Усеченная матричная тригонометрическая проблема моментов: операторный подход
Вивчається зрiзана матрична тригонометрична проблема моментiв. Отримано параметризацiю всiх розв’язкiв цiєї проблеми (одночасно у невиродженому та виродженому випадках) за допомогою операторного пiдходу. Ця параметризацiя встановлює взаємно однозначну вiдповiднiсть мiж деяким класом аналiтичних функ...
Gespeichert in:
Datum: | 2011 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | Russian |
Veröffentlicht: |
Інститут математики НАН України
2011
|
Schriftenreihe: | Український математичний журнал |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/166233 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Усеченная матричная тригонометрическая проблема моментов: операторный подход / С.М. Загороднюк // Український математичний журнал. — 2011. — Т. 63, № 6. — С. 786–797. — Бібліогр.: 18 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineZusammenfassung: | Вивчається зрiзана матрична тригонометрична проблема моментiв. Отримано параметризацiю всiх розв’язкiв цiєї проблеми (одночасно у невиродженому та виродженому випадках) за допомогою операторного пiдходу. Ця параметризацiя встановлює взаємно однозначну вiдповiднiсть мiж деяким класом аналiтичних функцiй та всiма розв’язками задачi. При цьому використано важливi результати М. Є. Чумакiна про узагальненi резольвенти iзометричних операторiв. |
---|