Quantitative convergence theorems for a class of Bernstein–Durrmeyer operators preserving linear functions

We supplement recent results on a class of Bernstein–Durrmeyer operators preserving linear functions. This is done by discussing two limiting cases and proving quantitative Voronovskaya-type assertions involving the first-order and second-order moduli of smoothness. The results generalize and improv...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Gonska, H., Peltenia, R.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2010
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/166181
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Quantitative convergence theorems for a class of Bernstein–Durrmeyer operators preserving linear functions / H. Gonska, R.Peltenia // Український математичний журнал. — 2010. — Т. 62, № 7. — С. 913–922. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-166181
record_format dspace
spelling irk-123456789-1661812020-02-19T01:26:02Z Quantitative convergence theorems for a class of Bernstein–Durrmeyer operators preserving linear functions Gonska, H. Peltenia, R. Статті We supplement recent results on a class of Bernstein–Durrmeyer operators preserving linear functions. This is done by discussing two limiting cases and proving quantitative Voronovskaya-type assertions involving the first-order and second-order moduli of smoothness. The results generalize and improve earlier statements for Bernstein and genuine Bernstein–Durrmeyer operators. Отримані нещодавно результати щодо одного класу операторів Бернштейна-Дуррмейєра, які зберігають лінійні функції, доповнено шляхом вивчення двох граничних випадків та доведення кількісних тверджень типу Вороновської, що містять модулі гладкості першого та другого порядків. Результати узагальнюють та покращують попередні твердження для операторів Бернпггейна та справжніх операторів Бернштейна - Дуррмейєра. 2010 Article Quantitative convergence theorems for a class of Bernstein–Durrmeyer operators preserving linear functions / H. Gonska, R.Peltenia // Український математичний журнал. — 2010. — Т. 62, № 7. — С. 913–922. — Бібліогр.: 8 назв. — англ. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/166181 517.5 en Український математичний журнал Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Статті
Статті
spellingShingle Статті
Статті
Gonska, H.
Peltenia, R.
Quantitative convergence theorems for a class of Bernstein–Durrmeyer operators preserving linear functions
Український математичний журнал
description We supplement recent results on a class of Bernstein–Durrmeyer operators preserving linear functions. This is done by discussing two limiting cases and proving quantitative Voronovskaya-type assertions involving the first-order and second-order moduli of smoothness. The results generalize and improve earlier statements for Bernstein and genuine Bernstein–Durrmeyer operators.
format Article
author Gonska, H.
Peltenia, R.
author_facet Gonska, H.
Peltenia, R.
author_sort Gonska, H.
title Quantitative convergence theorems for a class of Bernstein–Durrmeyer operators preserving linear functions
title_short Quantitative convergence theorems for a class of Bernstein–Durrmeyer operators preserving linear functions
title_full Quantitative convergence theorems for a class of Bernstein–Durrmeyer operators preserving linear functions
title_fullStr Quantitative convergence theorems for a class of Bernstein–Durrmeyer operators preserving linear functions
title_full_unstemmed Quantitative convergence theorems for a class of Bernstein–Durrmeyer operators preserving linear functions
title_sort quantitative convergence theorems for a class of bernstein–durrmeyer operators preserving linear functions
publisher Інститут математики НАН України
publishDate 2010
topic_facet Статті
url http://dspace.nbuv.gov.ua/handle/123456789/166181
citation_txt Quantitative convergence theorems for a class of Bernstein–Durrmeyer operators preserving linear functions / H. Gonska, R.Peltenia // Український математичний журнал. — 2010. — Т. 62, № 7. — С. 913–922. — Бібліогр.: 8 назв. — англ.
series Український математичний журнал
work_keys_str_mv AT gonskah quantitativeconvergencetheoremsforaclassofbernsteindurrmeyeroperatorspreservinglinearfunctions
AT pelteniar quantitativeconvergencetheoremsforaclassofbernsteindurrmeyeroperatorspreservinglinearfunctions
first_indexed 2025-07-14T20:55:58Z
last_indexed 2025-07-14T20:55:58Z
_version_ 1837657290145005568
fulltext UDC 517.5 H. Gonska (Univ. Duisburg-Essen, Germany), R. Păltănea (Transilvania Univ., Braşov, Romania) QUANTITATIVE CONVERGENCE THEOREMS FOR A CLASS OF BERNSTEIN – DURRMEYER OPERATORS PRESERVING LINEAR FUNCTIONS ТЕОРЕМИ ПРО КIЛЬКIСНУ ЗБIЖНIСТЬ ДЛЯ ОДНОГО КЛАСУ ОПЕРАТОРIВ БЕРНШТЕЙНА – ДУРРМЕЙЄРА, ЯКI ЗБЕРIГАЮТЬ ЛIНIЙНI ФУНКЦIЇ We supplement recent results on a class of Bernstein – Durrmeyer operators preserving linear functions. This is done by discussing two limiting cases and proving quantitative Voronovskaya-type assertions involving the first and second order moduli of smoothness. The results generalize and improve earlier statements for Bernstein and genuine Bernstein – Durrmeyer operators. Отриманi нещодавно результати щодо одного класу операторiв Бернштейна – Дуррмейєра, якi зберi- гають лiнiйнi функцiї, доповнено шляхом вивчення двох граничних випадкiв та доведення кiлькiсних тверджень типу Вороновської, що мiстять модулi гладкостi першого та другого порядкiв. Результати уза- гальнюють та покращують попереднi твердження для операторiв Бернштейна та справжнiх операторiв Бернштейна – Дуррмейєра. 1. Introduction. In the present paper we continue our research on a class of one pa- rameter operators Uρn of Bernstein – Durrmeyer type which preserve linear functions and constitute a link between the so-called ”genuine Bernstein – Durrmeyer operators”Un and the classical Bernstein operators Bn. A predecessor of this paper (see [1]) will ap- pear soon in the Czechoslovak Mathematical Journal. Investigation on the operators in question started in a 2007 note by the second author (see [2]). In both articles more pertinent references can be found. We recall some basic facts. Denote by LB [0, 1] the space of bounded Lebesgue integrable functions on [0, 1] and by Πn, the space of polynomials of degree at most n ∈ N0. The following definition was first given in [2]. Definition 1.1. Let ρ > 0 and n ∈ N, n ≥ 1. Define the operator Uρn : LB [0, 1]→ → Πn for f ∈ LB [0, 1] and x ∈ [0, 1] by Uρn(f, x) := n∑ k=0 F ρn,k(f) · pn,k(x) := := n−1∑ k=1  1∫ 0 f(t)µρn,k(t)dt  pn,k(x) + f(0)(1− x)n + f(1)xn. The fundamental functions pn,k are defined by pn,k(x) = ( n k ) xk(1− x)n−k, 0 ≤ k ≤ n, k, n ∈ N, x ∈ [0, 1]. Moreover, for 1 ≤ k ≤ n− 1, c© H. GONSKA, R. PĂLTĂNEA, 2010 ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 7 913 914 H. GONSKA, R. PĂLTĂNEA µρn,k(t) := tkρ−1(1− t)(n−k)ρ−1 B(kρ, (n− k)ρ) and B(x, y) = 1∫ 0 tx−1(1− t)y−1dt, x, y > 0, is Euler’s Beta function. For ρ = 1 we obtain Un(f, x) = (n− 1) n−1∑ k=1  1∫ 0 f(t)pn−2,k−1(t)dt  pn,k(x)+ +(1− x)nf(0) + xnf(1), f ∈ LB [0, 1], while, for ρ→∞, for each f ∈ C[0, 1], the sequence Uρn(f, x) uniformly converges to the Bernstein polynomial Bn(f, x) = n∑ k=0 f ( k n ) pn,k(x). For several further properties of the Uρn the reader is referred to our recent article [1] from which we will also use some results in the present note. Here we supplement the results from [1]. In particular, we discuss the case ρ → 0, consider iterates of Uρn and prove two quantitative Voronovskaya-type assertions, thus generalizing and improving corresponding earlier results for Un and Bn. Details will be given below. 2. Previous results on moments. In what follows we write ej(t) = tj , t ∈ [0, 1], for j ≥ 0. Two basic properties of the functionals F ρn,k are the following: F ρn,k(e0) = 1, F ρn,k(e1) = k n , 0 ≤ k ≤ n. This implies Uρn(e0) = e0, Uρn(e1) = e1, i.e., the operators Uρn preserve linear function. Clearly this fact has an impact on the moments and the Voronovskaya-type theorem. In the following we use the definition Ψ(t) := t(1− t), t ∈ [0, 1]. In [1] we proved the following formulae for the moments of Uρn. Theorem 2.1. For x, y ∈ [0, 1], we have Uρn(e0, x) = 1, Uρn(e1 − ye0, x) = x− y, and, for r ≥ 1, Uρn((e1 − ye0)r+1, x) = ρΨ(x) nρ+ r ( Uρn((e1 − ye0)r, x) )′ x + + (1− 2y)r + nρ(x− y) nρ+ r Uρn((e1 − ye0)r, x)+ + rΨ(y) nρ+ r Uρn((e1 − ye0)r−1, x). ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 7 QUANTITATIVE CONVERGENCE THEOREMS FOR A CLASS OF BERNSTEIN – DURRMEYER . . . 915 For brevity we use Mr(x) := Mn,r(x) := Mρ n,r(x) := Uρn((e1 − xe0)r, x), n ≥ 1, r ≥ 0, x ∈ [0, 1], in what follows. It is immediate that (Mn,r(x))′ = ( Uρn((e1 − ye0)r, x) )′ x ∣∣∣ y=x − rMr−1(x). (2.1) Using (2.1) and putting y = x in Theorem 2.1 we obtain the following recursion for the central moments. Corollary 2.1. Mn,0(x) = 1, Mn,1(x) = 0, and, for r ≥ 1, Mn,r+1(x) = r(ρ+ 1)Ψ(x) nρ+ r Mn,r−1(x) + r(1− 2x) nρ+ r Mn,r(x) + ρΨ(x) nρ+ r (Mn,r(x))′. In particular: Mn,2(x) = (ρ+ 1)Ψ(x) nρ+ 1 , Mn,3(x) = (ρ+ 1)(ρ+ 2)Ψ(x)Ψ′(x) (nρ+ 1)(nρ+ 2) , Mn,4(x) = 3ρ(ρ+ 1)2Ψ2(x)n (nρ+ 1)(nρ+ 2)(nρ+ 3) + + −6(ρ+ 1)(ρ2 + 3ρ+ 3)Ψ2(x) + (ρ+ 1)(ρ+ 2)(ρ+ 3)Ψ(x) (nρ+ 1)(nρ+ 2)(nρ+ 3) . 3. The case 0 < ρ < 1 revisited. Note that the above equalities for Uρn are true for 0 < ρ. It is thus of interest to describe the behavior of Uρn as ρ → 0. We show first that, for any fixed n ≥ 1, Uρn(f ;x) uniformly converges with a certain speed to the first Bernstein polynomial of f, i.e., to the linear function B1(f ;x) = f(0)(1− x) + f(1) · x. To this end we use the following result which essentially comes from the first author’s dissertation (cf. [3, p. 117]); see also the proof of Theorem 2.1 in [4]. Theorem 3.1. Let L : C[0, 1]→ C[0, 1] be a positive linear operator reproducing linear functions. Then for f ∈ C[0, 1] and x ∈ [0, 1] the following inequality holds:∣∣L(f ;x)−B1(f ;x) ∣∣ ≤ 9 4 ω2 ( f ; √ L(e1 · (e0 − e1);x) ) . Proof. For g ∈ C2[0, 1] arbitrary we have∣∣L(f ;x)−B1(f ;x) ∣∣ ≤ |(L−B1)(f − g;x)|+ |(L−B1)(g;x)| ≤ ≤ (‖L‖+ ‖B1‖)‖f − g‖∞ + |(L−B1)(g;x)| = = 2‖f − g‖∞ + |(L−B1)(g;x)|. ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 7 916 H. GONSKA, R. PĂLTĂNEA Since both L and B1 reproduce linear functions, we have L(B1g) = B1(B1g) = B1g ∈ Π1, giving ∣∣(L−B1)(g;x) ∣∣ = |L(g;x)−B1(g;x)− L(B1g;x) +B1(B1g;x)| = = |L(g −B1g;x)| ≤ L(|g −B1g|;x) ≤ ≤ 1 2 ‖g′′‖∞L(e1(e0 − e1);x). Thus ∣∣L(f ;x)−B1(f ;x) ∣∣ ≤ 2‖f − g‖∞ + 1 2 ‖g′′‖∞ L(e1(e0 − e1);x). We now use Lemma 2 in [5] (also published in [6]) showing that for 0 < h ≤ 1 2 fixed and any ε > 0 there is a polynomial p = p(h, ε) such that ‖f − p‖∞ ≤ 3 4 ω2(f ;h) + ε, and ‖p′′‖∞ ≤ 3 2h2 ω2(f ;h). In the above we take g = p and arrive at∣∣L(f ;x)−B1(f ;x) ∣∣ ≤ ≤ 3 2 ω2(f ;h) + 2ε+ 3 4h2 L(e1(e0 − e1);x)ω2(f ;h). If L(e1(e0 − e1);x) = 0, then ∣∣L(f ;x) − B1(f ;x) ∣∣ ≤ 3 2 ω2(f ;h) + 2ε for h and ε arbitrarily small. Hence in this case ∣∣L(f ;x)−B1(f ;x) ∣∣ = 0, and the inequality of the theorem is true. Otherwise we take h = √ L(e1(e0 − e1);x) and let ε tend to zero. This shows that the inequality is true for all cases of x ∈ [0, 1]. Theorem 3.1 is proved. It is now easy to derive the following theorem. Theorem 3.2. For Uρn, 0 < ρ <∞, n ≥ 1, we have ∣∣Uρn(f ;x)−B1(f ;x) ∣∣ ≤ 9 4 ω2 ( f ; √ nρ− ρ nρ+ 1 · ψ(x) ) . In particular, for any fixed n, we have lim ρ→0 Uρnf = B1f uniformly. ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 7 QUANTITATIVE CONVERGENCE THEOREMS FOR A CLASS OF BERNSTEIN – DURRMEYER . . . 917 Proof. It is only necessary to observe that Uρn(e1(e0 − e1);x) = Uρn(e1;x)− Uρn(e2;x) = = x− x2 − [ Uρn(e2;x)− x2 ] = x(1− x)−Mρ n,2(x) = = x(1− x)− ρ+ 1 nρ+ 1 x(1− x) = nρ− ρ nρ+ 1 ψ(x). Theorem 3.2 is proved. It is also interesting to describe the convergence to f(x) for 0 < ρ < 1 fixed. In fact, there is uniform convergence for n→∞, however, getting slower and slower as ρ approaches 0. Using Corollary 2.2.1 on p. 31 of the second author’s book [7], we have the following theorem. Theorem 3.3. For 0 < ρ <∞, n ≥ 1, f ∈ C[0, 1] and x ∈ [0, 1] there holds ∣∣Uρn(f ;x)− f(x) ∣∣ ≤ (1 + 1 2 n(ρ+ 1) nρ+ 1 ) ω2 ( f ; √ x(1− x) n ) . Proof. The inequality is trivially true if x ∈ {0, 1}. Otherwise we put h = = √ x(1− x) n in the theorem cited and arrive immediately at the upper bound claimed. Theorem 3.3 is proved. Remark 3.1. The inequality of Theorem 3.3 can also be derived from Theorem 5.2, formula (5.3), case r = 0 in [1]. For a similar inequality see Theorem 2.3, inequal- ity (2.11) in [2]. In view of n(ρ+ 1) nρ+ 1 ↗ ρ+ 1 ρ for n → ∞, the constant in front of ω2(f ; . . .) be- comes arbitrarily large for ρ close to 0. However, uniform convergence is still warranted for n→∞. We have seen before that the situation is different for n fixed and ρ→ 0. Remark 3.2. The linear function B1f is also the uniform limit of over-iterated operator images [Uρn]mf, if m → ∞. Here n ≥ 1 and 0 < ρ < ∞ are fixed. In fact, using Corollary 2.4 in [4] it is easy to see that∣∣[Uρn]m(f ;x)−B1(f ;x) ∣∣ ≤ ≤ 9 4 ω2 ( f ; √( 1− ρ+ 1 nρ+ 1 )m ψ(x) ) , f ∈ C[0, 1], x ∈ [0, 1]. For n ≥ 1, 0 < ρ < ∞, one has 0 ≤ 1 − ρ+ 1 nρ+ 1 < 1, and this implies uniform convergence as m→∞. 4. Quantitative Voronovskaya theorem with first order modulus. In the present section we prove a quantitative Voronoskaja theorem using the least concave majorant of the first order modulus of continuity. This will be based upon the following general theorem. Theorem 4.1 (see [8]). Let q ∈ N0, f ∈ Cq[0, 1] and L : C[0, 1] → C[0, 1] be a positive linear operator. Then ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 7 918 H. GONSKA, R. PĂLTĂNEA∣∣∣∣∣L(f, x)− q∑ r=0 L((e1 − x)r, x) f (r)(x) r! ∣∣∣∣∣ ≤ ≤ L(|e1 − x|q, x) q! ω̃ ( f (q), 1 q + 1 L(|e1 − x|q+1, x) L(|e1 − x|q, x) ) . Here ω̃ is the least concave majorant of the first order modulus of continuity. We use the above theorem for q = 2, also recalling that Uρn(ei) = ei, i = 0, 1. This leads to the following theorem. Theorem 4.2. For Uρn, given as above, f ∈ C2[0, 1], n ≥ 2 and x ∈ (0, 1) we have ∣∣∣∣nρ+ 1 ρ+ 1 [Uρn(f, x)− f(x)]− 1 2 Ψ(x)f ′′(x) ∣∣∣∣ ≤ ≤ 1 2 Ψ(x)ω̃ ( f ′′, 1 3 √ mρ √ ρ2 (nρ+ 1)2 + ρΨ(x) nρ+ 1 ) , (4.1) where mρ = max { 5ρ2 + 13ρ+ 12 ρ2 , ( 7ρ2 + 3ρ+ 2 ρ(ρ+ 1) )2 } . Proof. The general estimate from Theorem 4.1 reduces to∣∣∣∣Uρn(f, x)− f(x)− 1 2 Uρn((e1 − x)2, x)f ′′(x) ∣∣∣∣ ≤ ≤ 1 2 Uρn((e1 − x)2, x) ω̃ ( f ′′, 1 3 Uρn(|e1 − x|3, x) Uρn((e1 − x)2, x) ) . Using the above representation of the second moment this turns into ∣∣∣∣Uρn(f, x)− f(x)− 1 2 (ρ+ 1)Ψ(x) nρ+ 1 f ′′(x) ∣∣∣∣ ≤ ≤ 1 2 (ρ+ 1)Ψ(x) nρ+ 1 ω̃ ( f ′′, 1 3 Uρn(|e1 − x|3, x) Uρn((e1 − x)2, x) ) . (4.2) We now consider two cases. Case 4.1. x ∈ [ ρ nρ+ 1 , 1− ρ nρ+ 1 ] . Using the Cauchy – Schwarz inequality we first observe that Uρn(|e1 − x|3, x) Uρn((e1 − x)2, x) ≤ √ Uρn((e1 − x)4, x) Uρn((e1 − x)2, x) = √ M4(x) M2(x) . The above representations of the two moments show that M4(x) M2(x) = (3ρ(ρ+ 1)n− 6(ρ2 + 3ρ+ 3))Ψ(x) + (ρ+ 2)(ρ+ 3) (nρ+ 2)(nρ+ 3) ≤ ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 7 QUANTITATIVE CONVERGENCE THEOREMS FOR A CLASS OF BERNSTEIN – DURRMEYER . . . 919 ≤ 1 (nρ+ 2)(nρ+ 3) [ 3ρ(ρ+ 1)n+ (ρ+ 2)(ρ+ 3) Ψ(x) ] Ψ(x). In the above interval we have Ψ(x) ≥ ρ nρ+ 1 ( 1− ρ nρ+ 1 ) = ρ[(n− 1)ρ+ 1] (nρ+ 1)2 . Therefore M4(x) M2(x) ≤ Ψ(x) (nρ+ 2)(nρ+ 3) [ 3ρ(ρ+ 1)n+ (ρ+ 2)(ρ+ 3)(nρ+ 1)2 ρ(ρn+ 1− ρ) ] ≤ ≤ ρΨ(x) nρ+ 1 [ 3(ρ+ 1) ρ + 2 (ρ+ 2)(ρ+ 3) ρ2 ] = ρΨ(x) nρ+ 1 cρ, where cρ = 5ρ2 + 13ρ+ 12 ρ2 . Case 4.2. x ∈ [ 0, ρ nρ+ 1 ] ∪ [ 1− ρ nρ+ 1 , 1 ] . We only consider the left interval; for the right one the statement follows by sym- metry. We have successively Uρn(|e1 − x|3, x) = Uρn(2(e1 − x)2(x− e1)+, x) + Uρn((e1 − x)3, x) = = 2 n−1∑ k=1  x∫ 0 (x− t)3µρn,k(t)dt  pn,k(x) + 2(1− x)nx3 +M3(x) ≤ ≤ 2x3 n−1∑ k=1  1∫ 0 µρn,k(t)dt  pn,k(x) + 2x2Ψ(x) +M3(x) = = 2x2Ψ(x) ( 1 + 1 1− x ) + (ρ+ 1)(ρ+ 2)Ψ(x)Ψ′(x) (nρ+ 1)(nρ+ 2) ≤ ≤ ρ2Ψ(x) (nρ+ 1)2 [ 2 + 2 nρ+ 1 (n− 1)ρ+ 1 + (ρ+ 1)(ρ+ 2) ρ2 ] ≤ ≤ ρ2Ψ(x) (nρ+ 1)2 dρ, where dρ = 6 + (ρ+ 1)(ρ+ 2) ρ2 (the latter being correct for n ≥ 2). Hence Uρn(|e1 − x|3, x) Uρn((e1 − x)2, x) ≤ ρ2Ψ(x)dρ (nρ+ 1)2 nρ+ 1 (ρ+ 1)Ψ(x) = √ ρ2 (nρ+ 1)2 ( ρdρ ρ+ 1 )2 . From the above two cases it follows that the r.h.s. in (4.2) is bounded from above by 1 2 (ρ+ 1)Ψ(x) nρ+ 1 ω̃ ( f ′′, 1 3 √ mρ √ ρΨ(x) nρ+ 1 + ρ2 (nρ+ 1)2 ) , ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 7 920 H. GONSKA, R. PĂLTĂNEA where mρ = max { cρ, ( ρdρ ρ+ 1 )2} . Multiplying both sides by nρ+ 1 ρ+ 1 gives the final result. Remark 4.1. The above multiplication by nρ+ 1 ρ+ 1 is somewhat arbitrary. It is, for example, also possible to multiply by nρ+ 1 or simply by n to arrive at slightly different inequalities. Remark 4.2. In case ρ = 1 the right-hand side of inequality (4.1) becomes 1 2 Ψ(x)ω̃ ( f ′′, 2 √ 1 (n+ 1)2 + Ψ(x) n+ 1 ) , improving the term 1 2 Ψ(x)ω̃ ( f ′′, 4 √ 1 (n+ 1)2 + Ψ(x) n+ 1 ) , which is obtained using the approach in [8]. 5. Quantitative Voronovskaya theorem with second order modulus. In this sec- tion we replace the quantity ω̃1(f ′′; ...) by the second order modulus of smoothness ω2(f ; δ) given by sup { |f(x− h)− 2f(x) + f(x+ h)|, a+ h ≤ x ≤ b− h, 0 ≤ h ≤ δ } , for 0 ≤ δ ≤ 1 2 . The general underlying inequality was recently given in [5] and reads as follows. Theorem 5.1. Let L : C[0,1] → C[0,1] be a positive linear operator such that Lei = ei, i = 0,1. If f ∈ C2[0, 1], then for any 0 < h ≤ 1 2 the following inequality holds: ∣∣∣∣L(f ;x)− f(x)− 1 2 L((e1 − x)2;x)f ′′(x) ∣∣∣∣ ≤ ≤ L((e1 − x)2;x)× × { 5 6h |L((e1 − x)3;x)| L((e1 − x)2;x) ω1(f ′′;h) + ( 3 4 + 1 16h2 L((e1 − x)4;x) L((e1 − x)2;x) ) ω2(f ′′;h) } . We will use the theorem in its following form. Corollary 5.1. Putting h = √ L((e1 − x)4;x) L((e1 − x)2;x) and assuming that h > 0, the inequality in the theorem becomes:∣∣∣∣L(f ;x)− f(x)− 1 2 L((e1 − x)2;x)f ′′(x) ∣∣∣∣ ≤ ≤ L((e1 − x)2;x) { 5 6 |L((e1 − x)3;x)|√ L((e1 − x)2L((e1 − x)4;x) × ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 7 QUANTITATIVE CONVERGENCE THEOREMS FOR A CLASS OF BERNSTEIN – DURRMEYER . . . 921 ×ω1 ( f ′′; √ L((e1 − x)4;x) L((e1 − x)2;x) ) + 13 16 ω2 ( f ′′; √ L((e1 − x)4;x) L((e1 − x)2;x) )} . In the case of Uρn we temporarily write X = Ψ(x), X ′ = Ψ′(x) and A := [M3(x)]2 M2(x)M4(x) , B := M4(x) M2(x) . Explicitly, A = (ρ+ 2)2(X ′)2(nρ+ 3) (nρ+ 2){[3ρ(ρ+ 1)n− 6(ρ2 + 3ρ+ 3]X + (ρ+ 2)(ρ+ 3)} , B = 3[ρ(ρ+ 1)n− 2(ρ2 + 3ρ+ 3)]X + (ρ+ 2)(ρ+ 3) (nρ+ 2)(nρ+ 3) . Inserting the information available on Uρn now into the inequality of Corollary 5.1 and multiplying both sides by nρ+ 1 leads to the assertion of the following theorem. Theorem 5.2. For Uρn, given as above, f ∈ C2[0, 1], n ≥ 2 and x ∈ [0, 1], the following inequality holds:∣∣∣∣(nρ+ 1)[Uρn(f, x)− f(x)]− ρ+ 1 2 ψ(x)f ′′(x) ∣∣∣∣ ≤ ≤ (ρ+ 1)ψ(x) { 5 6 √ Aω1 ( f ′′; √ B ) + 13 16 ω2(f ′′; √ B) } . Moreover, (i) if f ∈ C3[0, 1], then∣∣∣∣(nρ+ 1)[Uρn(f, x)− f(x)]− ρ+ 1 2 ψ(x)f ′′(x) ∣∣∣∣ = ψ(x)O ( 1√ n ) ‖f ′′′‖, and (ii) if f ∈ C4[0, 1], then∣∣∣∣(nρ+ 1) [ Uρn(f, x)− f(x) ] − ρ+ 1 2 ψ(x)f ′′(x) ∣∣∣∣ = ψ(x)O ( 1 n ) ‖f (4)‖. In both cases O(. . .) is independent of f and x. Corollary 5.2. For ρ = 1 this coincides with the inequalities in Theorem 5 of [5]. Proceeding as before, i.e., inserting the information on Uρn into the inequality of Corollary 5.1, but multiplying both sides by n (instead of nρ+ 1), implies the following corollary. Corollary 5.3. lim ρ→∞ ∣∣∣∣n[Uρn(f ;x)− f(x) ] − 1 2 n(ρ+ 1) nρ+ 1 ψ(x)f ′′(x) ∣∣∣∣ ≤ ≤ lim ρ→∞ n(ρ+ 1) nρ+ 1 ψ(x) { 5 6 √ Aω1(f ′′; √ B) + 13 16 ω2(f ′′; √ B) } . ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 7 922 H. GONSKA, R. PĂLTĂNEA In other words, for n ≥ 2 we have∣∣∣∣n[Bn(f ;x)− f(x)]− 1 2 ψ(x)f ′′(x) ∣∣∣∣ ≤ ≤ ψ(x) { 5 6 |ψ′(x)|√ 3(n− 2)ψ(x) + 1 ω1 ( f ′′; √ 3(n− 2)ψ(x) + 1 n2 ) + + 13 16 ω2 ( f ′′; √ 3(n− 2)ψ(x) + 1 n2 )} . This is the same inequality as the one given in Theorem 4 of [5]. 1. Gonska H., Păltănea R. Simultaneous approximation by a class of Bernstein – Durrmeyer operators preserving linear functions // Czech. Math. J. (to appear). 2. Păltănea R. A class of Durrmeyer type operators preserving linear functions // Ann. Tiberiu Popoviciu Sem. Funct. Equat. Approxim. and Convex. (Cluj-Napoca). – 2007. – 5. – P. 109 – 117. 3. Gonska H. Quantitative Aussagen zur Approximation durch positive lineare Operatoren: Doctor. Dissertation. – Univ. Duisburg, 1979. – 190 p. 4. Gonska H., Kacsó D., Piţul P. The degree of convergence of over-iterated positive linear operators // J. Appl. Funct. Anal. – 2006. – 1. – P. 403 – 423. 5. Gonska H., Raşa I. A Voronovskaya estimate with second order modulus of smoothness // Proc. Math. Inequal. (Sibiu / Romania, Sept. 2008) (to appear). 6. Gonska H., Raşa I. Four notes on Voronovskaya’s theorem // Schriftenr. Fachbereichs Math. Univ. Duisburg-Essen. – 2009. 7. Păltănea R. Approximation theory using positive linear operators. – Boston: Birkhäuser, 2004. 8. Gonska H. On the degree of approximation in Voronovskaja’s theorem // Stud. Univ. Babeş-Bolyai. Math. – 2007. – 52. – P. 103 – 115. Received 12.06.09 ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 7