Well-posed reduction formulas for the q-Kampé-de-Fériet function

By using the limiting case of Watson’s q-Whipple transformation as n → ∞, we investigate the transformations of the nonterminating q-Kampé-de-Fériet series. Further, new formulas for the transformations and well-posed reduction formulas are established for the basic Clausen hypergeometric series. Se...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Chu, W., Zhang, W.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2010
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/166263
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Well-posed reduction formulas for the q-Kampé-de-Fériet function / W. Chu, W. Zhang // Український математичний журнал. — 2010. — Т. 62, № 11. — С. 1538–1554. — Бібліогр.: 10 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-166263
record_format dspace
spelling irk-123456789-1662632020-02-20T01:26:11Z Well-posed reduction formulas for the q-Kampé-de-Fériet function Chu, W. Zhang, W. Статті By using the limiting case of Watson’s q-Whipple transformation as n → ∞, we investigate the transformations of the nonterminating q-Kampé-de-Fériet series. Further, new formulas for the transformations and well-posed reduction formulas are established for the basic Clausen hypergeometric series. Several remarkable formulas are also found for new function classes beyond the q-Kampé-de-Fériet function. За допомогою граничного випадку n→∞ для ватсонівського q-перетворення Віппла досліджено перетворення нескінченного q-ряду Кампе де Фер'є. Крім того, встановлено нові формули перетворень та коректні формули редукції для базового гіпергеометричного ряду Кпаузена. Декілька важливих формул знайдено також для нових класів функцій, до яких не належить q-функція Кампе де Фер'є. 2010 Article Well-posed reduction formulas for the q-Kampé-de-Fériet function / W. Chu, W. Zhang // Український математичний журнал. — 2010. — Т. 62, № 11. — С. 1538–1554. — Бібліогр.: 10 назв. — англ. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/166263 517.9 en Український математичний журнал Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Статті
Статті
spellingShingle Статті
Статті
Chu, W.
Zhang, W.
Well-posed reduction formulas for the q-Kampé-de-Fériet function
Український математичний журнал
description By using the limiting case of Watson’s q-Whipple transformation as n → ∞, we investigate the transformations of the nonterminating q-Kampé-de-Fériet series. Further, new formulas for the transformations and well-posed reduction formulas are established for the basic Clausen hypergeometric series. Several remarkable formulas are also found for new function classes beyond the q-Kampé-de-Fériet function.
format Article
author Chu, W.
Zhang, W.
author_facet Chu, W.
Zhang, W.
author_sort Chu, W.
title Well-posed reduction formulas for the q-Kampé-de-Fériet function
title_short Well-posed reduction formulas for the q-Kampé-de-Fériet function
title_full Well-posed reduction formulas for the q-Kampé-de-Fériet function
title_fullStr Well-posed reduction formulas for the q-Kampé-de-Fériet function
title_full_unstemmed Well-posed reduction formulas for the q-Kampé-de-Fériet function
title_sort well-posed reduction formulas for the q-kampé-de-fériet function
publisher Інститут математики НАН України
publishDate 2010
topic_facet Статті
url http://dspace.nbuv.gov.ua/handle/123456789/166263
citation_txt Well-posed reduction formulas for the q-Kampé-de-Fériet function / W. Chu, W. Zhang // Український математичний журнал. — 2010. — Т. 62, № 11. — С. 1538–1554. — Бібліогр.: 10 назв. — англ.
series Український математичний журнал
work_keys_str_mv AT chuw wellposedreductionformulasfortheqkampedeferietfunction
AT zhangw wellposedreductionformulasfortheqkampedeferietfunction
first_indexed 2025-07-14T21:05:04Z
last_indexed 2025-07-14T21:05:04Z
_version_ 1837657865281601536
fulltext UDC 517.9 W. Chu, W. Zhang (School Math. Sci. Dalian Univ. Technology, China) WELL-POSED REDUCTION FORMULAE FOR q-KAMPÉ DE FÉRIET FUNCTION КОРЕКТНI ФОРМУЛИ РЕДУКЦIЇ ДЛЯ q-ФУНКЦIЇ КАМПЕ ДЕ ФЕР’Є By means of the limiting case n→∞ of Watson’s q-Whipple transformation, we investigate transformations on the nonterminating q-Kampé de Fériet series. Further new transformation and well-posed reduction formulae are established for the basic Clausen hypergeometric series. Several remarkable formulae are found also for new function classes beyond q-Kampé de Fériet function. За допомогою граничного випадку n → ∞ для ватсонiвського q-перетворення Вiппла дослiджено пе- ретворення нескiнченного q-ряду Кампе де Фер’є. Крiм того, встановлено новi формули перетворень та коректнi формули редукцiї для базового гiпергеометричного ряду Клаузена. Декiлька важливих формул знайдено також для нових класiв функцiй, до яких не належить q-функцiя Кампе де Фер’є. 1. Introduction and motivation. For the two indeterminates x and q, the shifted factorial of x with base q reads as (x; q)0 = 1 and (x; q)n = (1− x) (1− qx) . . . (1− qn−1x) for n ∈ N. When |q| < 1, there are two well-defined infinite product expressions (x; q)∞ = ∞∏ k=0 (1− qkx) and (x; q)n = (x; q)∞ / (qnx; q)∞ . The product and fraction of shifted factorials are abbreviated respectively to [ α, β, . . . , γ; q ]n = (α; q)n (β; q)n . . . (γ; q)n ,[ α, β, . . . , γ A, B, . . . , C ∣∣∣∣∣ q ] n = (α; q)n (β; q)n . . . (γ; q)n (A; q)n (B; q)n . . . (C; q)n . Following Bailey [1] and Gasper, Rahman [5], the basic hypergeometric series is defined by 1+rφs [ a0, a1, . . . , ar b1, . . . , bs ∣∣∣∣∣ q; z ] = = ∞∑ n=0 { (−1)nq( n 2) }s−r [a0, a1, . . . , ar q, b1, . . . , bs ∣∣∣∣∣ q ] n zn, where the base q will be restricted to |q| < 1 for nonterminating q-series. Among the q-series transformations, Watson’s one is fundamental (cf. [5], III-18) 8φ7 [ a, q √ a, −q √ a, b, c, d, e, q−n √ a, − √ a, qa/b, qa/c, qa/d, qa/e, qn+1a ∣∣∣∣∣ q; qn+2a2 bcde ] = (1a) c© W. CHU, W. ZHANG, 2010 1538 ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 11 WELL-POSED REDUCTION FORMULAE FOR q-KAMPÉ DE FÉRIET FUNCTION 1539 = [ qa, qa/bc qa/b, qa/c ∣∣∣∣∣ q ] n 4φ3 [ q−n, b, c, qa/de qa/d, qa/e, q−nbc/a ∣∣∣∣∣ q; q ] . (1b) Its limiting case n→∞ reads equivalently as the nonterminating transformation 3φ2 [ a, c, e b, d ∣∣∣∣∣ q; bdace ] = [ bd/ae, bd/ce bd/e, bd/ace ∣∣∣∣∣ q ] ∞ × (2a) × ∞∑ i=0 (−1)i 1− q2i−1bd/e 1− bd/qe q( i 2) [ bd/qe, a, c, b/e, d/e q, bd/ae, bd/ce, d, b ∣∣∣∣∣ q ] i ( bd ac )i . (2b) As the q-analogue of Kampé de Fériet function, Srivastava and Karlsson [10, p. 349] define the generalized bivariate basic hypergeometric function by Φλ:r;sµ:u;v [ α1, . . . , αλ : a1, . . . , ar; c1, . . . , cs; q : x, y β1, . . . , βµ : b1, . . . , bu; d1, . . . , dv; i, j, k ] = = ∞∑ m,n=0 [α1, . . . , αλ; q]m+n [β1, . . . , βµ; q]m+n [a1, . . . , ar; q]m[c1, . . . , cs; q]n [b1, . . . , bu; q]m[d1, . . . , dv; q]n xmynqi( m 2 )+j(n 2)+kmn (q; q)m(q; q)n . When i, j, k ∈ N0, this double series Φλ:r;sµ:u;v is convergent for |x| < 1, |y| < 1 and |q| < 1. There has not been much attention to this series in the literature. By means of the q-analogue of Kummer – Thomae – Whipple and the Hall transformation on 3φ2- series (cf. [5], III-9 and III-10), Chu, Jia [3] and Jia, Wang [7] investigated systematically summation and reduction formulae respectively for the Φ0:3;λ 1:1;µ and Φ1:2;λ 1:1;µ series. Chu, Jia [2] and Chu, Srivastava [4] derived several transformation and reduction formulae respectively by inversion techniques and formal power series method. Jeugt [6] deter- mined invariant transformation group for the double Clausen series with λ+ r = 3 and µ+ u = 2. Further works can be found in Jia, Wang [8] and Singh [9] as well as those cited by Chu, Jia [3]. The purpose of this paper is to investigate the above defined nonterminating q- Kampé de Fériet function exclusively by employing the limiting transformation (2a), (2b). The rest of the paper will be divided into five sections, devoted respectively to the five series labeled by Φ0:3;λ 1:1;µ, Φ2:1;λ 2:0;µ, Φ1:2;λ 2:0;µ, Φ1:2;λ 1:1;µ, Φ0:3;λ 2:0;µ. Several transformation and well-posed reduction formulae on these five series will be established which can briefly be commented as follows: Most of the reduction formulae displayed from Section 2 to Section 4 are well-posed, unlike the usual ones appeared in Chu, Jia [3] and Jia, Wang [7]. Even though the two double series Φ0:3;λ 1:1;µ and Φ1:2;λ 1:1;µ have intensively been studied by Chu, Jia [3] and Jia, Wang [7], the results shown in Section 2 and Section 5 are substantially different. It is remarkable that there exist reduction formulae for new function classes beyond the q-Kampé de Fériet function, which are exemplified for the two transformations proven in Sections 5 and 6. ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 11 1540 W. CHU, W. ZHANG 2. Nonterminating double series Φ0:3;λ 1:1;µ. By means of the two transformations for 3φ2-series (cf. [5], III-9 and III-10), the double Φ0:3;λ 1:1;µ series has intensively been investigated by Chu, Jia [3] (§ 2), where numerous reduction and summation formulae have been obtained. Instead, we shall utilize (2a), (2b) to transform this Φ0:3;λ 1:1;µ series into Φ2:3;λ+1 3:1;µ+1 series modified by a “well-posed” factor, which yields four well-posed reduction formulae for the former and two unusual ones for the latter. Theorem 1. For an arbitrary sequence {Ω(j)}, there holds the transformation[ bd/e, bd/ace bd/ae, bd/ce ∣∣∣∣∣ q ] ∞ ∞∑ i,j=0 Ω(j) (b; q)i+j [ a, c, e q, d ∣∣∣∣∣ q ] i ( qjbd ace )i = (3a) = ∞∑ i,j=0 1− q2i+j−1bd/e 1− bd/qe [ b/e, bd/qe b, bd/ae, bd/ce ∣∣∣∣∣ q ] i+j × (3b) ×q( i 2)+ij [ a, c, d/e q, d ∣∣∣∣∣ q ] i ( −bd ac )i [bd/ace b/e ∣∣∣∣∣ q ] j Ω(j) (3c) provided that both double series displayed above are absolutely convergent. Proof. The theorem follows directly by writing the double sum in (3a) as ∞∑ i,j=0 Ω(j) (b; q)i+j [ a, c, e q, d ∣∣∣∣∣ q ] i ( qjbd ace )i = ∞∑ j=0 Ω(j) (b; q)j 3φ2 [ a, c, e qjb, d ∣∣∣∣∣ q; qjbdace ] (4) and then transforming, via (2a), (2b), the 3φ2-series into 3φ2 [ a, c, e qjb, d ∣∣∣∣∣ q; qjbdace ] = [ qjbd/ae, qjbd/ce qjbd/e, qjbd/ace ∣∣∣∣∣ q ] ∞ ∞∑ i=0 (−1)i 1− q2i+j−1bd/e 1− qj−1bd/e × ×q( i 2)+ij [ qj−1bd/e, a, c, qjb/e, d/e q, qjbd/ae, qjbd/ce, d, qjb ∣∣∣∣∣ q ] i ( bd ac )i = = [ bd/ae, bd/ce bd/e, bd/ace ∣∣∣∣∣ q ] ∞ [ b, bd/ace b/e ∣∣∣∣∣ q ] j ∞∑ i=0 (−1)i [ a, c, d/e q, d ∣∣∣∣∣ q ] i × ×1− q2i+j−1bd/e 1− bd/qe q( i 2)+ij [ b/e, bd/qe b, bd/ae, bd/ce ∣∣∣∣∣ q ] i+j ( bd ac )i . Theorem 1 is proved. Instead, applying the q-analogue of Kummer – Thomae – Whipple transformation (cf. [5], III-9), we can reformulate the 3φ2-series displayed in (4) as 3φ2 [ a, c, e qjb, d ∣∣∣∣∣ q; qjbdace ] = [ d/a, qjbd/ce d, qjbd/ace ∣∣∣∣∣ q ] ∞ 3φ2 [ a, qjb/c, qjb/e qjb, qjbd/ce ∣∣∣∣∣ q; da ] where the 3φ2-series on the right-hand side of the last equation can further be restated by means of (2a), (2b) as 3φ2 [ a, qjb/c, qjb/e qjb, qjbd/ce ∣∣∣∣∣ q; da ] = [ qjbd/ac, qjbd/ae d/a, q2jb2d/ace ∣∣∣∣∣ q ] ∞ ∞∑ i=0 1− q2i+2j−1b2d/ace 1− q2j−1b2d/ace × ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 11 WELL-POSED REDUCTION FORMULAE FOR q-KAMPÉ DE FÉRIET FUNCTION 1541 ×(−1)iq( i 2) [ q2j−1b2d/ace, qjb/a, qjb/c, qjb/e, qjbd/ace q, qjb, qjbd/ac, qjbd/ae, qjbd/ce ∣∣∣∣∣ q ] i di. Substituting them successively into (4), we find the following alternative expression:[ d, bd/ace, b2d/ace bd/ac, bd/ae, bd/ce ∣∣∣∣∣ q ] ∞ ∞∑ i,j=0 Ω(j) (b; q)i+j [ a, c, e q, d ∣∣∣∣∣ q ] i ( qjbd ace )i = = ∞∑ j=0 Ω(j) [b/a, b/c, b/e; q]j ∞∑ i=0 (−1)i 1− q2i+2j−1b2d/ace 1− b2d/qace q( i 2)× × [ b/a, b/c, b/e, bd/ace b, bd/ac, bd/ae, bd/ce ∣∣∣∣∣ q ] i+j (b2d/qace; q)i+2j (q; q)i di. Letting n := i+ j and then keeping in mind of the relation (b2d/qace; q)n+j (q; q)n−j = (−1)jqjn−(j 2) (b2d/qace; q)n (q; q)n [ q−n, qn−1b2d/ace; q ] j we can equivalently reformulate Theorem 1 as another transformation. Theorem 2. For an arbitrary sequence {Ω(j)}, there holds the transformation[ d, bd/ace, b2d/ace bd/ac, bd/ae, bd/ce ∣∣∣∣∣ q ] ∞ ∞∑ i,j=0 Ω(j) (b; q)i+j [ a, c, e q, d ∣∣∣∣∣ q ] i ( qjbd ace )i = (5a) = ∞∑ n=0 1− q2n−1b2d/ace 1− b2d/qace [ b/a, b/c, b/e, bd/ace, b2d/qace q, b, bd/ac, bd/ae, bd/ce ∣∣∣∣∣ q ] n × (5b) ×(−1)nq( n 2)dn n∑ j=0 ( q d )j [q−n, qn−1b2d/ace b/a, b/c, b/e ∣∣∣∣∣ q ] j Ω(j) (5c) provided that both double series displayed above are absolutely convergent. According to Theorems 1 and 2, we are now going to derive five reduction transfor- mation formulae by concretely specifying Ω(j) in five different manners. 2.1. For the Ω(j) sequence given by Ω(j) = [ α, b/a, b/c, b/e q, w, b2dα/wace ∣∣∣∣∣ q ] j dj evaluating the inner sum with respect to j in (5) by means of the q-Pfaff – Saalschütz theorem (cf. [5], II-12) 3φ2 [ q−n, a, b c, q1−nab/c ∣∣∣∣∣ q; q ] = [ c/a, c/b c, c/ab ∣∣∣∣∣ q ] n (6) and then simplifying the corresponding equation displayed in Theorem 2, we obtain the following reduction formula. ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 11 1542 W. CHU, W. ZHANG Proposition 1 (well-posed reduction formula). ∞∑ i,j=0 qijdj (b; q)i+j [ a, c, e q, d ∣∣∣∣∣ q ] i [ α, b/a, b/c, b/e q, w, b2dα/wace ∣∣∣∣∣ q ] j ( bd ace )i = = [ bd/ac, bd/ae, bd/ce d, bd/ace, b2d/ace ∣∣∣∣∣ q ] ∞ ∞∑ n=0 (−1)nq( n 2) 1− q2n−1b2d/ace 1− b2d/qace × × [ b/a, b/c, b/e, w/α, bd/ace, b2d/qace, b2d/wace q, b, w, bd/ac, bd/ae, bd/ce, b2dα/wace ∣∣∣∣∣ q ] n (dα)n. The limiting case α→∞ of this proposition yields an interesting transformation. Corollary 1 (well-posed reduction formula). ∞∑ i,j=0 qij (b; q)i+j [ a, c, e q, d ∣∣∣∣∣ q ] i [ b/a, b/c, b/e q, w ∣∣∣∣∣ q ] j ( bd ace )i (wace b2 )j = = [ bd/ac, bd/ae, bd/ce d, bd/ace, b2d/ace ∣∣∣∣∣ q ] ∞ × ×8φ7  b2d qace , √ qb2d ace , − √ qb2d ace , b a , b c , b e , bd ace , b2d wace√ b2d qace , − √ b2d qace , b, w, bd ac , bd ae , bd ce ∣∣∣∣∣∣∣∣∣ q; wace b2 . 2.2. For the Ω(j) sequence defined by Ω(j) = q( j 2) [b/a, b/c, b/e; q]j (q; q)j(b2d/ace; q2)j dj evaluating the inner sum with respect to j displayed in (5) through the q-analogue of Gauss’ 2F1 ( 1 2 ) sum (cf. [5], II-11) 2φ2 [ a, b √ qab, − √ qab ∣∣∣∣∣ q;−q ] = [ qa, qb q, qab ∣∣∣∣∣ q2 ] ∞ (7) and then simplifying the corresponding equation in Theorem 2, we get the following reduction formula. Proposition 2 (well-posed reduction formula). ∞∑ i,j=0 q( j 2) [ a, c, e q, d ∣∣∣∣∣ q ] i (qid)j [b/a, b/c, b/e; q]j (b; q)i+j(q; q)j(b2d/ace; q2)j ( bd ace )i = = [ bd/ac, bd/ae, bd/ce d, bd/ace, b2d/ace ∣∣∣∣∣ q ] ∞ ∞∑ n=0 (−1)nq( n 2) 1− q4n−1b2d/ace 1− b2d/qace × × [ b/a, b/c, b/e, bd/ace b, bd/ac, bd/ae, bd/ce ∣∣∣∣∣ q ] 2n (b2d/qace; q2)n (q2; q2)n d2n. ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 11 WELL-POSED REDUCTION FORMULAE FOR q-KAMPÉ DE FÉRIET FUNCTION 1543 2.3. For the Ω(j) sequence specified by Ω(j) = [ b/a, b/c, b/e q, w ∣∣∣∣∣ q ] j (w; q2)j (b2d/ace; q2)j dj evaluating the inner sum with respect to j displayed in (5) via Andrews’ terminating q-analogue of the Watson 3F2-sum (cf. [5], II-17) 4φ3 [ q−n, qn+1a2, c, −c c2, qa, −qa ∣∣∣∣∣ q; q ] = =  0, n− odd, cn [ q, q2a2/c2 q2a2, qc2 ∣∣∣∣∣ q2 ] m , n = 2m, (8) and then simplifying the corresponding equation in Theorem 2, we find the following reduction formula. Proposition 3 (well-posed reduction formula). ∞∑ i,j=0 (qid)j (b; q)i+j [ a, c, e q, d ∣∣∣∣∣ q ] i [ b/a, b/c, b/e q, w ∣∣∣∣∣ q ] j (w; q2)j (b2d/ace; q2)j ( bd ace )i = = [ bd/ac, bd/ae, bd/ce d, bd/ace, b2d/ace ∣∣∣∣∣ q ] ∞ ∞∑ n=0 q( 2n 2 ) 1− q4n−1b2d/ace 1− b2d/qace × × [ b/a, b/c, b/e, bd/ace b, bd/ac, bd/ae, bd/ce ∣∣∣∣∣ q ] 2n [ b2d/qace, b2d/wace q2, qw ∣∣∣∣∣ q2 ] n (d2w)n. 2.4. In Theorem 1, rewrite the double sum (3a) as ∞∑ i=0 [ a, c, e q, b, d ∣∣∣∣∣ q ] i ( bd ace )i ∞∑ j=0 Ω(j) (qib; q)j qij . (9) Specializing the Ω(j) sequence explicitly by Ω(j) = [ β, γ q ∣∣∣∣∣ q ] j ( b βγ )j and then evaluating the sum with respect to j displayed in (9) by means of the q-Gauss summation theorem (cf. [5], II-8) 2φ1 [ a, b c ∣∣∣∣∣ q; cab ] = [ c/a, c/b c, c/ab ∣∣∣∣∣ q ] ∞ (10) we have from Theorem 1 the following interesting reduction formula. Proposition 4 (reduction formula). ∞∑ i,j=0 1− q2i+j−1bd/e 1− bd/qe [ b/e, bd/qe b, bd/ae, bd/ce ∣∣∣∣∣ q ] i+j × ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 11 1544 W. CHU, W. ZHANG ×q( i 2) [ a, c, d/e q, d ∣∣∣∣∣ q ] i ( −bd ac )i [β, γ, bd/ace q, b/e ∣∣∣∣∣ q ] j ( qib βγ )j = = [ b/β, b/γ, bd/e, bd/ace b, b/βγ, bd/ae, bd/ce ∣∣∣∣∣ q ] ∞ 4φ3 [ a, c, e, b/βγ d, b/β, b/γ ∣∣∣∣∣ q; bdace ] . 2.5. Alternatively, specializing the Ω(j) sequence explicitly by Ω(j) = q( j 2) [β, q/β; q]j (q2; q2)j bj and then evaluating the sum with respect to j displayed in (9) through the q-analogue of Bailey’s 2F1 ( 1 2 ) sum (cf. [5], II-10) 2φ2 [ a, q/a −q, b ∣∣∣∣∣ q;−b ] = [ab, qb/a; q2]∞ (b; q)∞ (11) we derive from Theorem 1 another strange reduction formula. Proposition 5 (reduction formula). ∞∑ i,j=0 1− q2i+j−1bd/e 1− bd/qe [ b/e, bd/qe b, bd/ae, bd/ce ∣∣∣∣∣ q ] i+j ( −bd ac )i × ×q( i+j 2 ) [ a, c, d/e q, d ∣∣∣∣∣ q ] i [ β, q/β, bd/ace q, −q, b/e ∣∣∣∣∣ q ] j bj = = [ b/β, bd/e, bd/ace b, bd/ae, bd/ce ∣∣∣∣∣ q ] ∞ ∞∑ i=0 [ a, c, e q, d, b/β ∣∣∣∣∣ q ] i [ qibβ qib/β ∣∣∣∣∣ q2 ] ∞ ( bd ace )i . 3. Nonterminating double series Φ2:1;λ 2:0;µ. There is a theorem connecting the Φ0:3;λ 1:1;µ series in the last section to Φ2:1;λ 2:0;µ+1 series due to Chu, Jia [3] (Theorem 2.2), where no reduction formulae was given for this last series. By means of (2a), (2b), this section will prove a transformation theorem for this Φ2:1;λ 2:0;µ series and then derive four well-posed reduction formulae. Theorem 3. For an arbitrary sequence {Ω(j)}, there holds the transformation[ bd/e, bd/ace bd/ae, bd/ce ∣∣∣∣∣ q ] ∞ ∞∑ i,j=0 ( bd ace )i [a, c b, d ∣∣∣∣∣ q ] i+j [ e q ∣∣∣∣∣ q ] i Ω(j) = (12a) = ∞∑ n=0 1− q2n−1bd/e 1− bd/qe [ a, c, b/e, d/e, bd/qe q, b, d, bd/ae, bd/ce ∣∣∣∣∣ q ] n × (12b) ×(−1)nq( n 2) ( bd ac )n n∑ j=0 (qac bd )j [q−n, qn−1bd/e b/e, d/e ∣∣∣∣∣ q ] j Ω(j) (12c) provided that both double series displayed above are absolutely convergent. ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 11 WELL-POSED REDUCTION FORMULAE FOR q-KAMPÉ DE FÉRIET FUNCTION 1545 Proof. Expressing the double sum in (12a) as ∞∑ i,j=0 ( bd ace )i [a, c b, d ∣∣∣∣∣ q ] i+j [ e q ∣∣∣∣∣ q ] i Ω(j) = (13a) = ∞∑ j=0 Ω(j) [ a, c b, d ∣∣∣∣∣ q ] j 3φ2 [ qja, qjc, e qjb, qjd ∣∣∣∣∣ q; bdace ] (13b) and then transforming, by (2a), (2b), the above 3φ2-series into 3φ2 [ qja, qjc, e qjb, qjd ∣∣∣∣∣ q; bdace ] = [ qjbd/ae, qjbd/ce q2jbd/e, bd/ace ∣∣∣∣∣ q ] ∞ ∞∑ i=0 1− q2i+2j−1bd/e 1− q2j−1bd/e × ×(−1)iq( i 2) [ q2j−1bd/e, qja, qjc, qjd/e, qjb/e q, qjbd/ae, qjbd/ce, qjb, qjd ∣∣∣∣∣ q ] i ( bd ac )i = = [ bd/ae, bd/ce bd/e, bd/ace ∣∣∣∣∣ q ] ∞ [ b, d a, c, b/e, d/e ∣∣∣∣∣ q ] j ∞∑ i=0 1− q2i+2j−1bd/e 1− bd/qe × ×(−1)iq( i 2) [ a, c, b/e, d/e b, d, bd/ae, bd/ce ∣∣∣∣∣ q ] i+j (bd/qe; q)i+2j (q; q)i ( bd ac )i we derive the following equality: Eq(12a) = ∞∑ j=0 Ω(j) [b/e, d/e; q]j ∞∑ i=0 (−1)i 1− q2i+2j−1bd/e 1− bd/qe q( i 2)× × [ a, c, b/e, d/e b, d, bd/ae, bd/ce ∣∣∣∣∣ q ] i+j (bd/qe; q)i+2j (q; q)i ( bd ac )i . Relabeling the summation indices by n := i+ j leads us to another expression Eq(12a) = ∞∑ n=0 1− q2n−1bd/e 1− bd/qe [ a, c, b/e, d/e b, d, bd/ae, bd/ce ∣∣∣∣∣ q ] n × × n∑ j=0 Ω(j) [b/e, d/e; q]j (bd/qe; q)n+j (q; q)n−j (−1)n−jq( n−j 2 ) ( bd ac )n−j which is equivalent to the transformation in Theorem 3 in view of the relation (bd/qe; q)n+j (q; q)n−j = (−1)jqjn−(j 2) (bd/qe; q)n (q; q)n [ q−n, qn−1bd/e; q ] j . Theorem 3 is proved. By specifying the Ω(j) sequence in terms of shifted factorial fractions, we shall derive from Theorem 3 three reduction formulae. ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 11 1546 W. CHU, W. ZHANG 3.1. In Theorem 3, specializing the Ω(j) sequence firstly by Ω(j) = [ α, b/e, d/e q, w, bdα/we ∣∣∣∣∣ q ] j ( bd ac )j and then evaluating the inner sum with respect to j displayed in (12c) by means of (6) lead us to the following reduction formula. Proposition 6 (well-posed reduction formula).[ bd/e, bd/ace bd/ae, bd/ce ∣∣∣∣∣ q ] ∞ ∞∑ i,j=0 [ a, c b, d ∣∣∣∣∣ q ] i+j [ e q ∣∣∣∣∣ q ] i × × [ α, b/e, d/e q, w, bdα/we ∣∣∣∣∣ q ] j ( bd ace )i( bd ac )j = = ∞∑ n=0 (−1)nq( n 2) 1−q2n−1bd/e 1− bd/qe × × [ a, c, b/e, d/e, bd/qe, w/α, bd/we q, b, d, w, bd/ae, bd/ce, bdα/we ∣∣∣∣∣ q ] n ( bdα ac )n . When α→∞, this proposition results in an interesting transformation. Corollary 2 (well-posed reduction formula).[ bd/e, bd/ace bd/ae, bd/ce ∣∣∣∣∣ q ] ∞ ∞∑ i,j=0 [ a, c b, d ∣∣∣∣∣ q ] i+j [ e q ∣∣∣∣∣ q ] i × × [ b/e, d/e q, w ∣∣∣∣∣ q ] j ( bd ace )i (we ac )j = = 8φ7 [ bd/qe, q √ bd/qe, −q √ bd/qe, a, c, b/e, d/e, bd/we√ bd/qe, − √ bd/qe, b, d, w, bd/ae, bd/ce ∣∣∣∣∣ q; weac ] . 3.2. In Theorem 3, specializing the Ω(j) sequence alternatively by Ω(j) = q( j 2) [b/e, d/e; q]j (q; q)j(bd/e; q2)j ( bd ac )j and then evaluating the inner sum with respect to j displayed in (12c) by means of (7) yield another reduction formula. Proposition 7 (well-posed reduction formula).[ bd/e, bd/ace bd/ae, bd/ce ∣∣∣∣∣ q ] ∞ ∞∑ i,j=0 q( j 2) [ a, c b, d ∣∣∣∣∣ q ] i+j [ e q ∣∣∣∣∣ q ] i × × [b/e, d/e; q]j (q; q)j(bd/e; q2)j ( bd ace )i( bd ac )j = = ∞∑ n=0 (−1)nq( n 2) 1−q4n−1bd/e 1− bd/qe [ a, c, b/e, d/e b, d, bd/ae, bd/ce ∣∣∣∣∣ q ] 2n (bd/qe; q2)n (q2; q2)n ( bd ac )2n . ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 11 WELL-POSED REDUCTION FORMULAE FOR q-KAMPÉ DE FÉRIET FUNCTION 1547 3.3. In Theorem 3, specializing the Ω(j) sequence finally by Ω(j) = [ b/e, d/e q, w ∣∣∣∣∣ q ] j (w; q2)j (bd/e; q2)j ( bd ac )j and then evaluating the inner sum with respect to j displayed in (12c) by means of (8) give rise to the following reduction formula. Proposition 8 (well-posed reduction formula).[ bd/e, bd/ace bd/ae, bd/ce ∣∣∣∣∣ q ] ∞ ∞∑ i,j=0 [ a, c b, d ∣∣∣∣∣ q ] i+j [ e q ∣∣∣∣∣ q ] i [ b/e, d/e q, w ∣∣∣∣∣ q ] j × × (w; q2)j (bd/e; q2)j ( bd ace )i( bd ac )j = = ∞∑ n=0 q( 2n 2 ) 1−q4n−1bd/e 1− bd/qe [ a, c, b/e, d/e b, d, bd/ae, bd/ce ∣∣∣∣∣ q ] 2n × × [ bd/qe, bd/we q2, qw ∣∣∣∣∣ q2 ] n ( bd ac )2n wn. 4. Nonterminating double series Φ1:2;λ 2:0;µ. This section is devoted to the transfor- mation and well-posed reduction formulae for the Φ1:2;λ 2:0;µ series, which does not seem to have appeared previously in literature. Theorem 4. For an arbitrary sequence {Ω(j)}, there holds the transformation[ bd/e, bd/ace bd/ae, bd/ce ∣∣∣∣∣ q ] ∞ ∞∑ i,j=0 ( qjbd ace )i [ a b, d ∣∣∣∣∣ q ] i+j [ c, e q ∣∣∣∣∣ q ] i Ω(j) = (14a) = ∞∑ n=0 (−1)nq( n 2) 1− q2n−1bd/e 1− bd/qe [ a, c, b/e, d/e, bd/qe q, b, d, bd/ae, bd/ce ∣∣∣∣∣ q ] n ( bd ac )n × (14b) × n∑ j=0 (−1)jq−(j 2) (qa bd )j [ q−n, qn−1bd/e q1−n/c, qnbd/ce ∣∣∣∣∣ q ] j [ bd/ace b/e, d/e ∣∣∣∣∣ q ] j Ω(j) (14c) provided that both double series displayed above are absolutely convergent. Proof. Rewriting the double sum in (14a) as ∞∑ i,j=0 ( qjbd ace )i [ a b, d ∣∣∣∣∣ q ] i+j [ c, e q ∣∣∣∣∣ q ] i Ω(j) = (15a) = ∞∑ j=0 Ω(j) [ a b, d ∣∣∣∣∣ q ] j 3φ2 [ qja, c, e qjb, qjd ∣∣∣∣∣ q; qjbdace ] (15b) and then reformulating the last 3φ2-series via (2a), (2b) as 3φ2 [ qja, c, e qjb, qjd ∣∣∣∣∣ q; qjbdace ] = ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 11 1548 W. CHU, W. ZHANG = [ qjbd/ae, q2jbd/ce q2jbd/e, qjbd/ace ∣∣∣∣∣ q ] ∞ ∞∑ i=0 1− q2i+2j−1bd/e 1− q2j−1bd/e × ×(−1)iq( i 2) [ q2j−1bd/e, qja, c, qjd/e, qjb/e q, qjbd/ae, q2jbd/ce, qjb, qjd ∣∣∣∣∣ q ] i ( qjbd ac )i = = [ bd/ae, bd/ce bd/e, bd/ace ∣∣∣∣∣ q ] ∞ [ b, d, bd/ace a, b/e, d/e ∣∣∣∣∣ q ] j ∞∑ i=0 1− q2i+2j−1bd/e 1− bd/qe × ×(−1)iq( i 2) [ a, b/e, d/e b, d, bd/ae ∣∣∣∣∣ q ] i+j [ c q ∣∣∣∣∣ q ] i [ bd/qe bd/ce ∣∣∣∣∣ q ] i+2j ( qjbd ac )i we get the following double sum expression Eq(14a) = ∞∑ i,j=0 (−1)i 1− q2i+2j−1bd/e 1− bd/qe q( i 2) [ bd/ace b/e, d/e ∣∣∣∣∣ q ] j Ω(j)× × [ c q ∣∣∣∣∣ q ] i [ a, b/e, d/e b, d, bd/ae ∣∣∣∣∣ q ] i+j [ bd/qe bd/ce ∣∣∣∣∣ q ] i+2j ( qjbd ac )i . This leads to the transformation displayed in Theorem 4 after having changed the sum- mation indices by n := i+ j and then applied the relation [ c q ∣∣∣∣∣ q ] n−j [ bd/qe bd/ce ∣∣∣∣∣ q ] n+j = (q c )j [c, bd/qe q, bd/ce ∣∣∣∣∣ q ] n [ q−n, qn−1bd/e qnbd/ce, q1−n/c ∣∣∣∣∣ q ] j . Theorem 4 is proved. 4.1. Specifying the Ω(j) sequence in Theorem 4 by Ω(j) = (−1)jq( j 2) [ b/e, d/e, q/c2 q, bd/ace ∣∣∣∣∣ q ] j ( bd a )j and then evaluating the inner sum with respect to j displayed in (14c) by means of the q-Pfaff – Saalschütz formula (6), we obtain the following reduction formula. Proposition 9 (well-posed reduction formula). ∞∑ i,j=0 (−1)jq( j 2) [ a b, d ∣∣∣∣∣ q ] i+j [ c, e q ∣∣∣∣∣ q ] i [ b/e, d/e, q/c2 q, bd/ace ∣∣∣∣∣ q ] j ( qjbd ace )i( bd a )j = = [ bd/ae, bd/ce bd/e, bd/ace ∣∣∣∣∣ q ] ∞ ∞∑ n=0 (−1)nq( n 2) 1− q2n−1bd/e 1− bd/qe × × [ bd/qe, a, q/c, b/e, d/e q, b, d, bd/ae, bcd/qe ∣∣∣∣∣ q ] n [ bcd/qe bd/ce ∣∣∣∣∣ q ] 2n ( bd ac )n . ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 11 WELL-POSED REDUCTION FORMULAE FOR q-KAMPÉ DE FÉRIET FUNCTION 1549 4.2. Instead, specifying the Ω(j) sequence by Ω(j) = = (−1)jq( j 2) 1−q2j−1bd/ce 1− bd/qce [ α/c, β/c, bd/qce, bd/αβe q, αβ/c, bd/αe, bd/βe ∣∣∣∣∣ q ] j [ b/e, d/e bd/ace ∣∣∣∣∣ q ] j ( bd a )j and then evaluating the inner sum with respect to j displayed in (14c) by means of Jackson’s q-analogue of Dougall’s 7F6-sum (cf. [5], II-22) 8φ7 [ a, q √ a, −q √ a, b, c, d, e, q−n √ a, − √ a, qa/b, qa/c, qa/d, qa/e, qn+1a ∣∣∣∣∣ q; q ] = = [ qa, qa/bc, qa/bd, qa/cd qa/b, qa/c, qa/d, qa/bcd ∣∣∣∣∣ q ] n where qn+1a2 = bcde we get from Theorem 4 another reduction formula. Proposition 10 (well-posed reduction formula). ∞∑ i,j=0 [ a b, d ∣∣∣∣∣ q ] i+j [ c, e q ∣∣∣∣∣ q ] i [ b/e, d/e bd/ace ∣∣∣∣∣ q ] j ( qjbd ace )i( bd a )j × ×(−1)jq( j 2) 1− q2j−1bd/ce 1− bd/qce [ α/c, β/c, bd/qce, bd/αβe q, αβ/c, bd/αe, bd/βe ∣∣∣∣∣ q ] j = = [ bd/ae, bd/ce bd/e, bd/ace ∣∣∣∣∣ q ] ∞ ∞∑ n=0 (−1)nq( n 2) 1− q2n−1bd/e 1− bd/qe × × [ a, α, β, b/e, d/e, bd/qe, bcd/αβe q, b, d, αβ/c, bd/ae, bd/αe, bd/βe ∣∣∣∣∣ q ] n ( bd ac )n . 5. Nonterminating double series Φ1:2;λ 1:1;µ. Applying the two transformations for 3φ2-series (cf. [5], III-9 and III-10), Jia, Wang [7] studied systematically this Φ1:2;λ 1:1;µ series and found several reduction and summation formulae. Alternatively, we shall employ (2a), (2b) to show a couple of new transformation theorems for this Φ1:2;λ 1:1;µ series and deduce from them four very strange reduction formulae, that differ substantially from those due to Jia, Wang [7]. Theorem 5. For an arbitrary sequence {Ω(j)}, there holds the transformation[ bd/e, bd/ace bd/ae, bd/ce ∣∣∣∣∣ q ] ∞ ∞∑ i,j=0 ( bd ace )i [a b ∣∣∣∣∣ q ] i+j [ c, e q, d ∣∣∣∣∣ q ] i Ω(j) = (16a) = ∞∑ i,j=0 1− q2i+j−1bd/e 1− bd/qe [ a, b/e, bd/qe b, bd/ce ∣∣∣∣∣ q ] i+j × (16b) ×q( i 2) [ c, d/e q, d, bd/ae ∣∣∣∣∣ q ] i ( −bd ac )i Ω(j) (b/e; q)j (16c) provided that both double series displayed above are absolutely convergent. ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 11 1550 W. CHU, W. ZHANG Proof. Rewrite the double sum in (16a) as ∞∑ i,j=0 ( bd ace )i [a b ∣∣∣∣∣ q ] i+j [ c, e q, d ∣∣∣∣∣ q ] i Ω(j) = (17a) = ∞∑ j=0 Ω(j) [ a b ∣∣∣∣∣ q ] j 3φ2 [ qja, c, e qjb, d ∣∣∣∣∣ q; bdace ] . (17b) According to (2a), (2b), the last 3φ2-series can be reformulated as 3φ2 [ qja, c, e qjb, d ∣∣∣∣∣ q; bdace ] = [ bd/ae, qjbd/ce qjbd/e, bd/ace ∣∣∣∣∣ q ] ∞ ∞∑ i=0 (−1)i 1− q2i+j−1bd/e 1− qj−1bd/e q( i 2)× × [ qj−1bd/e, qja, c, qjb/e, d/e q, bd/ae, qjbd/ce, d, qjb ∣∣∣∣∣ q ] i ( bd ac )i = = [ bd/ae, bd/ce bd/e, bd/ace ∣∣∣∣∣ q ] ∞ [ b a, b/e ∣∣∣∣∣ q ] j ∞∑ i=0 1− q2i+j−1bd/e 1− bd/qe × ×(−1)iq( i 2) [ a, b/e, bd/qe b, bd/ce ∣∣∣∣∣ q ] i+j [ c, d/e q, d, bd/ae ∣∣∣∣∣ q ] i ( bd ac )i . Substituting this expression into (17a), (17b) and then reordering the factors, we get the transformation displayed in Theorem 5. Alternatively, permuting the parameters of 3φ2-series gives 3φ2 [ qja, c, e qjb, d ∣∣∣∣∣ q; bdace ] = 3φ2 [ c, e, qja qjb, d ∣∣∣∣∣ q; bdace ] . Applying the formula (2a), (2b) to the 3φ2-series on the right-hand side yields 3φ2 [ c, e, qja qjb, d ∣∣∣∣∣ q; bdace ] = [ bd/ac, bd/ae bd/a, bd/ace ∣∣∣∣∣ q ] ∞ ∞∑ i=0 (−1)i 1− q2i−1bd/a 1− bd/qa q( i 2)× × [ bd/qa, c, e, b/a, q−jd/a q, bd/ac, bd/ae, d, qjb ∣∣∣∣∣ q ] i ( qjbd ce )i = = [ bd/ac, bd/ae bd/a, bd/ace ∣∣∣∣∣ q ] ∞ ∞∑ i=0 1− q2i−1bd/a 1− bd/qa q2( i 2)× × [ bd/qa, c, e, b/a q, bd/ac, bd/ae, d ∣∣∣∣∣ q ] i [b, qa/d; q]j (b; q)i+j(qa/d; q)j−i ( bd2 ace )i . Substituting this expression into (17a), (17b) and then reordering the factors, we obtain another transformation formula. Theorem 6. For an arbitrary sequence {Ω(j)}, there holds the transformation[ bd/a, bd/ace bd/ac, bd/ae ∣∣∣∣∣ q ] ∞ ∞∑ i,j=0 ( bd ace )i [a b ∣∣∣∣∣ q ] i+j [ c, e q, d ∣∣∣∣∣ q ] i Ω(j) = (18a) ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 11 WELL-POSED REDUCTION FORMULAE FOR q-KAMPÉ DE FÉRIET FUNCTION 1551 = ∞∑ i,j=0 1− q2i−1bd/a 1− bd/qa [ c, e, b/a, bd/qa q, d, bd/ac, bd/ae ∣∣∣∣∣ q ] i × (18b) ×q2( i 2) ( bd2 ace )i [a, qa/d; q]j (b; q)i+j(qa/d; q)j−i Ω(j) (18c) provided that both double series displayed above are absolutely convergent. For the two equations displayed in Theorems 5 and 6, our efforts have failed to reduce the double sums on the right-hand side. However, we do succeed in figuring out two instances in which their corresponding left double sums can be expressed in single ones, that lead us to four remarkable reduction formulae. 5.1. Rewrite the double sum in (16a) or the same (18a) as ∞∑ i=0 [ a, c, e q, b, d ∣∣∣∣∣ q ] i ( bd ace )i ∞∑ j=0 [ qia qib ∣∣∣∣∣ q ] j Ω(j). (19) For the Ω(j) sequence specified by Ω(j) = [ β q ∣∣∣∣∣ q ] j ( b aβ )j the sum with respect to j displayed in (19) can be evaluated via (10) as 2φ1 [ β, qia qib ∣∣∣∣∣ q; b aβ ] = [ b/a, qib/β qib, b/aβ ∣∣∣∣∣ q ] ∞ . Then Theorems 5 and 6 under the last specification for the Ω(j) sequence give rise respectively to the following two reduction formulae. Proposition 11 (reduction formula). ∞∑ i,j=0 1− q2i+j−1bd/e 1− bd/qe [ a, b/e, bd/qe b, bd/ce ∣∣∣∣∣ q ] i+j × ×q( i 2) [ c, d/e q, d, bd/ae ∣∣∣∣∣ q ] i ( −bd ac )i [ β q, b/e ∣∣∣∣∣ q ] j ( b aβ )j = = [ b/a, b/β, bd/e, bd/ace b, b/aβ, bd/ae, bd/ce ∣∣∣∣∣ q ] ∞ 3φ2 [ a, c, e d, b/β ∣∣∣∣∣ q; bdace ] . Proposition 12 (reduction formula). ∞∑ i,j=0 1− q2i−1bd/a 1− bd/qa [ c, e, b/a, bd/qa q, d, bd/ac, bd/ae ∣∣∣∣∣ q ] i × ×q2( i 2) ( bd2 ace )i [β, a, qa/d; q]j (q; q)j(b; q)i+j(qa/d; q)j−i ( b aβ )j = = [ b/a, b/β, bd/a, bd/ace b, b/aβ, bd/ac, bd/ae ∣∣∣∣∣ q ] ∞ 3φ2 [ a, c, e d, b/β ∣∣∣∣∣ q; bdace ] . ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 11 1552 W. CHU, W. ZHANG 5.2. Alternatively, letting Ω(j) be the sequence Ω(j) = (qa/b; q)j (q; q)j ( −b a )j and then evaluating the corresponding sum with respect to j displayed in (19) by means of the q-Kummer sum (cf. [5], II-9) 2φ1 [ qia, qa/b qib ∣∣∣∣∣ q;−b/a ] = (−q; q)∞ [q1+ia, qib2/a; q2]∞ [qib,−b/a; q]∞ we derive from Theorems 5 and 6 the following respective reduction formulae. Proposition 13 (reduction formula). ∞∑ i,j=0 1− q2i+j−1bd/e 1− bd/qe [ a, b/e, bd/qe b, bd/ce ∣∣∣∣∣ q ] i+j ( −bd ac )i × ×q( i 2) [ c, d/e q, d, bd/ae ∣∣∣∣∣ q ] i [ qa/b q, b/e ∣∣∣∣∣ q ] j ( −b a )j = = [ −q, a, bd/e, bd/ace −b/a, b, bd/ae, bd/ce ∣∣∣∣∣ q ] ∞ ∞∑ i=0 [ c, e q, d ∣∣∣∣∣ q ] i [ qib2/a qia ∣∣∣∣∣ q2 ] ∞ ( bd ace )i . Proposition 14 (reduction formula). ∞∑ i,j=0 1− q2i−1bd/a 1− bd/qa [ c, e, b/a, bd/qa q, d, bd/ac, bd/ae ∣∣∣∣∣ q ] i × ×q2( i 2) ( bd2 ace )i [a, qa/b, qa/d; q]j (q; q)j(b; q)i+j(qa/d; q)j−i ( −b a )j = = [ −q, a, bd/a, bd/ace −b/a, b, bd/ac, bd/ae ∣∣∣∣∣ q ] ∞ ∞∑ i=0 [ c, e q, d ∣∣∣∣∣ q ] i [ qib2/a qia ∣∣∣∣∣ q2 ] ∞ ( bd ace )i . 6. Nonterminating double series Φ0:3;λ 2:0;µ. Finally in this section, we are going to investigate the Φ0:3;λ 2:0;µ series and prove one transformation theorem plus two interesting reduction formulae. Theorem 7. For an arbitrary sequence {Ω(j)}, there holds the transformation[ bd/e, bd/ace bd/ae, bd/ce ∣∣∣∣∣ q ] ∞ ∞∑ i,j=0 Ω(j) [b, d; q]i+j [ a, c, e q ∣∣∣∣∣ q ] i ( q2jbd ace )i = (20a) = ∞∑ i,j=0 1− q2i+2j−1bd/e 1− bd/qe [ bd/qe bd/ae, bd/ce ∣∣∣∣∣ q ] i+2j [ a, c q ∣∣∣∣∣ q ] i × (20b) ×q( i 2)+2ij [ b/e, d/e b, d ∣∣∣∣∣ q ] i+j ( −bd ac )i (bd/ace; q)2j [b/e, d/e; q]j Ω(j) (20c) provided that both double series displayed above are absolutely convergent. ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 11 WELL-POSED REDUCTION FORMULAE FOR q-KAMPÉ DE FÉRIET FUNCTION 1553 Proof. Rewrite the double sum in (20a) as ∞∑ i,j=0 Ω(j) [b, d; q]i+j [ a, c, e q ∣∣∣∣∣ q ] i ( q2jbd ace )i = ∞∑ j=0 Ω(j) [b, d; q]j 3φ2 [ a, c, e qjb, qjd ∣∣∣∣∣ q; q2jbdace ] . (21) According to (2a), (2b), we can reformulate the above 3φ2-series as 3φ2 [ a, c, e qjb, qjd ∣∣∣∣∣ q; q2jbdace ] = [ q2jbd/ae, q2jbd/ce q2jbd/e, q2jbd/ace ∣∣∣∣∣ q ] ∞ ∞∑ i=0 1− q2i+2j−1bd/e 1− q2j−1bd/e × ×(−1)iq( i 2) [ q2j−1bd/e, a, c, qjd/e, qjb/e q, q2jbd/ae, q2jbd/ce, qjb, qjd ∣∣∣∣∣ q ] i ( q2jbd ac )i = = [ bd/ae, bd/ce bd/e, bd/ace ∣∣∣∣∣ q ] ∞ [b, d; q]j(bd/ace; q)2j [b/e, d/e; q]j ∞∑ i=0 1− q2i+2j−1bd/e 1− bd/qe × ×(−1)iq( i 2)+2ij [ b/e, d/e b, d ∣∣∣∣∣ q ] i+j [ a, c q ∣∣∣∣∣ q ] i [ bd/qe bd/ae, bd/ce ∣∣∣∣∣ q ] i+2j ( bd ac )i . Substituting this last expression into (21) and then simplifying the resulting equation, we get the transformation displayed in Theorem 7. By specifying the Ω(j) sequence and then expressing the double sum (20a) as single series, we can prove two quite interesting reduction formulae. 6.1. Letting b = −d = √ α and replacing e by −e, we can reformulate the double sum in (20a) as ∞∑ i=0 [ a, c, −e q, √ α, − √ α ∣∣∣∣∣ q ] i ( α ace )i ∞∑ j=0 Ω(j) (q2iα; q2)j q2ij . (22) Specifying the Ω(j) sequence in Theorem 7 by Ω(j) = [ β, γ q2 ∣∣∣∣∣ q2 ] j ( α βγ )j and then evaluating the inner sum with respect to j displayed in (22) by means of the q-Gauss sum (10), we get the following reduction formula. Proposition 15 (reduction formula). ∞∑ i,j=0 1− q2i+2j−1α/e 1− α/qe [ α/qe α/ae, α/ce ∣∣∣∣∣ q ] i+2j [ α/e2 α ∣∣∣∣∣ q2 ] i+j × ×q( i 2) [ a, c q ∣∣∣∣∣ q ] i ( q2jα ac )i (α/ace; q)2j [ β, γ q2, α/e2 ∣∣∣∣∣ q2 ] j ( α βγ )j = = [ α/β, α/γ α, α/βγ ∣∣∣∣∣ q2 ] ∞ [ α/e, α/ace α/ae, α/ce ∣∣∣∣∣ q ] ∞ ∞∑ i=0 [a, c,−e; q]i(α/βγ; q2)i (q; q)i[α/β, α/γ; q2]i ( α ace )i . ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 11 1554 W. CHU, W. ZHANG 6.2. Instead, specifying the Ω(j) sequence in Theorem 7 by Ω(j) = [ β, q2/β q2, −q2 ∣∣∣∣∣ q2 ] j (qj−1α)j and then evaluating the inner sum with respect to j displayed in (22) by means of the q-analogue of Bailey’s 2F1( 1 2 ) sum (11), we obtain another reduction formula. Proposition 16 (reduction formula). ∞∑ i,j=0 1− q2i+2j−1α/e 1− α/qe [ α/qe α/ae, α/ce ∣∣∣∣∣ q ] i+2j [ α/e2 α ∣∣∣∣∣ q2 ] i+j [ a, c q ∣∣∣∣∣ q ] i q( i 2)× × ( q2jα ac )i [β, q2/β α/e2 ∣∣∣∣∣ q2 ] j (α/ace; q)2j (q4; q4)j (qj−1α)j = = [ α/β α ∣∣∣∣∣ q2 ] ∞ [ α/e, α/ace α/ae, α/ce ∣∣∣∣∣ q ] ∞ ∞∑ i=0 [a, c,−e; q]i (q; q)i(α/β; q2)i [ q2iαβ q2iα/β ∣∣∣∣∣ q4 ] ∞ ( α ace )i . 1. Bailey W. N. Generalized hypergeometric series. – Cambridge: Cambridge Univ. Press, 1935. 2. Chu W., Jia C. Bivariate classical and q-series transformations // Port. math. – 2008. – 65, № 2. – P. 243 – 256. 3. Chu W., Jia C. Transformation and reduction formulae for double q-Clausen hypergeometric series // Math. Methods Appl. Sci. – 2008. – 31, № 1. – P. 1 – 17. 4. Chu W., Srivastava H. M. Ordinary and basic bivariate hypergeometric transformations associated with the Appell and Kampé de Fériet functions // J. Comput. and Appl. Math. – 2003. – 156, № 2. – P. 355 – 370. 5. Gasper G., Rahman M. Basic hypergeometric series. – 2nd ed. – Cambridge: Cambridge Univ. Press, 2004. 6. Van der Jeugt J. Transformation formula for a double Clausenian hypergeometric series, its q-analogue, and its invariance group // J. Comput. and Appl. Math. – 2002. – 139, № 1. – P. 65 – 73. 7. Jia C., Wang T. Transformation and reduction formulae for double q-Clausen series of type Φ1:2;λ 1:1;µ // J. Math. Anal. and Appl. – 2007. – 328, № 1. – P. 609 – 624. 8. Jia C., Wang T. Reduction and transformation formulae for bivariate basic hypergeometric series // Ibid. № 2. – P. 1152 – 1160. 9. Singh S. P. Certain transformation formulae involving basic hypergeometric functions // J. Math. Phys. Sci. – 1994. – 28, № 4. – P. 189 – 195. 10. Srivastava H. M., Karlsson P. W. Multiple Gaussian hypergeometric series. – New York etc.: John Wiley and Sons, 1985. Received 19.02.10 ISSN 1027-3190. Укр. мат. журн., 2010, т. 62, № 11