On the energy and pseudo-angle of Frenet vector fields in Rⁿᵥ

In this paper, we compute the energy of a Frenet vector field and the pseudo-angle between Frenet vectors for a given non-null curve C in semi-Euclidean space of signature (n,v). It is shown that the energy and pseudo-angle can be expressed in terms of the curvature functions of C.

Gespeichert in:
Bibliographische Detailangaben
Datum:2011
1. Verfasser: Altin, A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2011
Schriftenreihe:Український математичний журнал
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/166253
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On the energy and pseudo-angle of Frenet vector fields in Rⁿᵥ / A. Altin // Український математичний журнал. — 2011. — Т. 63, № 6. — С. 833–839. — Бібліогр.: 9 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-166253
record_format dspace
spelling irk-123456789-1662532020-02-19T01:27:06Z On the energy and pseudo-angle of Frenet vector fields in Rⁿᵥ Altin, A. Короткі повідомлення In this paper, we compute the energy of a Frenet vector field and the pseudo-angle between Frenet vectors for a given non-null curve C in semi-Euclidean space of signature (n,v). It is shown that the energy and pseudo-angle can be expressed in terms of the curvature functions of C. Обчислено енергiю векторного поля Френе та псевдокут мiж векторами Френе для заданої ненульової кривої C у напiвевклiдовому просторi сигнатури (n,v). Показано, що енергiя та псевдокут можуть бути вираженi через функцiї кривини C. 2011 Article On the energy and pseudo-angle of Frenet vector fields in Rⁿᵥ / A. Altin // Український математичний журнал. — 2011. — Т. 63, № 6. — С. 833–839. — Бібліогр.: 9 назв. — англ. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/166253 517.9 en Український математичний журнал Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Короткі повідомлення
Короткі повідомлення
spellingShingle Короткі повідомлення
Короткі повідомлення
Altin, A.
On the energy and pseudo-angle of Frenet vector fields in Rⁿᵥ
Український математичний журнал
description In this paper, we compute the energy of a Frenet vector field and the pseudo-angle between Frenet vectors for a given non-null curve C in semi-Euclidean space of signature (n,v). It is shown that the energy and pseudo-angle can be expressed in terms of the curvature functions of C.
format Article
author Altin, A.
author_facet Altin, A.
author_sort Altin, A.
title On the energy and pseudo-angle of Frenet vector fields in Rⁿᵥ
title_short On the energy and pseudo-angle of Frenet vector fields in Rⁿᵥ
title_full On the energy and pseudo-angle of Frenet vector fields in Rⁿᵥ
title_fullStr On the energy and pseudo-angle of Frenet vector fields in Rⁿᵥ
title_full_unstemmed On the energy and pseudo-angle of Frenet vector fields in Rⁿᵥ
title_sort on the energy and pseudo-angle of frenet vector fields in rⁿᵥ
publisher Інститут математики НАН України
publishDate 2011
topic_facet Короткі повідомлення
url http://dspace.nbuv.gov.ua/handle/123456789/166253
citation_txt On the energy and pseudo-angle of Frenet vector fields in Rⁿᵥ / A. Altin // Український математичний журнал. — 2011. — Т. 63, № 6. — С. 833–839. — Бібліогр.: 9 назв. — англ.
series Український математичний журнал
work_keys_str_mv AT altina ontheenergyandpseudoangleoffrenetvectorfieldsinrnv
first_indexed 2025-07-14T21:04:15Z
last_indexed 2025-07-14T21:04:15Z
_version_ 1837657810929713152
fulltext UDC 517.9 A. Altın (Hacettepe Univ., Ankara, Turkey) ON THE ENERGY AND PSEUDO-ANGLE OF FRENET VECTOR FIELDS IN Rn v ПРО ЕНЕРГIЮ ТА ПСЕВДОКУТ ВЕКТОРНОГО ПОЛЯ ФРЕНЕ В Rn v In this paper, we compute the energy of a Frenet vector field and the pseudo-angle between Frenet vectors for a given non-null curve C in semi-Euclidean space of signature (n, ν). It is shown that the energy and pseudo-angle can be expressed in terms of the curvature functions of C. Обчислено енергiю векторного поля Френе та псевдокут мiж векторами Френе для заданої ненульової кривої C у напiвевклiдовому просторi сигнатури (n, ν). Показано, що енергiя та псевдокут можуть бути вираженi через функцiї кривини C. 1. Introduction. It is well known that the studies on the energy of a unit vector field on a compact oriented m-dimensional Riemannian manifold M basically consider the equality M = S2n+1 (see [1 – 3]). Let C be a curve with a pair (I, α) of para- metric unit speed in Rn. Let us take an initial point a ∈ I and the Frenet frames {V1(α(a)), . . . , Vr(α(a))} and {V1(α(s)), . . . , Vr(α(s))} at the points α(a) and α(s), respectively. In [4], we calculated the energy of a Frenet vector field and the angle between each vector Vi(α(a)) and Vi(α(s)) where 1 ≤ i ≤ r. Further, we observed that the energy and angle may be expressed in terms of the curvature functions of the given curve C. In this paper, we consider the Frenet frame at the point α(a) for a given non-null curve C in semi-Euclidean space Rnν = ( Rn, − ν∑ i=1 dxi + n∑ i=ν+1 dxi ) . Note that the Frenet vectors may not be the same type here, i.e., both of the spacelike and timelike vectors are contained in the collection of Frenet vectors. It is well known that the angle between timelike vectors is not defined. In [5], the integral ∫ s a ∥∥∥∥dVidu ∥∥∥∥ du is called the pseudo-angle between timelike vectors Vi(α(a)) and Vi(α(s)). Recall that the angle between spacelike vectors is ∫ s a ∥∥∥∥dVidu ∥∥∥∥ du [4]. In this work, the angle between arbitrary vectors Vi(α(a)) and Vi(α(s)) will be called pseudo-angle. Definition 1.1 [6]. Let α : I ⊂ R −→ Rnv be a regular curve in Rnv . Then α is called spacelike (timelike, null) if for all t ∈ I the velocity vector α′(t) is spacelike (timelike, null). If 〈α′(t), α′(t)〉 = 1 or −1, then α is called a unit speed curve where 〈 , 〉 denotes the scalar product of Rnv . Definition 1.2. Let α be a regular curve in Rnv and ψ = {α′(t), α′′(t), . . . , αr(t)} be a linear independent and non-null system. Further, let αm(t) ∈ Spψ for all αm(t) where m > r ≥ 2. Then the orthonormal system {V1(t), V2(t), . . . , Vr(t)} obtained from ψ is called r-Frenet frame at the point α(t). In this paper, curve means that {α′, α′′, . . . , αr} is a set of derivatives of α such that αl is non-null for 1 ≤ l ≤ r. Lemma 1.1 [8]. For a curve α in Rnv , r-Frenet frame exists if and only if the space Sp {α′(t), . . . , αr(t)} is non-degenerated for k = 1, . . . , r. c© A. ALTıN, 2011 ISSN 1027-3190. Укр. мат. журн., 2011, т. 63, № 6 833 834 A. ALTıN Definition 1.3. Let α be a regular curve in Rnv and {V1(t), V2(t), . . . , Vr(t)} be the Frenet frame at the point α(t). If εi(t) = 〈Vi(t), Vi(t)〉 = 1 or −1, then the function ki : I −→ R defined by ki(t) = εi(t)εi+1(t)〈V ′i (t), Vi+1(t)〉, 1 ≤ i ≤ r − 1, (1) is called curvature function on α. Moreover, the real number ki(t) is called the i th curvature on α at the point α(t). Theorem 1.1 [8]. Let α be a unit speed curve in Rnv and ki(t) be the i th curvature. If {V1(t), V2(t), . . . , Vr(t)} is the Frenet frame at the point α(t), then the following equalities hold: V ′1(t) = ε1(t)k1(t)V2(t), (2) V ′i (t) = −εi(t)ki−1(t)Vi−1(t) + εi(t)ki(t)Vi+1(t), 1 < i < r, (3) V ′r (t) = −εr(t)kr−1(t)Vr−1(t). (4) Definition 1.4. The energy of a differentiable map f : (M, 〈, 〉)→ (N,h) between Riemannian manifolds is given by E(f) = 1 2 ∫ M n∑ a=1 h ( df(ea), df(ea) ) υ, (5) where υ is the canonical volume form in M and {ea} is a local basis of the tangent space (see for example [1, 3]). The energy of a unit vector field X is defined to be the energy of the section X : M → T 1M, where T 1M is the unit tangent bundle equipped with the restriction of the Sasaki metric on TM. Now let π : T 1M → M be the bundle projection, and let T (T 1M) = V ⊕ H denote the vertical/horizontal splitting induced by the Levi- Civita connection. Further, let us write TM = F⊕G where F denotes the line bundle generated by X, and G is the orthogonal complement [3]. Proposition 1.1 [9]. The connection map K : T (T 1M) → T 1M verifies the fol- lowing conditions: 1) π◦K = π◦dπ and π◦K = π◦π̃, where π̃ : T (T 1M) → T 1M is the tangent bundle projection; 2) for ω ∈ TxM and a section ξ : M → T 1M, we have K(dξ(ω)) = ∇ωξ, where ∇ is the Levi-Civita covariant derivative. Definition 1.5 [9]. For η1, η2 ∈ Tξ(T 1M) define gS(η1, η2) = 〈dπ(η1), dπ(η2)〉+ 〈K(η1),K(η2)〉. (6) This gives a Riemannian metric on TM. Recall that gS is called the Sasaki metric. The metric gs makes the projection π : T 1M →M a Riemannian submersion. ISSN 1027-3190. Укр. мат. журн., 2011, т. 63, № 6 ON THE ENERGY AND PSEUDO-ANGLE OF FRENET VECTOR FIELDS IN Rn v 835 2. The energy and pseudo-angle of a Frenet vector field in Rn v . Definition 2.1. Let C be a non-null curve where with a pair (I, α) of parametric unit speeds in a space Rnv at a initial point a ∈ I. Further, let {V1(α(a)), . . . , Vr(α(a))} and {V1(α(s)) . . . , Vr(α(s))} be the Frenet frames at the points α(a) and α(s), respectively. The integral ∫ s a ∥∥∥∥dVidu ∥∥∥∥ du is called the pseudo-angle between the vectors Vi(α(a)) and Vi(α(s)). Theorem 2.1. Let C be a spacelike curve. Then we have the following conditions. (i) If the energy of Vi is E(Vi(s)), i.e., let the function E(Vi) be defined as E(Vi) : I → R, 1 ≤ i ≤ r. Then the following relations are valid: E(V1)(s) = 1 2 s∫ a ε2k 2 1(α(u)) du+ 1 2 (s− a), E(Vi)(s) = 1 2 s∫ a (εi−1k 2 i−1(α(u)) + εi+1k 2 i (α(u))) du+ 1 2 (s− a), 2 ≤ i ≤ r − 1, E(Vr)(s) = 1 2 s∫ a εr−1k 2 r−1(α(u)) du+ 1 2 (s− a). (ii) If the pseudo-angle between vectors Vi(α(a)) and Vi(α(s)) is θi(s), i.e., let the function θi be defined as θi : I → R, 1 ≤ i ≤ r. Then the following relations are valid: θ1(s) = s∫ a k1(α(u)) du, θi(s) = s∫ a √∣∣εi−1k2i−1(α(u)) + εi+1k2i (α(u)) ∣∣ du, 2 ≤ i ≤ r − 1, θr(s) = s∫ a ∣∣kr−1(α(u))∣∣du. Proof. Note that by Lemma 1.1, the definitions of the energy and Sasaki metric in Rnv can be defined in the same manner in Riemannian manifolds. (i) Let TC be the tangent bundle and let {V1, V2, . . . , Vr} be the Frenet vector field of the curve C. Then we have V1 : C → TC = ⋃ t∈I Tα(t)C. Let π : TC → C be the bundle projection and T (TC) = V ⊕ H be the vertical/horizontal splitting induced by the Levi-Civita connection. Let us write TC = F ⊕ G where F denotes the line bundle ISSN 1027-3190. Укр. мат. журн., 2011, т. 63, № 6 836 A. ALTıN generated by V1. Consider the Levi-Civita connection map K : T (TC)→ TC. By using equation (5), we obtain that the energy of V1 is E(V1)(s) = 1 2 s∫ a gS(dV1(V1(α(u)), dV1(V1α(u)))du, (7) where du is an arc length element. From (6) we have gS(dV1(V1), dV1(V1)) = = 〈dπ(V1(V1)), dπ(V1(V1))〉+ 〈K(V1(V1)),K(V1(V1))〉. Since V1 is a section, then we obtain d(π)◦d(V1) = d(π◦V1) = d(idC) = idTC . On the other hand, by Proposition 1.1, we may write that K(V1(V1)) = ∇V1V1 = V ′1 . Then we obtain gS(dV1(V1), dV1(V1)) = 〈V1, V1〉+ 〈V ′1 , V ′1〉 . Since C is a spacelike curve, from (2) we get gS(dV1(V1), dV1(V1)) = 1 + ε2k 2 1 (8) putting (8) in (7), and this yields that E(V1(s)) = 1 2 s∫ a ε2k 2 1(α(u)) du+ 1 2 (s− a). Let NiC be the i th normal bundle. Thus we have Vi : C → NiC where NiC = = ⋃ t∈I Niα(t)C. Here Niα(t)C is generated by Vi. Now let πi : NiC → C be the i th bundle projection and T (NiC) = Vi⊕Hi be the vertical/horizontal splitting induced by the Levi-Civita connection. Take the Levi-Civita connection map Ki : T (NiC)→ NiC. By using equation (5), we obtain that the energy of Vi is E(Vi)(s) = 1 2 s∫ a gS(dVi(V1(α(u)), dVi(V1α(u)))du, (9) where 2 ≤ i ≤ r. From (6) we have gS(dVi(V1), dVi(V1)) = = 〈dπi(Vi(V1)), dπi(Vi(V1))〉+ 〈K(Vi(V1)),K(Vi(V1))〉 = = 〈d(πi◦Vi)(V1), d(πi◦Vi)(V1)〉+ 〈∇V1Vi,∇V1Vi〉 = = 〈V1, V1〉+ 〈V ′i , V ′i 〉 . By (3) we obtain ISSN 1027-3190. Укр. мат. журн., 2011, т. 63, № 6 ON THE ENERGY AND PSEUDO-ANGLE OF FRENET VECTOR FIELDS IN Rn v 837 gS(dVi(V1), dVi(V1)) = 1 + εi−1k 2 i−1 + εi+1k 2 i . Using (9), we have E(Vi)(s) = 1 2 s∫ a ( εi−1k 2 i−1(α(u)) + εi+1k 2 i (α(u)) ) du+ 1 2 (s− a), 2 ≤ i ≤ r − 1. So, (4) gives us that gS(dVr(V1), dVr(V1)) = 1 + εr−1k 2 r−1. Then (9) yields that E(Vr)(s) = 1 2 s∫ a εr−1k 2 r−1(α(u)) du+ 1 2 (s− a). This completes the proof of (i). (ii) From Definition 2.1 we have θi(s) = s∫ a ∥∥∥∥dVidu ∥∥∥∥ du. Since α is spacelike, by using (2), we obtain θ1(s) = s∫ a √ |ε2k21(α(u))|du = s∫ a k1(α(u)) du. From (3) we have θi(s) = s∫ a √∣∣εi−1k2i−1(α(u)) + εi+1k2i (α(u)) ∣∣ du, 2 ≤ i ≤ r − 1. By (4) we find θr(s) = s∫ a √∣∣εr−1k2r−1(α(u))∣∣du = s∫ a ∣∣kr−1(α(u))∣∣du. Theorem 2.2. Let C be a timelike curve. (i) The energy of Vi may be given by the following equalities: E(V1)(s) = 1 2 s∫ a ε2k 2 1(α(u)) du− 1 2 (s− a), E(Vi)(s) = 1 2 s∫ a ( εi−1k 2 i−1(α(u)) + εi+1k 2 i (α(u)) ) du− 1 2 (s− a), 2 ≤ i ≤ r − 1, E(Vr)(s) = 1 2 s∫ a εr−1k 2 r−1(α(u)) du− 1 2 (s− a). ISSN 1027-3190. Укр. мат. журн., 2011, т. 63, № 6 838 A. ALTıN (ii) The pseudo-angle between vectors Vi(α(a)) and Vi(α(s)) are θ1(s) = s∫ a ∣∣k1(α(u))∣∣ du, θi(s) = s∫ a √∣∣εi−1k2i−1(α(u)) + εi+1k2i (α(u)) ∣∣ du, 2 ≤ i ≤ r − 1, θr(s) = s∫ a ∣∣kr−1(α(u))∣∣du. Proof. (i) As in the proof of Theorem 2.1, we may write that gS(dV1(V1), dV1(V1)) = 〈V1, V1〉+ 〈V ′1 , V ′1〉 . Since C is a timelike curve, from (2) we get gS(dV1(V1), dV1(V1)) = −1 + ε2k 2 1 (10) and E(V1(s)) = 1 2 s∫ a ε2k 2 1(α(u)) du− 1 2 (s− a). By using (6) and (3) we have gS(dVi(V1), dVi(V1)) = −1 + εi−1k 2 i−1 + εi+1k 2 i . From (9), we obtain E(Vi)(s) = 1 2 s∫ a ( εi−1k 2 i−1(α(u)) + εi+1k 2 i (α(u)) ) du− 1 2 (s− a), 2 ≤ i ≤ r − 1. Therefore, (4) and (9) gives us that E(Vr)(s) = 1 2 s∫ a εr−1k 2 r−1(α(u)) du− 1 2 (s− a). (ii) From Definition 2.1 we have θi(s) = s∫ a ∥∥∥∥dVidu ∥∥∥∥ du. Using (2), we obtain θ1(s) = s∫ a √∣∣ε2k21(α(u))∣∣du = s∫ a ∣∣k1(α(u))∣∣ du. ISSN 1027-3190. Укр. мат. журн., 2011, т. 63, № 6 ON THE ENERGY AND PSEUDO-ANGLE OF FRENET VECTOR FIELDS IN Rn v 839 From (3) we have θi(s) = s∫ a √∣∣εi−1k2i−1(α(u)) + εi+1k2i (α(u)) ∣∣ du, 2 ≤ i ≤ r − 1. By (4) we obtain θr(s) = s∫ a √∣∣εr−1k2r−1(α(u))∣∣du = s∫ a ∣∣kr−1(α(u))∣∣du. 1. Chacón P. M., Naveira A. M. Corrected energy of distributions on riemannian manifold // Osaka J. Math. – 2004. – 41. – P. 97 – 105. 2. Higuchi A., Kay B. S., Wood C. M. The energy of unit vector fields on the 3-sphere // J. Geom. and Phys. – 2001. – 37. – P. 137 – 155. 3. Wood C. M. On the energy of a unit vector field // Geom. dedic. – 1997. – 64. – P. 19 – 330. 4. Altın A. On the energy and the angle of a frenet vectors fields (in appear). 5. Altın A. The pitch and the pseudo-angle of pitch of a closed piece of (k+ 1)-dimensional ruled surface in Rn v // Turkish J. Math. – 2006. – 30. – P. 1 – 7. 6. O’Neill B. Elementary differential geometry. – Acad. Press Inc., 1966. 7. Gluk H. Higher Curvatures of curves in Euclidean space // Amer. Math. Mon. – 1966. – 73. – P. 699 – 704. 8. Altın A. Harmonic curvatures of non null curves and the helix in Rn v // Hacet. Bull. Nat. Sci. Eng. Ser. B. – 2001. – 30. – P. 55 – 61. 9. Chacón P. M., Naveira A. M., Weston J. M. On the energy of distributions, with application to the quarternionic hopf fibration // Monatsh. Math. – 2001. – 133. – P. 281 – 294. Received 20.07.10 ISSN 1027-3190. Укр. мат. журн., 2011, т. 63, № 6