Polynomial extensions of generalized quasi-Baer rings

In this paper, we consider the behavior of polynomial rings over generalized quasi-Baer rings and show that the generalized quasi-Baer condition on a ring R is preserved by many polynomial extensions.

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Ghalanzardekh, S., Javadi, H.S., Khoramdel, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2010
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/166155
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Polynomial extensions of generalized quasi-Baer rings / S. Ghalanzardekh, H.S. Javadi, M. Khoramdel // Український математичний журнал. — 2010. — Т. 62, № 5. — С. 698–701. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-166155
record_format dspace
spelling irk-123456789-1661552020-02-19T01:25:50Z Polynomial extensions of generalized quasi-Baer rings Ghalanzardekh, S. Javadi, H.S. Khoramdel, M. Короткі повідомлення In this paper, we consider the behavior of polynomial rings over generalized quasi-Baer rings and show that the generalized quasi-Baer condition on a ring R is preserved by many polynomial extensions. Розглянуто поведінку поліиоміальних кілець над узагальненими квазіберовими кільцями і показано, що узагальнена квазіберова умова щодо кільця R зберігається при багатьох поліпоміальїшх розширеннях. 2010 Article Polynomial extensions of generalized quasi-Baer rings / S. Ghalanzardekh, H.S. Javadi, M. Khoramdel // Український математичний журнал. — 2010. — Т. 62, № 5. — С. 698–701. — Бібліогр.: 8 назв. — англ. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/166155 517.5 en Український математичний журнал Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Короткі повідомлення
Короткі повідомлення
spellingShingle Короткі повідомлення
Короткі повідомлення
Ghalanzardekh, S.
Javadi, H.S.
Khoramdel, M.
Polynomial extensions of generalized quasi-Baer rings
Український математичний журнал
description In this paper, we consider the behavior of polynomial rings over generalized quasi-Baer rings and show that the generalized quasi-Baer condition on a ring R is preserved by many polynomial extensions.
format Article
author Ghalanzardekh, S.
Javadi, H.S.
Khoramdel, M.
author_facet Ghalanzardekh, S.
Javadi, H.S.
Khoramdel, M.
author_sort Ghalanzardekh, S.
title Polynomial extensions of generalized quasi-Baer rings
title_short Polynomial extensions of generalized quasi-Baer rings
title_full Polynomial extensions of generalized quasi-Baer rings
title_fullStr Polynomial extensions of generalized quasi-Baer rings
title_full_unstemmed Polynomial extensions of generalized quasi-Baer rings
title_sort polynomial extensions of generalized quasi-baer rings
publisher Інститут математики НАН України
publishDate 2010
topic_facet Короткі повідомлення
url http://dspace.nbuv.gov.ua/handle/123456789/166155
citation_txt Polynomial extensions of generalized quasi-Baer rings / S. Ghalanzardekh, H.S. Javadi, M. Khoramdel // Український математичний журнал. — 2010. — Т. 62, № 5. — С. 698–701. — Бібліогр.: 8 назв. — англ.
series Український математичний журнал
work_keys_str_mv AT ghalanzardekhs polynomialextensionsofgeneralizedquasibaerrings
AT javadihs polynomialextensionsofgeneralizedquasibaerrings
AT khoramdelm polynomialextensionsofgeneralizedquasibaerrings
first_indexed 2025-07-14T20:49:06Z
last_indexed 2025-07-14T20:49:06Z
_version_ 1837656857462702080
fulltext K O R O T K I P O V I D O M L E N N Q UDC 517.5 Sh. Ghalandarzadeh (K.N. Toosi Univ. Technology,Tehran, Iran), H. S. Javadi (Shahed Univ., Tehran, Iran), M. Khoramdel (K.N. Toosi Univ. Technology,Tehran, Iran) POLYNOMIAL EXTENSIONS OF GENERALIZED QUASI-BAER RINGS POLINOMIAL|NI ROZÍYRENNQ UZAHAL|NENYX KVAZIBEROVYX KILEC| In this paper we consider the behavior of polynomial rings over generalized quasi-Baer rings, and we show that the generalized quasi-Baer condition on a ring R is preserved by many polynomial extensions. Rozhlqnuto povedinku polinomial\nyx kilec\ nad uzahal\nenymy kvaziberovymy kil\cqmy i po- kazano, wo uzahal\nena kvaziberova umova wodo kil\cq R zberiha[t\sq pry bahat\ox polinomial\nyx rozßyrennqx. 1. Introduction. Throughout this paper all rings are associative with identity. A ring R is called (quasi-)Baer if the right annihilator of every (right ideal) nonempty subset of R is generated as a right ideal by an idempotent. It is easy to see that the Baer and quasi-Baer properties are left-right symmetric for any ring. The study of Baer rings has its roots in functional analysis. In [1] Kaplansky introduced Baer rings to abstract various properties of von Neumann algebras and complete ∗-regular rings. In [2] Clark uses the quasi-Baer concept to characterize when a finite-dimensional algebra with unity over an algebraically closed field is isomorphic to a twisted matrix units semigroup algebra. The concepts of Baer and quasi-Baer have been investigated by several authors for rings. Every prime ring is a quasi-Baer ring. Since Baer rings are nonsingular, the prime rings R with Z Rr ( ) ≠ 0 are quasi-Baer but not Baer. Ano- ther generalization of Baer rings are p.p.-rings. A ring R is called a right (resp. left) p.p.-ring if every principal right (resp. left) ideal is projective (equivalently, if the right (resp. left) annihilator of any element of R is generated by an idempotent of R ). A ring R is called a p.p.-ring if it is both right and left p.p.-ring. A ring R is said to be generalized right p.p.-ring if for any x R∈ the right annihilator of xn is gene- rated by an idempotent for some positive integer n. Von Neumann regular rings are p.p.-rings, and π-regular rings are generalized p.p.-rings in the same sense as von Neumann regular rings. In [3, 4], Birkenmeier, Kim and Park introduced a principally quasi-Baer ring and used them to generalize many results on reduced (i.e., it has no nonzero nilpotent elements) p.p.-rings. A ring R is called right principally quasi-Baer (or simply right p.q.-Baer) if the right annihilator of a principal right ideal is generated by an idempotent. Similarly, left p.q.-Baer rings can be defined. In [5] Moussavi, Javadi and Hashemi introduced generalized (principally) quasi-Baer ring. A ring R is generalized right (principally) quasi-Baer if for any (principal) right ideal I of R, the right annihilator of I n is generated by an idempotent for some positive integer n, depending on I. For example Z pn , n > 2 ( p is a prime number), is generalized quasi-Baer but is not quasi-Baer. In 1974 Armendariz seems to be the first to consider the behavior of polynomial © SH. GHALANDARZADEH, H. S. JAVADI, M. KHORAMDEL, 2010 698 ISSN 1027-3190. Ukr. mat. Ωurn., 2010, t. 62, # 5 POLYNOMIAL EXTENSIONS OF GENERALIZED QUASI-BAER RINGS 699 rings over Baer rings [6] (Theorem B). In this paper we consider the behavior of polynomial rings over generalized quasi-Baer rings. We used R x[ ] , R[ , , ]x α δ , R x x[ , ]−1 , r XR( ) , l XR( ) and Id( )R for the ring of polynomial over R , the skew polynomial ring over R , the laurent polynomial ring over R , the right and left annihilators of X subset of R and the set of all idempotent of R , respectively. 2. Main results. In this section we prove our main result showing that the generalized quasi-Baer condition on R is preserved by many polynomial extensions. Lemma 1. Let I be an right ideal of the ring R then we have the following assertions: (1) I xn[ ] = ( )[ ]I x n ; (2) r I xR x[ ]( )[ ] = r I xR( )[ ] . Proof. The proof is straightforward. Recall that a ring R is called Armendariz if whenever polynomials f x( ) = a a x a xm m 0 1+ + … + and g x( ) = b b x b x R xn n 0 1+ + … + ∈ [ ] satisfy f x g x( ) ( ) = 0 then a bi j = 0 for all i, j. Let cf denote the set of all coefficients of f x R( ) ∈ . Proposition 1. Let R be a generalized right quasi-Baer and Armendariz ring. Then R x[ ] is a generalized right quasi-Baer ring. Proof. Assume R be a generalized right quasi-Baer and Armendariz ring. Let I be a right ideal of R x[ ] and I0 denote the set of coefficients of all elements of I in R . It is clear that I0 is a right ideal of R , thus there exists e R∈ Id( ) such that r IR n( )0 = eR for some n N∈ . We claim that r IR x n [ ]( ) = eR x[ ] . It is clear that I I x⊆ 0[ ] , then from Lemma 1 eR x[ ] = r I xR x n [ ]( )[ ]0 ⊆ r IR x n [ ]( ) . Conversely let g x( ) = b b x b x r In n R x n 0 1+ + … + ∈ [ ]( ) and a = a a a Ii i ii k n n1 21 0… ∈ =∑ with a Ii j ∈ 0 . Then there exists f Ii j ∈ such that a ci fj i j ∈ . Therefore f x f xi i1 2 ( ) ( )… … f x g xin ( ) ( ) = 0, then a a a bi i i in1 2 … = 0, since R is Armendariz ring. Thus g x( ) ∈ r I xR x n [ ]( )[ ]0 = eR x[ ] . The proposition is proved. We know that, if R be quasi-Baer ring then R x[ ] is quasi-Baer [3] (Theorem 1.2). By Proposition 1 we showed that, if R is an Armendariz generalized right quasi-Baer ring then R x[ ] is a generalized right quasi-Baer ring. Also in Proposition 2 we will prove the converse of Proposition 1 is correct without Armendariz property. But in fact, we do not know of any example of generalized quasi-Baer polynomial ring such that R is a generalized quasi-Baer but R is not Armendariz. Question: Let R be a generalized right quasi-Baer ring. Is R x[ ] generalized right quasi-Baer ring without Armendariz property? Proposition 2. Let R x[ ] be a generalized right quasi-Baer ring then R is a generalized right quasi-Baer ring. Proof. Let R x[ ] be generalized right quasi-Baer ring and I be a right ideal of R . Then there exists an idempotent e x R x( ) [ ]∈ such that r I xR x n [ ]( )[ ] = e x R x( ) [ ] ISSN 1027-3190. Ukr. mat. Ωurn., 2010, t. 62, # 5 700 SH. GHALANDARZADEH, H. S. JAVADI, M. KHORAMDEL for some n N∈ . Let e0 be constant term of e x( ) then e0 2 = e0 . Since I e xn ( ) = = 0, we have I en 0 = 0 therefore e r IR n 0 ∈ ( ) . Thus e R r IR n 0 ⊆ ( ) . Conversely, let b r IR n∈ ( ) then b r I x RR x n∈ [ ]( )[ ] ∩ = e x R x R( ) [ ] ∩ . There- fore we have b = e x h x( ) ( ) for some h x R x( ) [ ]∈ . Thus b = e h0 0 where h0 is constant term of h x( ) so b e R∈ 0 . Hence r IR n( ) = e R0 . The proposition is proved. Proposition 3. Let ∆ be a multiplicatively closed subset of R consisting of central regular element. Then: (1) If R is generalized right quasi-Baer ring then ∆−1R is generalized right quasi-Baer ring. (2) Let Id( )R = Id( )∆−1R . If ∆−1R is generalized right quasi-Baer then R is generalized right quasi-Baer ring. (3) If R x[ ] is generalized right quasi-Baer ring then R x x[ , ]−1 is generalized right quasi-Baer ring. (4) Let Id( )R = Id( )[ , ]x x−1 . I f R x x[ , ]−1 is generalized right quasi-Baer then R is generalized right quasi-Baer ring. Proof. (1) Assume that R is a generalized right quasi-Baer ring. Let I be a right ideal of ∆−1R and I0 = { },a R b a I b∈ ∈ ∈−1 for some ∆ . It is clear I0 ≠ ≠ ∅, I0 ≠ R , I0 � R and ( )∆−1 0I n = ∆−1 0I n . We know I ⊆ ∆−1 0I . Now let c d I− −∈1 1 0∆ such that c ∈∆ , d I∈ 0 . Thus there exists k ∈∆ such that k d I− ∈1 . Since d I∈ 0 , therefore c d−1 = = k dc k I− − ∈1 1 hence ∆− ⊆1 0I I . Now we claim ∆−1 0r IR( ) = r I R∆ ∆− − 1 1 0( ) . Let a b r IR − −∈1 1 0∆ ( ) then ( )( )c d a b− −1 1 = 0 for all c d I− −∈1 1 0∆ , since db = 0. Thus a b r I R − −∈ − 1 1 01∆ ∆( ) , therefore ∆−1 0r IR( ) ⊆ r I R∆ ∆− − 1 1 0( ) . Conversely, let a b r I R − −∈ − 1 1 01∆ ∆( ) then c d a b− −1 1( ) = 0, for all c d I− −∈1 1 0∆ . Thus db = 0 then b r IR∈ ( )0 . Therefore a b r IR − −∈1 1 0∆ ( ) . By hypothesis, r IR n( )0 = eR for some e2 = e R∈ . Thus I en 0 = 0 and so 0 = = ∆−1 0I en = ( )∆−1 0I n = I en . Hence e R∆−1 ⊆ r I R n ∆−1 ( ) . Let a b r I R n− ∈ − 1 1∆ ( ) . Then 0 = I a bn −1 = ( )∆− −1 0 1I a bn = ∆− −1 0 1I a bn and so b r I eRR n∈ =( )0 . Hence a b e R− −∈1 1∆ . Therefore r I R n ∆−1 ( ) = e R∆−1 . (2) Let ∆−1R is generalized right quasi-Baer. We prove that R is generalized right quasi-Baer ring. Let I be a right ideal of R then ∆−1I is right ideal of ∆−1R , thus there exists e R∈ such that e2 = e and r I R n ∆ ∆− − 1 1(( ) ) = e R( )∆−1 for some n N∈ . We prove r I eRR n( ) = . We show that r I eRR n( ) ⊆ . Let b r IR n∈ ( ) then ISSN 1027-3190. Ukr. mat. Ωurn., 2010, t. 62, # 5 POLYNOMIAL EXTENSIONS OF GENERALIZED QUASI-BAER RINGS 701 I bn = 0, thus 0 = ∆−1I bn = ( )∆−1I bn and so b r I e R R n∈ =− − − ∆ ∆ ∆1 1 1(( ) ) ( ) . It follows that b = eb eR∈ . The other side is similarly. (3), (4) Let ∆ = { }, , ,1 2x x … , then ∆− −=1 1R x R x x[ ] [ , ] , and so proof is complete. Recall that for a ring R with a ring endomorphism α : R R→ and α-derivation δ : R R→ , the Ore extension R x[ , , ]α δ of R is the ring obtained by giving the po- lynomial ring over R with the new multiplication xr = α δ( ) ( )r x r+ for all r R∈ . If δ = 0, we write R x[ , ]α for R x[ , , ]α 0 and is called an Ore extension of endo- morphism type (also called a skew polynomial ring). In [7] Kerempa defined the rigid rings. Let α be an endomorphism of R, α is called a rigid endomorphism if r rα( ) = = 0 implies r = 0 for r R∈ . A ring R is called to be α-rigid if there exist a rigid endomorphism α of R . If R be a α-rigid then Id( )R = Id( )[ , , ]R x α δ = = Id( )[ , ]R x α (Corollary 7). Let R be a rigid ring. It is clear that generalized quasi- Baer and quasi-Baer conditions are equivalent. Then if R be α-rigid ring, R is generalized quasi-Baer if and only if R x[ , ]α is generalized quasi-Baer ring [8] (Corollary 12). In Example 1 we show that rigid condition is not superfluous. Example 1. Let Z be the ring of integers and consider the ring Z Z⊕ with the usual addition and multiplication. Then the subring R = {( , )a b Z Z a∈ ⊕ ≡ ≡ b (mod )}2 of Z Z⊕ is commutative reduced ring. Note that only idempotents of R are (0, 0) and (1, 1). Hence from [5] (Example 2.1) R is not generalized right quasi-Baer. Now let α : R R→ be defined by α(( , ))a b = ( , )b a Then α is an au- tomorphism of R. Hence R x[ , ]α is quasi-Baer from [8] (Example 9). 1. Kaplansky I. Rings of operators. – New York: Benjamin, 1965. 2. Clark W. E. Twisted matrix units semigroup algebras // Duke Math. J. – 1967. – 34. – P. 417 – 424. 3. Birkenmeier G. F., Kim J. Y., Park J. K. Polynomial extensions of Baer and quasi-Baer rings // J. Pure and Appl. Algebra. – 2001. – 159. – P. 25 – 42. 4. Birkenmeier G. F., Kim J. Y., Park J. K. Principally quasi-Baer rings // Communs Algebra. – 2001. – 29, # 2. – P. 639 – 660. 5. Mousssavi A., Javadi H. S., Hashemi E. Generalized quasi-Baer rings // Communs Algebra. – 2005. – 33. – P. 2115 – 2129. 6. Armendariz E. P. A note on extensions of Baer and p.p.-rings // J. Austral. Math. Soc. – 1974. – 18. – P. 470 – 473. 7. Kerempa J. Some examples of reduced rings // Algebra Colloq. – 1996. – 3, # 4. – P. 289 – 300. 8. Hong C. Y., Kim N. K., Kwak T. K. Ore extensions of Baer and p.p.-rings // J. Pure and Appl. Algebra. – 2000. – 151. – P. 215 – 226. Received 07.11.08 ISSN 1027-3190. Ukr. mat. Ωurn., 2010, t. 62, # 5