Sard’s theorem for mappings between Fréchet manifolds

We prove an infinite-dimensional version of Sard’s theorem for Fréchet manifolds. Let M (respectively, N) be a bounded Fréchet manifold with compatible metric d M (respectively, d N ) modeled on Fréchet spaces E (respectively, F) with standard metrics. Let f : M → N be an MC k-Lipschitz–Fredholm map...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2010
1. Verfasser: Eftekharinasab, K.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2010
Schriftenreihe:Український математичний журнал
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/166299
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Sard’s theorem for mappings between Fréchet manifolds / K. Eftekharinasab // Український математичний журнал. — 2010. — Т. 62, № 12. — С. 1634–1641. — Бібліогр.: 5 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:We prove an infinite-dimensional version of Sard’s theorem for Fréchet manifolds. Let M (respectively, N) be a bounded Fréchet manifold with compatible metric d M (respectively, d N ) modeled on Fréchet spaces E (respectively, F) with standard metrics. Let f : M → N be an MC k-Lipschitz–Fredholm map with k > max{Ind f, 0}: Then the set of regular values of f is residual in N.