Period functions for C⁰- and C¹-flows
Let F:M×R→M be a continuous flow on a manifold M, let V ⊂ M be an open subset, and let ξ:V→R be a continuous function. We say that ξ is a period function if F(x, ξ(x)) = x for all x ∈ V. Recently, for any open connected subset V ⊂ M; the author has described the structure of the set P(V) of all peri...
Saved in:
Date: | 2010 |
---|---|
Main Author: | Maksymenko, S.I. |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2010
|
Series: | Український математичний журнал |
Subjects: | |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/166183 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Period functions for C⁰- and C¹-flows / S.I. Maksymenko // Український математичний журнал. — 2010. — Т. 62, № 7. — С. 954–967. — Бібліогр.: 19 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Kernel of a map of a shift along the orbits of continuous flows
by: Maksymenko, S.I.
Published: (2010) -
Deformations of circle-valued Morse functions on surfaces
by: Maksymenko, S.I.
Published: (2010) -
Approximation of harmonic functions on compact sets in ℂ
by: Andrievskii, V.V.
Published: (1993) -
Functions and vector fields on C(CPⁿ) -singular manifolds
by: Libardi Alice Kimie Miwa, et al.
Published: (2014) -
Big Picard theorem for meromorphic mappings with moving hyperplanes in Pn(C)
by: Quang, Si Duc, et al.
Published: (2014)