On the convergence of solutions of certain inhomogeneous fourth-order differential equations

The main purpose of this paper is to give sufficient conditions for the convergence of solutions of a certain class of fourth-order nonlinear differential equations using Lyapunov’s second method. Nonlinear functions involved are not necessarily differentiable, but a certain incrementary ratio for a...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автор: Tunc, E.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2010
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/166158
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the convergence of solutions of certain inhomogeneous fourth-order differential equations / E. Tunc // Український математичний журнал. — 2010. — Т. 62, № 5. — С. 714–721. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-166158
record_format dspace
spelling irk-123456789-1661582020-02-19T01:26:42Z On the convergence of solutions of certain inhomogeneous fourth-order differential equations Tunc, E. Короткі повідомлення The main purpose of this paper is to give sufficient conditions for the convergence of solutions of a certain class of fourth-order nonlinear differential equations using Lyapunov’s second method. Nonlinear functions involved are not necessarily differentiable, but a certain incrementary ratio for a function h lies in a closed subinterval of the Routh–Hurwitz interval. Головною метою статті є наведення достатніх умов для збіжності розв'язків деякого класу нелінійних диференціальних рівнянь четвертого порядку з використанням другого методу Ляпунова. Розглядувані нелінійні функції необов'язково диференційовні, але функція h задовольняє деяке відношення приростів, що лежать у замкненому підінтервалі інтервалу Рута-Гурвіца. 2010 Article On the convergence of solutions of certain inhomogeneous fourth-order differential equations / E. Tunc // Український математичний журнал. — 2010. — Т. 62, № 5. — С. 714–721. — Бібліогр.: 8 назв. — англ. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/166158 517.9 en Український математичний журнал Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Короткі повідомлення
Короткі повідомлення
spellingShingle Короткі повідомлення
Короткі повідомлення
Tunc, E.
On the convergence of solutions of certain inhomogeneous fourth-order differential equations
Український математичний журнал
description The main purpose of this paper is to give sufficient conditions for the convergence of solutions of a certain class of fourth-order nonlinear differential equations using Lyapunov’s second method. Nonlinear functions involved are not necessarily differentiable, but a certain incrementary ratio for a function h lies in a closed subinterval of the Routh–Hurwitz interval.
format Article
author Tunc, E.
author_facet Tunc, E.
author_sort Tunc, E.
title On the convergence of solutions of certain inhomogeneous fourth-order differential equations
title_short On the convergence of solutions of certain inhomogeneous fourth-order differential equations
title_full On the convergence of solutions of certain inhomogeneous fourth-order differential equations
title_fullStr On the convergence of solutions of certain inhomogeneous fourth-order differential equations
title_full_unstemmed On the convergence of solutions of certain inhomogeneous fourth-order differential equations
title_sort on the convergence of solutions of certain inhomogeneous fourth-order differential equations
publisher Інститут математики НАН України
publishDate 2010
topic_facet Короткі повідомлення
url http://dspace.nbuv.gov.ua/handle/123456789/166158
citation_txt On the convergence of solutions of certain inhomogeneous fourth-order differential equations / E. Tunc // Український математичний журнал. — 2010. — Т. 62, № 5. — С. 714–721. — Бібліогр.: 8 назв. — англ.
series Український математичний журнал
work_keys_str_mv AT tunce ontheconvergenceofsolutionsofcertaininhomogeneousfourthorderdifferentialequations
first_indexed 2025-07-14T20:49:16Z
last_indexed 2025-07-14T20:49:16Z
_version_ 1837656867533225984
fulltext UDC 517.9 E. Tunç (Gaziosmanpas.a Univ., Turkey) ON THE CONVERGENCE OF SOLUTIONS OF CERTAIN NON-HOMOGENEOUS FOURTH ORDER DIFFERENTIAL EQUATIONS ПРО ЗБIЖНIСТЬ РОЗВ’ЯЗКIВ ДЕЯКИХ НЕОДНОРIДНИХ ДИФЕРЕНЦIАЛЬНИХ РIВНЯНЬ ЧЕТВЕРТОГО ПОРЯДКУ The main purpose of this paper is to give sufficient conditions for the convergence of solutions of a certain class of fourth order nonlinear differential equations with the use of Lyapunov’s second method. Nonlinear functions involved are not necessarily differentiable, but a function h satisfies a certain incremental ratio that lie in the closed sub-interval of the Routh – Hurwitz interval. Головною метою статтi є наведення достатнiх умов для збiжностi розв’язкiв деякого класу нелiнiйних диференцiальних рiвнянь четвертого порядку з використанням другого методу Ляпунова. Розглядуванi нелiнiйнi функцiї необов’язково диференцiйовнi, але функцiя h задовольняє деяке вiдношення прирос- тiв, що лежать у замкненому пiдiнтервалi iнтервалу Рута – Гурвiца. 1. Introduction. The convergence of solutions is very important in the theory and applications of differential equations. In the recent years, the convergence problem has been the subject of investigation by a number of authors for various forms and orders of equations (see, for example, [1 – 8]). In this connection, Afuwape [2] discussed the convergence of the solutions of the differential equations of the form x(iv) + a ... x + b .. x+ g( . x) + h(x) = p(t, x, . x, .. x, ... x) with p(t, x, . x, .. x, ... x) is equals to q(t) + r(t, x, . x, .. x, ... x). During establishment of the results, Afuwape [2] assumed that h was not necessarily differentiable but satisfied an incremental ratio η−1 (h(ξ + η)− h(ξ)) , η 6= 0, which lies in a closed subinterval I0 of the Routh – Hurwitz interval ( 0, (ab− c) c a2 ) , where I0 ≡ [ ∆0, K (ab− c) c a2 ] , (1) ∆0 > 0 and K < 1. In this work, we shall be concerned here with equation of the form x(iv) + f( ... x) + b .. x+ g( . x) + h(x) = p(t, x, . x, .. x, ... x), (2) where b is a positive constant, the functions f, g, h and p are real-valued and continuous for values of their respective arguments and dots denote differentiation with respect to t. Moreover, f(0) = g(0) = h(0) = 0. Using Lyapunov’s second method, our results assert the existence of convergence of solutions with the functions f, g and h are not necessarily differentiable. Definition. Any two solutions x1(t), x2(t) of the equation (2) are said to converge to each other if x2(t)− x1(t)→ 0, . x2(t)− . x1(t)→ 0, .. x2(t)− .. x1(t)→ 0, ... x2(t)− ... x1(t)→ 0 as t→∞. c© E. TUNÇ , 2010 714 ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 5 ON THE CONVERGENCE OF SOLUTIONS OF CERTAIN NON-HOMOGENEOUS FOURTH . . . 715 2. Main results. The main results of this paper are the following. Theorem 1. In addition to the fundamental assumptions imposed on f, g, h and p, we assume that (i) there are positive constants a, a0 such that a ≤ f(w2)− f(w1) w2 − w1 ≤ a0, w2 6= w1; (3) (ii) there are positive constants c, c0 such that c ≤ g(y2)− g(y1) y2 − y1 ≤ c0, y2 6= y1, (4) and abc > c20; (iii) there are constants ∆0 > 0, K < 1 such that for any ξ, η (η 6= 0), the incremental ratio for h satisfies (h(ξ + η)− h(ξ)) η ∈ I0 (5) with I0 as defined (1); (iv) there is a continuous function φ(t) such that∣∣p(t, x2, y2, z2, w2)− p(t, x1, y1, z1, w1) ∣∣ ≤ ≤ φ(t) { |x2 − x1|+ |y2 − y1|+ |z2 − z1|+ |w2 − w1| } holds for arbitrary t, x1, y1, z1, w1, x2, y2, z2 and w2. Then if there exists a constant D1 such that if t∫ 0 φν(τ)dτ ≤ D1t (6) for some ν, with 1 ≤ ν ≤ 2, then all solutions of (2) converge. Theorem 2. Assume the conditions of Theorem 1 are satisfied. Let x1(t), x2(t) be any two solutions of (2). Then for each fixed ν, 1 ≤ ν ≤ 2, there are constants D2, D3 and D4 such that for t2 ≥ t1, S(t2) ≤ D2S(t1) exp −D3(t2 − t1) +D4 t2∫ t1 φν(τ)dτ  , (7) where S(t) = { [x2(t)−x1(t)]2 +[ . x2(t)− . x1(t)]2 +[ .. x2(t)− .. x1(t)]2 +[ ... x2(t)− ...x1(t)]2 } . (8) We have the following corollaries when x1(t) = 0 and t1 = 0. Corollary 1. Suppose that p = 0 in (2) and suppose further that conditions (i), (ii) and (iii) of Theorem 1 hold, then the trivial solution of (2) is exponentially stable in the large. ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 5 716 E. TUNÇ Also, if we put ξ = 0 in (5) with η (η 6= 0) arbitrary, we get: Corollary 2. If p = 0 and hypotheses (i), (ii) and (iii) of Theorem 1 hold for arbitrary η (η 6= 0), and ξ = 0, then there exists a constant D5 > 0 such that every solution x(t) of (2) satisfies |x(t)| ≤ D5, ∣∣ .x(t) ∣∣ ≤ D5, ∣∣..x(t) ∣∣ ≤ D5, ∣∣...x(t) ∣∣ ≤ D5. Proof of Theorem 2. It is convenient here to consider (2) as the equivalent system . x = y, . y = z, . z = w, . w = −f(w)− bz − g(y)− h(x) + p(t, x, y, z, w). (9) Let (xi(t), yi(t), zi(t), wi(t)) , i = 1, 2, be any two solutions of (9) such that inequali- ties (3), (4) and ∆0 ≤ h(x2)− h(x1) x2 − x1 ≤ K(ab− c)c a2 are satisfied. The basic tool in the proofs of the convergence theorems will be the function 2V = c2ε(1− ε)x2 + ac [ (D − 1) + ε ] y2 + 2c [ ε+ (D − 1) ] yz+ +εDw2 + b(D − 1)z2 + 2εaDzw + εa2Dz2+ + [ (1− ε)D − 1 ] [az + w]2 + [ c(1− ε)x+ by + az + w ]2 , (10) where 0 < ε < 1, ab − c > δ > 0, δ = abε and D − 1 = δ + cε ab− c− δ . Indeed we can rearrange the terms in (10) to obtain 2V = 2V1 + 2V2 + 2V3, where 2V1 = ac[(D − 1) + ε]y2 + 2c[ε+ (D − 1)]yz + b(D − 1)z2, 2V2 = εa2Dz2 + 2εaDzw + εDw2 and 2V3 = c2ε(1− ε)x2 + [(1− ε)D − 1][az + w]2 + [c(1− ε)x+ by + az + w]2. We note that V3 obviously positive definite. Also Vi, i = 1, 2, regarded as quadratic forms in y and z, z and w respectively is positive and non-negative. Let us recall that a real 2× 2 matrix ( a1 a2 a3 a4 ) is positive definite if and only if it is symmetric, and the elements a1, a4 and a1a4−a2a3 are non-negative. Thus we can rearrange the terms in V1 as (y, z) ( ac[(D − 1) + ε] c[ε+ (D − 1)] c[ε+ (D − 1)] b(D − 1) )( y z ) , ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 5 ON THE CONVERGENCE OF SOLUTIONS OF CERTAIN NON-HOMOGENEOUS FOURTH . . . 717 from which we have as a condition for the positive definite. Similarly, V2 is non-negative. Hence V is positive definite. We can therefore find a constant D6 > 0, such that D6 ( x2 + y2 + z2 + w2 ) ≤ V. (11) Furthermore, by using Schwartz inequality |y| |z| ≤ 1 2 ( y2 + z2 ) , it can be easily obtai- ned that V ≤ D7 ( x2 + y2 + z2 + w2 ) , (12) where D7 is a positive constant. Using inequalities (11) and (12), we have D6 ( x2 + y2 + z2 + w2 ) ≤ V ≤ D7 ( x2 + y2 + z2 + w2 ) . The following result can be easily verified for W ≡ V. Lemma 1. Let the function W (t) = W ( x2 − x1, y2 − y1, z2 − z1, w2 − w1 ) be defined by 2W = c2ε(1− ε) (x2 − x1)2 + ac[(D − 1) + ε] (y2 − y1)2 + +2c[ε+ (D − 1)] (y2 − y1) (z2 − z1) + εD (w2 − w1)2 + +b(D − 1) (z2 − z1)2 + 2εaD (z2 − z1) (w2 − w1) + εa2D (z2 − z1)2 + +[(1− ε)D − 1][a (z2 − z1) + (w2 − w1)]2+ +[c(1− ε) (x2 − x1) + b (y2 − y1) + a (z2 − z1) + (w2 − w1)]2, where 0 < ε < 1 and W (0, 0, 0, 0) = 0, then there exist finite constants D6 > 0, D7 > 0 such that D6 { (x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 + (w2 − w1)2 } ≤W ≤ ≤ D7 { (x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 + (w2 − w1)2 } . (13) If we denote the function W (t) by W ( x2(t) − x1(t), y2(t) − y1(t), z2(t) − z1(t), w2(t)−w1(t) ) , and using the fact that the solutions (xi, yi, zi, wi) , i = 1, 2, satisfy the system (9), then S(t) as defined in (8) becomes S(t) = { [x2(t)− x1(t)]2 + [y2(t)− y1(t)]2 + [z2(t)− z1(t)]2 + [w2(t)− w1(t)]2 } . Next we prove a result on the derivative of W (t) with respect to t. Lemma 2. Let the hypotheses (i), (ii) and (iii) of Theorem 1 hold, then there exist positive finite constants D8 and D9 such that dW dt ≤ −2D8S +D9S 1/2 |θ| , (14) where θ = p(t, x2, y2, z2, w2)− p(t, x1, y1, z1, w1). ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 5 718 E. TUNÇ Proof. Using the system (9), a direct computation of dW dt gives after simplification dW dt = −W1 +W2, (15) where W1 = c(1− ε)H(x2, x1)(x2 − x1)2 + bcε(y2 − y1)2+ +δD(z2 − z1)2 +D(F − a)(w2 − w1)2+ + ( G(y2, y1)− c )[ c(1− ε)(x2 − x1) + b(y2 − y1)+ +aD(z2 − z1) +D(w2 − w1) ] (y2 − y1) +H(x2, x1) [ b(y2 − y1)+ +aD(z2 − z1) +D(w2 − w1) ] (x2 − x1)+ +(F (w2, w1)− a) [ c(1− ε)(x2 − x1) + b(y2 − y1) + aD(z2 − z1) ] (w2 − w1), W2 = θ(t) [ c(1− ε)(x2 − x1) + b(y2 − y1) + aD(z2 − z1) +D(w2 − w1) ] with F (w2, w1) = f(w2)− f(w1) w2 − w1 , w2 6= w1, G(y2, y1) = g(y2)− g(y1) y2 − y1 , y2 6= y1, H(x2, x1) = h(x2)− h(x1) x2 − x1 , x2 6= x1. Let χ1 = G(y2, y1) − c ≥ 0 for y2 6= y1 and χ2 = F (w2, w1) − a ≥ 0 for w2 6= w1. Furthermore let H (x2, x1) be denote simply by H, and define 6∑ i=1 αi = 1, 6∑ i=1 βi = 1, 4∑ i=1 γi = 1, 6∑ i=1 ξi = 1, where αi > 0, βi > 0, γi > 0 and ξi > 0. Then W1 re-arranged as W1 = W11 +W12 +W13 +W14 +W15 +W16 +W17 +W18 +W19 +W21, where W11 = { α1c(1− ε)H (x2 − x1)2 + b (β1cε+ χ1) (y2 − y1)2 + +γ1δD (z2 − z1)2 + ξ1Dχ2 (w2 − w1)2 } , W12 = { β2bcε (y2 − y1)2 + χ1c(1− ε) (x2 − x1) (y2 − y1) + +α2c(1− ε)H (x2 − x1)2 } , W13 = { β3bcε (y2 − y1)2 + χ1aD (y2 − y1) (z2 − z1) + γ2δD (z2 − z1)2 } , W14 = { β4bcε (y2 − y1)2 + χ1D (y2 − y1) (w2 − w1) + ξ2Dχ2 (w2 − w1)2 } , ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 5 ON THE CONVERGENCE OF SOLUTIONS OF CERTAIN NON-HOMOGENEOUS FOURTH . . . 719 W15 = { α3c(1− ε)H (x2 − x1)2 + bH (x2 − x1) (y2 − y1) + β5bcε (y2 − y1)2 } , W16 = { α4c(1− ε)H (x2 − x1)2 + aDH (x2 − x1) (z2 − z1) + γ3δD (z2 − z1)2 } , W17 = { α5c(1− ε)H (x2 − x1)2 + +DH (x2 − x1) (w2 − w1) + ξ3Dχ2 (w2 − w1)2 } , W18 = { α6c(1− ε)H (x2 − x1)2 + χ2c(1− ε) (x2 − x1) (w2 − w1) + +ξ4Dχ2 (w2 − w1)2 } , W19 = { β6bcε (y2 − y1)2 + χ2b (y2 − y1) (w2 − w1) + ξ5Dχ2 (w2 − w1)2 } and W21 = { γ4δD (z2 − z1)2 + χ2aD (z2 − z1) (w2 − w1) + ξ6Dχ2 (w2 − w1)2 } . Since each W1i, i = 1, . . . , 9, and W21 are quadratic in their respective variables, then by using the fact that any quadratic of the form Ar2 + Brs + Cs2 is non-negative if 4AC −B2 ≥ 0, it follows that W12 ≥ 0 if χ2 1 ≤ 4α2β2bε∆0 1− ε , W13 ≥ 0 if χ2 1 ≤ 4γ2β3bcεδ a2D , W14 ≥ 0 if χ2 1 ≤ 4β4ξ2bcεχ2 D , W15 ≥ 0 if H ≤ 4α3β5c 2ε(1− ε) b , W16 ≥ 0 if H ≤ 4α4γ3c(1− ε)δ a2D , W17 ≥ 0 if H ≤ 4α5ξ3c(1− ε)χ2 D , W18 ≥ 0 if χ2 ≤ 4α6ξ4D∆0 c(1− ε) , W19 ≥ 0 if χ2 ≤ 4β6ξ5cεD b , and W21 ≥ 0 if χ2 ≤ 4γ4ξ6δ a2 . Thus W1 ≥W11 provided that above inequalities are satisfied in addition to 0 ≤ χ2 1 ≤ 4 min { α2β2bε∆0 1− ε , γ2β3bcεδ a2D , β4ξ2bcεχ2 D } , 0 ≤ χ2 ≤ 4 min { α6ξ4D∆0 c(1− ε) , β6ξ5cεD b , γ4ξ6δ a2 } ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 5 720 E. TUNÇ and H lying in I0 ≡ [ ∆0, K (ab− c) c a2 ] , where I0 is a closed sub-interval of the Routh – Hurwitz interval ( 0, (ab− c) c a2 ) , and K = ( 4 ab− c ) min { α3β5a 2cε(1− ε) b , α4γ3(1− ε)δ D , α5γ3a 2(1− ε)χ2 D } < 1. On choosing 2D8 = min {c(1− ε)∆0, bcε, δD,Dχ2} , we have W1 ≥W11 ≥ 2D8S (16) and if D9 = 2 max {c(1− ε), b, aD,D} then W2 ≤ D9S 1/2 |θ| . (17) Combining (16) and (17) in (15), inequality (14) is obtained. At last the conclusion to the proof of Theorem 2 will now be given. For this purpose, let ν be any constant in the range 1 ≤ ν ≤ 2 and set σ = 1− ν 2 , so that 0 ≤ σ ≤ 1 2 . We re-write (14) in the form dW dt +D8S ≤ D9S σW ∗, (18) where W ∗ = S1/2−σ ( |θ| −D10S 1/2 ) (19) with D10 = D8 D9 . If |θ| < D10S 1/2, then W ∗ < 0. On the other hand, if |θ| ≥ D10S 1/2, then the definition of W ∗ in (19) gives at least W ∗ ≤ S(1/2−σ) |θ| and also S1/2 ≤ |θ| D10 . Thus S(1−2σ)/2 ≤ [ |θ| D10 ](1−2σ) and from this together with W ∗ follows W ∗ ≤ D11 |θ|2(1−σ) , where D11 = D (σ−1) 10 . On using the estimate on W ∗ in inequality (18), we obtain dW dt +D8S ≤ D9D11S σ |θ|2(1−σ) ≤ D12S σφ2(1−σ)S(1−σ), where D12 > 2D9D11, which follows from∣∣p(t, x2, y2, z2, w2)− p(t, x1, y1, z1, w1) ∣∣ ≤ ≤ φ(t) { |x2 − x1|+ |y2 − y1|+ |z2 − z1|+ |w2 − w1| } . ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 5 In view of the fact that ν = 2(1− σ), we obtain dW dt ≤ −D8S +D12φ νS, and on using inequalities (13), we have dW dt + ( D13 −D14φ ν(t) ) W ≤ 0 (20) for some constants D13 and D14. On integrating the estimate (20) from t1 to t2, t2 ≥ t1, we have W (t2) ≤W (t1) exp −D13(t2 − t1) +D14 t2∫ t1 φν(τ)dτ  . Again, using Lemma 1, we obtain (7), with D2 = D7D −1 6 , D3 = D13 and D4 = D14. Theorem 2 is proved. Proof of Theorem 1. The proof follows from the estimate (7) and the condition (6) on φ(t). On Choosing D1 = D3D −1 4 in (6). Then, as t = (t2 − t1) → ∞, S(t) → 0, which proves that as t→∞, x2(t)− x1(t)→ 0, . x2(t)− . x1(t)→ 0, .. x2(t)− .. x1(t)→ 0, ... x2(t)− ... x1(t)→ 0. The theorem is proved. Remark. If φ(t) ≡ D15 (a constant), our results will still remain valid. 1. Afuwape A. U., Omeike M. O. Convergence of solutions of certain non-homogeneous third order ordinary differential equations // Kragujevac J. Math. – 2008. – 31. – P. 5 – 16. 2. Afuwape A. U. Convergence of the solutions for the equation x(iv) + a ... x + b .. x + g( . x) + h(x) = = p(t, x, . x, .. x, ... x ) // Int. J. Math. and Math. Sci. – 1988. – 11, № 4. – P. 727 – 734. 3. Afuwape A. U. On the convergence of solutions of certain fourth-order differential equations // An. şti. Univ. Iaşi. Sec. A (N.S.). – 1981. – 27. – P. 133 – 138. 4. Ezeilo J. O. C. A note on the convergence of solutions of certain second order differential equations // Port. math. – 1965. – 24, Fasc. 1. – P. 49- – 58. 5. Ezeilo J. O. C. New properties of the equation ... x + a .. x + b . x + h(x) = P (t, x, . x, .. x) for certain special values of the incremental ratio y−1 {h(x + y)− h(x)} // Equat. different. et function. non-lineares / Eds P. Janssens, J. Mawhin and N. Rouche. – Paris: Hermann Publ., 1973. – P. 447 – 462. 6. Tejumola H. O. On the convergence of solutions of certain third order differential equations // Ann. mat. pura ed appl. (IV). – 1968. – 78. – P. 377 – 386. 7. Tejumola H. O. Convergence of solutions of certain ordinary third order differential equations // Ann. mat. pura ed appl. – 1972. – 94. – P. 243 – 256. 8. Tunç E. On the convergence of solutions of certain third-order differential equations // Discrete Dynamics in Nature and Soc. – 2009. – P. 1 – 12. Received 05.08.09