On a continued fraction of order twelve
We present some new relations between a continued fraction U(q) of order 12 (established by M. S. M. Naika et al.) and U(q n) for n = 7, 9, 11, 13.
Saved in:
Date: | 2010 |
---|---|
Main Authors: | Vasuki, K.R., Abdulrawf, A.A. Kahtan, Sathish Kumar, C. |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2010
|
Series: | Український математичний журнал |
Subjects: | |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/166304 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | On a continued fraction of order twelve / K.R. Vasuki, A.A. Kahtan Abdulrawf, C. Satish Kumar // Український математичний журнал. — 2010. — Т. 62, № 12. — С. 1609 - 1619. — Бібліогр.: 19 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Approximation of analytic functions by Bessel functions of fractional order
by: Jung, S.-M.
Published: (2011) -
Continuity with respect to initial data and absolute-continuity approach to the first-order regularity of nonlinear diffusions on noncompact manifolds
by: Antoniouk, A.Val., et al.
Published: (2008) -
Fractional calculus of a unified Mittag-Leffler function
by: Prajapati, J.C., et al.
Published: (2014) -
On some Ramanujan identities for the ratios of Eta-functions
by: Bhargava, S., et al.
Published: (2014) -
On one inequality for the moduli of continuity of fractional order generated by semigroups of operators
by: S. I. Bezkryla, et al.
Published: (2019)