Grüss-type and Ostrowski-type inequalities in approximation theory
We discuss the Grass inequalities on spaces of continuous functions defined on a compact metric space. Using the least concave majorant of the modulus of continuity, we obtain a Grass inequality for the functional L(f)=H(f;x), where H:C[a,b]→C[a,b] is a positive linear operator and x∈[a,b] is fixed....
Збережено в:
Дата: | 2011 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2011
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/166246 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Grüss-type and Ostrowski-type inequalities in approximation theory / A.-M. Acu, H. Gonska, I. Rasa // Український математичний журнал. — 2011. — Т. 63, № 6. — С. 723–740. — Бібліогр.: 24 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We discuss the Grass inequalities on spaces of continuous functions defined on a compact metric space. Using the least concave majorant of the modulus of continuity, we obtain a Grass inequality for the functional L(f)=H(f;x), where H:C[a,b]→C[a,b] is a positive linear operator and x∈[a,b] is fixed. We apply this inequality in the case of known operators, for example, the Bernstein, Hermite-Fejer operator the interpolation operator, convolution-type operators. Moreover, we derive Grass-type inequalities using Cauchy's mean value theorem, thus generalizing results of Cebysev and Ostrowski. A Grass inequality on a compact metric space for more than two functions is given, and an analogous Ostrowski-type inequality is obtained. The latter in turn leads to one further version of Grass' inequality. In an appendix, we prove a new result concerning the absolute first-order moments of the classical Hermite-Fejer operator. |
---|