. The approximation properties of the Bernstein – Chlodovsky polynomials can be found in [2, 3, 5, 6]. c© T. TUNC, E. SIMSEK, 2014 826 ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 6 SOME APPROXIMATION PROPERTIES OF SZASZ – MIRAKYAN – BERNSTEIN OPERATORS . . . 827 For the function f which is continuous on [0,∞), the Szasz – Mirakyan operators which are introduced by G. M. Mirakyan [10] in 1941 and then, are investigated by J. Favard [11] and O. Szasz [4], are defined as Sn(f ;x) = ∞∑ m=0 qn,m(x)f (m n ) , x ∈ [0,∞), n ∈ N, where qn,m(x) = e−nx (nx)m m! , m ∈ N0. (3) Let I is a fixed interval (bounded or not) in R and µm be a sequence of density functions on the interval I, that is, the functions µm have the following properties: (i) µm nonnegative for all x ∈ I and m ∈ N0, (ii) ∑∞ m=0 µm(x) = 1 for all x ∈ I. Let (Ln) be a sequence of positive linear operators defined on the set of the continuous functions on the interval I, say C(I). Now we defined the new operators Ln on C(I) by Ln(f ;x) = ∞∑ m=0 µm(nx)Lϕ(f ;x), x ∈ I, m ∈ N0, n ∈ N, (4) where µn are density functions on I and ϕ := ϕ(n,m) = αnβm where (αn) is a nondecreasing and (βm) is a strictly increasing natural sequence. It is easy to check that the operators (Ln) are positive and linear on C(I). Taking βm = m + 1, µm = qn,m and Lϕ = Cϕ, where Cϕ and qn,m defined in (2) and (3) respectively, we can rewrite (4) as En(f ;x) = ∞∑ m=1 e−nx(nx)m−1 (m− 1)! αnm∑ k=0 ( αnm k )( x bn )k ( 1− x bn )αnm−k f ( kbn mαn ) . (5) The operators En defined in (5) is called the Szasz – Mirakyan – Bernstein operators of Chlodovsky- type (SMBC). In this study, we investigate some approximation properties of these operators and find Voronovskya-type theorem and the order of this approximation by using modulus of continuity. 2. Notations and auxiliary facts. Let I = [0,∞), and let C(I) be the space of real-valued continuous function on I equipped with the uniform norm: ‖f‖I := sup{|f(x)| : x ∈ I} and Cr(I), r ∈ N0, be the set all r-times continuously differentiable functions f ∈ C(I). For the real-valued function f defined on I and δ ≥ 0, the modulus of continuity ω(f, δ) of f with argument δ is defined by ω(f, δ) := sup{|f(x+ h)− f(x)| : x, x+ h ∈ I, |h| < δ}. For M > 0 and 0 < µ ≤ 1, the class of the function C(I) satisfying the relation ω(f, δ) ≤Mδµ for all δ ≥ 0, is called Lipschitz class and denoted by LipM µ. Let er, r ∈ N0, denote the test functions defined by er(x) = xr and xr denote the functions defined by xr(t) = (t − x)r for the fixed real numbers x. By the simple calculations we have the following lemma. ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 6 828 T. TUNC, E. SIMSEK Lemma 2.1. For all x ∈ [0, bn], n ∈ N, we have En(e0;x) = 1, En(e1;x) = x, En(e2;x) = x2 + (bn − x)(1− e−nx) nαn and for the central moments, we have En(x0;x) = 1, En(x1;x) = 0, En(x2;x) = (bn − x)(1− e−nx) nαn , En(x3;x) = (bn − x)(bn − 2x) nα2 n ∞∑ m=1 e−nx(nx)m m.m! , En(x4;x) = (bn − x)(6x2 − 6bnx+ b2n) nα3 n ∞∑ m=1 e−nx(nx)m m2m! + 3x(bn − x)2 nα2 n ∞∑ m=1 e−nx(nx)m m.m! . By using Lemma 2.1, we have the following estimation for En(x4) at the point x ∈ (0, bn]: En(x4;x) ≤ cn(x) ( bn nαn )2 , (6) where limn→∞ cn(x) = 6. 3. Convergence of sequence of the operators En. In this section, we assume that f is a function defined on the semiaxis [0,∞). The aim of this section is to preserve the relation lim n→∞ En(f ;x) = f(x), x ∈ [0,∞), for the reasonably general classes of functions. Theorem 3.1. If bn = o(n), and the function f is bounded on the semiaxis [0,∞), then lim n→∞ En(f ;x) = f(x) (7) holds at any continuity point x of the function f. Proof. Let ε > 0 and let x ∈ [0,∞) be a continuity point of the function f, then there exist a δ > 0 such that |f(t)− f(x)| < ε holds for all t ∈ [0,∞) satisfying the inequality |t− x| < δ. Since the relation (7) is clear for x = 0, we assume that x > 0. Let N ∈ N such that bN ≥ x so that for all n ≥ N, bn ≥ x. For n ≥ N, by using Lemma 2.1 we have |En(f ;x)− f(x)| ≤ ∞∑ m=1 qn,m−1(x) αnm∑ k=0 pmαn,k ( x bn ) ∣∣∣∣f ( kbn mαn ) − f(x) ∣∣∣∣ ≤ ≤ ∞∑ m=1 qn,m−1(x) ∑ ∣∣∣ kbnmαn −x ∣∣∣<δ pmαn,k ( x bn ) ∣∣∣∣f ( kbn mαn ) − f(x) ∣∣∣∣+ + ∞∑ m=1 qn,m−1(x) ∑ ∣∣∣ kbnmαn −x ∣∣∣≥δ pmαn,k ( x bn ) ∣∣∣∣f ( kbn mαn ) − f(x) ∣∣∣∣ . ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 6 SOME APPROXIMATION PROPERTIES OF SZASZ – MIRAKYAN – BERNSTEIN OPERATORS . . . 829 Since f is bounded on [0,∞) there is a number M > 0 such that |f(t)| ≤M, for all t ∈ [0,∞). Therefore, putting t = xb−1n and using Lemma 2.1 and the inequality (7) in [2, p. 6], we obtain |En(f ;x)− f(x)| ≤ εEn(e0;x) + 2M ∞∑ m=1 qn,m−1(x) ∑ ∣∣∣ kbnαnm −x ∣∣∣≥δ pαnm,k ( x bn ) = = ε+ 2M ∞∑ m=1 e−ntbn(ntbn)m−1 (m− 1)! ∑ ∣∣∣ k αnm −t ∣∣∣≥ δ bn pαnm,k(t) ≤ ≤ ε+ 2M t(1− t) αn(δb−1n )2 ∞∑ m=1 e−ntbn(ntbn)m−1 (m− 1)!m ≤ ≤ ε+ 2M (bn − x) nαnδ2 (1− e−nx) ≤ ≤ ε+ 2Mbn δ2nαn since bn = o(n), we get the desired assertion. The Theorem 3.1 also remains true for unbounded functions which do not grow too rapidly for x→∞. Let M(bn) = ‖f‖[0,bn]. We will use the following lemma due to Albrycht and Radecki [12] for the proof of the following theorem. Lemma 3.1 [12]. For 0 < δ ≤ x < bn and sufficiently large n, we have∑ | kbnn −x|≥δ pn,k ( x bn ) ≤ 2 exp ( − δ2n 4xbn ) . Theorem 3.2. Let x ∈ (0,∞) be a continuity point of the function f. If bn = o(n) and lim n→∞ M(bn)e − δ 2αn 4xbn −nx ( 1−exp ( − δ 2αn 4xbn )) = 0, (8) then (7) holds. Proof. Using the inequality in the proof of Theorem 3.1 with M(bn) instead of M and the Lemma 3.1, we have |En(f ;x)− f(x)| ≤ ε+ 2M(bn) ∞∑ m=1 qn,m−1(x) ∑ ∣∣∣ kbnmαn −x ∣∣∣≥δ pαnm,k ( x bn ) = = ε+ 4M(bn) ∞∑ m=1 e−nx(nx)m−1 (m− 1)! e − δ 2mαn 4xbn = = ε+ 4M(bn)e−nxenxe − δ2αn 4xbn e − δ 2αn 4xbn = ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 6 830 T. TUNC, E. SIMSEK = ε+ 4M(bn)e − δ 2αn 4xbn −nx ( 1−exp ( − δ 2αn 4xbn )) . Remark 3.1. If we assume αn = O(1) in Theorem 3.2, then the condition (8) is equal to the condition lim n→∞ M(bn)e −γ nbn , γ = δ2 4x , which is the same with the condition for Bernstein operators of Chlodovsky-type [3]. Remark 3.2. If we assume αn = o(bn), the condition lim n→∞ M(bn)e −γ nbn , γ = δ2 4x , and if αn = O(bn), the condition lim n→∞ M(bn)e−γn, γ = δ2 4x , is equal to the condition (8). In view of the remarks, we conclude the following: Under the condition αn = O(bλn), λ > 0, for increasing values of λ, the relation (7) is satisfied by larger class of functions. 4. Voronovskya-type theorem. Theorem 4.1. Let f be defined on (0,∞) and satisfies the growth condition lim n→∞ M(bn) nαn bn e − δ 2αn 4xbn −nx ( 1−exp ( − δ 2αn 4xbn )) = 0, δ > 0, x ∈ (0,∞). (9) Then we have lim n→∞ nαn bn [En(f ;x)− f(x)] = 1 2 f ′′(x) (10) at each point x > 0 for which f ′′(x) exists. Proof. Let x ≤ bn and f has the second derivative at x. Then, by Taylor’s formula, we have f(t) = f(x) + (t− x)f ′(x) + (t− x)2 [ f ′′(x) 2 + h(t− x) ] (11) where h(ξ) tends to zero with ξ. Applying En to the formula (11), by Lemma 2.1, we obtain En(f ;x) = f(x) + 1 2 f ′′(x) (bn − x)(1− e−nx) nαn +Rn(x), where Rn(x) := ∞∑ m=1 qn,m−1(x) αnm∑ k=0 pmαn,k ( x bn )( kbn mαn − x )2 h ( kbn mαn − x ) . To complete the proof, we have to prove that lim n→∞ nαn bn Rn(x) = 0. For any ε > 0 there exists a δ > 0 such that |h(ξ)| < ε for |ξ| < δ, and we choose δ so small that δ ≤ x. Let us split the second sum in Rn(x) into two parts as follows: ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 6 SOME APPROXIMATION PROPERTIES OF SZASZ – MIRAKYAN – BERNSTEIN OPERATORS . . . 831 Rn(x) = ∞∑ m=1 qn,m−1(x)  ∑∣∣ kbn mαn −x ∣∣<δ+ ∑∣∣ kbn mαn −x ∣∣≥δ  pmαn,k× × ( x bn )( kbn mαn − x )2 h ( kbn mαn − x ) =: =: Rn,1(x) +Rn,2(x). For the sum Rn,1(x), we have by Lemma 2.1 nαn bn Rn,1(x) < ε (bn − x)(1− e−nx) bn < ε. Let us now estimate Rn,2(x). If we write t = kbn mαn in (11), we get ( kbn mαn − x )2 h ( kbn mαn − x ) = = f ( kbn mαn ) − f(x)− ( kbn mαn − x ) f ′(x)− ( kbn mαn − x )2 f ′′(x) 2 and hence |Rn,2(x)| ≤ ∞∑ m=1 qn,m−1(x) ∑ ∣∣∣ kbnmαn −x ∣∣∣≥δ pmαn,k ( x bn ) ∣∣∣∣f ( kbn mαn ) − f(x) ∣∣∣∣+ + ∣∣f ′(x) ∣∣ ∞∑ m=1 qn,m−1(x) ∑ ∣∣∣ kbnmαn −x ∣∣∣≥δ pmαn,k ( x bn ) ∣∣∣∣ kbnmαn − x ∣∣∣∣+ + |f ′′(x)| 2 ∞∑ m=1 qn,m−1(x) ∑ ∣∣∣ kbnmαn −x ∣∣∣≥δ pmαn,k ( x bn )( kbn mαn − x )2 =: =: Σ1 + Σ2 + Σ3. By the Lemma 3.1, we obtain Σ1 ≤ 4M(bn)e − δ 2αn 4xbn −nx ( 1−exp ( − δ 2αn 4xbn )) , thus nαn bn Σ1 ≤ 4M(bn) nαn bn e − δ 2αn 4xbn −nx ( 1−exp ( − δ 2αn 4xbn )) . ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 6 832 T. TUNC, E. SIMSEK If we consider the Cauchy – Schwartz inequality, the inequality (6) and Lemma 3.1 for the second sum Σ2, we have Σ2 ≤ |f ′(x)|  ∞∑ m=1 qn,m−1(x) ∑ ∣∣∣ kbnmαn −x ∣∣∣≥δ pmαn,k ( x bn ) 1/2 × ×  ∞∑ m=1 qn,m−1(x) ∑ ∣∣∣ kbnmαn −x ∣∣∣≥δ pmαn,k ( x bn )( kbn mαn − x )2  1/2 ≤ ≤ √ 2|f ′(x)|e− δ2αn 8xbn −nx2 ( 1−exp ( − δ 2αn 4xbn )) × × δ−2 ∞∑ m=1 qn,m−1(x) ∑ ∣∣∣ kbnmαn −x ∣∣∣≥δ pmαn,k ( x bn )( kbn mαn − x )4  1/2 ≤ ≤ √ 2|f ′(x)|δ−1 √ cn(x) bn nαn e − δ 2αn 8xbn −nx2 ( 1−exp ( − δ 2αn 4xbn )) , thus nαn bn Σ2 ≤ √ 2|f ′(x)|δ−1 √ cn(x)e − δ 2αn 8xbn −nx2 ( 1−exp ( − δ 2αn 4xbn )) . By the similar arguments, we obtain the estimate nαn bn Σ3 ≤ |f ′′(x)| √ 2 2 √ cn(x)e − δ 2αn 8xbn −nx2 ( 1−exp ( − δ 2αn 4xbn )) . Therefore, we have lim n→∞ nαn bn Σi = 0, i = 1, 2, 3, under the condition (9). Corollary 4.1. If the function f is bounded on the semiaxis [0,∞), then (10) holds at each point x > 0 for which f ′′(x) exists. 5. Rates of convergence. Theorem 5.1. If f is uniformly continuous on the semiaxis (0,∞), then ‖En(f)− f‖[0,bn] ≤ 2ω ( f ; √ bn nαn ) . Proof. Let x ∈ (0, bn]. Since En(f ;x)− f(x) = ∞∑ m=1 e−nx(nx)m−1 (m− 1)! αnm∑ k=0 pmαn,k ( x bn )[ f ( kbn mαn ) − f(x) ] , ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 6 SOME APPROXIMATION PROPERTIES OF SZASZ – MIRAKYAN – BERNSTEIN OPERATORS . . . 833 then we have |En(f ;x)− f(x)| ≤ ∞∑ m=1 e−nx(nx)m−1 (m− 1)! αnm∑ k=0 pmαn,k ( x bn ) ω ( f ; ∣∣∣∣ kbnmαn − x ∣∣∣∣) . Taking into account that ω(f ;λδ) ≤ (λ+ 1)ω(f ; δ) and using Cauchy – Schwartz inequality, for δ > 0 we obtain |En(f ;x)− f(x)| ≤ ω(f ; δ) { 1 δ ∞∑ m=1 e−nx(nx)m−1 (m− 1)! αnm∑ k=0 pmαn,k ( x bn ) ∣∣∣∣ kbnmαn − x ∣∣∣∣+ 1 } ≤ ≤ ω(f ; δ) { 1 δ √ En(x2;x) + 1 } = = ω(f ; δ) 1 δ √ (bn − x)(1− e−nx) nαn + 1  ≤ ≤ ω(f ; δ) { 1 δ √ bn nαn + 1 } . Choosing δ = √ bn nαn , we have the inequality |En(f ;x)− f(x)| ≤ 2ω ( f ; √ bn nαn ) which is also trivial for x = 0. Theorem 5.1 is proved. Corollary 5.1. Let f ∈ C(0,∞). If f ∈ LipM µ, then ‖En(f)− f‖[0,bn] ≤ 2M ( bn nαn )µ/2 . 1. Bernstein S. N. Demonstration du theoreme de Weierstrass Fondee sur le Calcul de Probabilites // Commun. Soc. Math. Kharkow. – 1912-1913. – 13, № 2. – P. 1 – 2. 2. Lorentz G. G. Bernstein Polynomials. – New York: Chelsea Publ. Co., 1986. 3. Chlodovsky I. Sur le developpment des fonctions definies dans un interval infini en series de polynomes de M. S. Bernstein // Compos. math. – 1937. – 4. – P. 380 – 393. 4. Szasz O. Generalizations of S. Bernstein’s polynomials to the infinite interval // J. Research Nat. Bureau of Standards. – 1950. – 45, № 3. – P. 239 – 245. 5. Ibikli E. Approximation by Bernstein – Chlodovsky polynomials // Hacettepe J. Math. and Statist. – 2003. – 32. – P. 1 – 5. ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 6 834 T. TUNC, E. SIMSEK 6. Karsli H. A Voronovskaya-type theorem for the second derivative of the Bernstein – Chlodovsky polynomials // Proc. Eston. Acad. Sci. Math. – 2012. – 61, № 1. – P. 9 – 19. 7. Stancu D. D. Approximation of functions by a new class of linear polynomial operator // Rev. roum. math. pures et appl. – 1968. – 13. – P. 1173 – 1194. 8. Phillips G. M. Bernstein polynomials based on the q-integers // Ann. Number. Math. – 1997. – 4. – P. 511 – 518. 9. Ostrovska S. On the limit q-Bernstein operators // Math. Balkan. – 2004. – 18. – P. 165 – 172. 10. Mirakyan G. M. Approximation of continuous functions with the aid of polynomials of the form e−nx ∑mn k=0 Ck,nx k (in French) // Compt. rend. l’Acad. sci. l’URSS. – 1941. – 31. – P. 201 – 205. 11. Favard J. Sur les multiplicateurs d’interpolation (in French) // J. math. pures et appl. – 1944. – 23, № 9. – P. 219 – 247. 12. Albrycht J., Radecki J. On a generalization of the theorem of Voronovskaya // Zesz. nauk. UAM. – 1960. – 2. – P. 1 – 7. Received 08.01.13 ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 6