Value-sharing and uniqueness of entire functions

We study the uniqueness of entire functions sharing a nonzero value and obtain some results improving the results obtained by Fang, J. F. Chen, X.Y. Zhang and W. C. Lin, et al.

Gespeichert in:
Bibliographische Detailangaben
Datum:2014
1. Verfasser: Wu, Chun
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2014
Schriftenreihe:Український математичний журнал
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/166321
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Value-sharing and uniqueness of entire functions / Chun Wu // Український математичний журнал. — 2014. — Т. 66, № 12. — С. 1705–1717. — Бібліогр.: 19 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-166321
record_format dspace
spelling irk-123456789-1663212020-02-19T01:27:56Z Value-sharing and uniqueness of entire functions Wu, Chun Статті We study the uniqueness of entire functions sharing a nonzero value and obtain some results improving the results obtained by Fang, J. F. Chen, X.Y. Zhang and W. C. Lin, et al. Вивчається єдиність цілих функцій, що поділяють ненульове значення. Отримано дєякі результати, що поліпшують результати Фанга, Дж. Ф. Чена, С. Й. Жанга, В. Ц. Ліна та інших. 2014 Article Value-sharing and uniqueness of entire functions / Chun Wu // Український математичний журнал. — 2014. — Т. 66, № 12. — С. 1705–1717. — Бібліогр.: 19 назв. — англ. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/166321 517.5 en Український математичний журнал Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Статті
Статті
spellingShingle Статті
Статті
Wu, Chun
Value-sharing and uniqueness of entire functions
Український математичний журнал
description We study the uniqueness of entire functions sharing a nonzero value and obtain some results improving the results obtained by Fang, J. F. Chen, X.Y. Zhang and W. C. Lin, et al.
format Article
author Wu, Chun
author_facet Wu, Chun
author_sort Wu, Chun
title Value-sharing and uniqueness of entire functions
title_short Value-sharing and uniqueness of entire functions
title_full Value-sharing and uniqueness of entire functions
title_fullStr Value-sharing and uniqueness of entire functions
title_full_unstemmed Value-sharing and uniqueness of entire functions
title_sort value-sharing and uniqueness of entire functions
publisher Інститут математики НАН України
publishDate 2014
topic_facet Статті
url http://dspace.nbuv.gov.ua/handle/123456789/166321
citation_txt Value-sharing and uniqueness of entire functions / Chun Wu // Український математичний журнал. — 2014. — Т. 66, № 12. — С. 1705–1717. — Бібліогр.: 19 назв. — англ.
series Український математичний журнал
work_keys_str_mv AT wuchun valuesharinganduniquenessofentirefunctions
first_indexed 2025-07-14T21:08:54Z
last_indexed 2025-07-14T21:08:54Z
_version_ 1837658103678500864
fulltext UDC 517.5 Chun Wu (College Math. Sci., Chongqing Normal Univ., China) VALUE-SHARING AND UNIQUENESS OF ENTIRE FUNCTIONS* ПОДIЛ ДАНИХ ТА ЄДИНIСТЬ ЦIЛИХ ФУНКЦIЙ We study the uniqueness of entire functions sharing a nonzero value and obtain some results improving the results due to Fang, J. F. Chen, X. Y. Zhang and W. C. Lin et al. Вивчається єдинiсть цiлих функцiй, що подiляють ненульове значення. Отримано деякi результати, що полiпшують результати Фанга, Дж. Ф. Чена, С. Й. Жанга, В. Ц. Лiна та iнших. 1. Introduction and main results. In this paper, a meromorphic function will mean meromorphic in the whole complex plane. We will use the standard notations of Nevanlinna’s value distribution theory such as T (r, f), N(r, f), N(r, f), m(r, f) and so on, as explained in Hayman [1], Yang [2] and Yi and Yang [3]. We denote by S(r, f) any function satisfying S(r, f) = o(T (r, f)), as r →∞ possibly outside a set r of finite linear measure. Let a be a finite complex number, and k be a positive integer. We denote by Ek)(a, f) the set of zeros of f − a with multiplicities at most k, where each zero is counted according to its multiplicity. We denote by Ek)(a, f) the set of zeros of f − a with multiplicities are not greater than k, where each zero is counted only once. In addition, we denote by N(k ( r, 1 f − a )( or N (k ( r, 1 f − a )) the counting function with respect to the set Ek)(a, f) ( or Ek)(a, f) ) . Set Nk ( r, 1 f − a ) = N ( r, 1 f − a ) +N (2 ( r, 1 f − a ) + . . .+N (k ( r, 1 f − a ) . We define Θ(a, f) = 1− lim r→∞ N ( r, 1 f − a ) T (r, f) and δk(a, f) = 1− lim r→∞ Nk ( r, 1 f − a ) T (r, f) . Let f and g be two nonconstant meromorphic functions, a be a finite complex number. We say that f, g share the value a CM (counting multiplicities) if f, g have the same a-points with the same multiplicities and we say that f, g share the value a IM (ignoring multiplicities) if we do not consider the multiplicities. We denote by NL ( r, 1 f − a ) the counting function for a-points of both f and g about which f has larger multiplicity than g , with multiplicity not be counted. Similarly, we have the notation NL ( r, 1 g − a ) . Next we denote by N0(r, 1/F ′) the counting function of those zeros of F ′ that are not the zeros of F (F − 1). * This work is supported by Chongqing City Board of Education Science and technology project (KJ130632) and the found of Chongqing Normal University (13XLB024). c© CHUN WU, 2014 ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 12 1705 1706 CHUN WU Definition 1.1. Let k be a positive integer. Let f and g be two nonconstant meromorphic functions such that f and g share the value 1 IM. Let z0 be a 1-point of f with multiplicity p and a 1-point of g with multiplicity q. We denote by Nf>k ( r, 1 g − 1 ) the reduced counting function of those 1-points of f and g such that p > q = k. Ng>k ( r, 1 f − 1 ) is defined analogously. Definition 1.2. Let f and g satisfy Ep)(1, f) = Ep)(1, g), where p ≥ 2 is an integer. We denote by N (p+1(r, 1; f |g 6= 1) the reduced counting function of those 1-points of f with multiplicities at least p+ 1, which are not the 1-points of g. Also N(p+1(r, 1; g|f 6= 1) is defined analogously. In [4], Fang got the following results. Theorem A. Let f and g be two nonconstant entire functions and n, k be two positive integers with n > 2k+ 4. If (fn)(k) and (gn)(k) share 1 CM, then either f(z) = c1e cz, g(z) = c2e −cz, where c1, c2 and c are three constants satisfying (−1)k(c1c2) n(nc)2k = 1 or f = tg for a constant t such that tn = 1. Theorem B. Let f and g be two nonconstant entire functions and n, k be two positive integers with n > 2k + 8. If ( fn(f − 1) )(k) and ( gn(g − 1) )(k) share 1 CM, then f = g. In 2008, J. F. Chen, X. Y. Zhang [5] improved the above result and obtained the following result. Theorem C. Let f and g be two nonconstant entire functions and n, k be two positive integers with n > 5k + 7. If (fn)(k) and (gn)(k) share 1 IM, then either f(z) = c1e cz, g(z) = c2e −cz, where c1, c2 and c are three constants satisfying (−1)k(c1c2) n(nc)2k = 1 or f = tg for a constant t such that tn = 1. Theorem D. Let f and g be two nonconstant entire functions and n, k be two positive integers with n > 5k + 13. If ( fn(f − 1) )(k) and ( gn(g − 1) )(k) share 1 IM, then f = g. In 2008, X. Y. Zhang, J. F. Chen and W. C. Lin [6] extended the above result by proving the following result. Theorem E. Let f(z) and g(z) be two entire functions, n, m and k be three positive integers with n > 3m + 2k + 5, and P (z) = amz m + am−1z m−1 + . . . + a1z + a0 or P (z) = C, where a0 6= 0, a1, . . . , am−1, am 6= 0, C 6= 0 are complex constants. If [ fnP (f) ](k) and [ gnP (g) ](k) share 1 CM, then either f(z) = c1e λz, g(z) = e−λz, where λ1, λ2, λ are three constants satisfying (−1)k(λ1λ2) n(nλ)2kC2 = 1, or f(z) and g(z) satisfy the algebraic equation R(f, g) = 0, where R(ω1, ω2) = ωn1 p(ω1)− ωn2 p(ω2). In this paper we always use L(z) denoting a arbitrary polynomial of degree n, i.e., L(z) = anz n + an−1z n−1 + . . .+ a0 = an(z − c1)l1(z − c2)l2 . . . (z − cs)ls , (1.1) where ai, i = 0, 1, . . . , n, an 6= 0 and cj , j = 1, 2, . . . , s, are finite complex number constants, and c1, c2, . . . , cs are all the distinct zeros of L(z), l1, l2, . . . , ls, s, n are all positive integers satisfying l1 + l2 + . . .+ ls = n and let l = max{l1, l2, . . . , ls}. (1.2) Corresponding to the above results, some authors considered the uniqueness problems of entire functions that have fixed points, see M. L. Fang and H. Qiu [7], W. C. Lin and H. X. Yi [8], J. Dou, X. G. Qi and L. Z. Yang [9]. In this paper, we consider the existence of solutions of [L(f)](k) − P and the corresponding uniqueness theorems, and we obtain the following results which generalize the above theorems. ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 12 VALUE-SHARING AND UNIQUENESS OF ENTIRE FUNCTIONS 1707 Theorem 1.1. Let f be a transcendental entire function. If n > k + s, then [L(f)](k) = P has infinitely many solutions, where P 6≡ 0 is a polynomial. Remark 1.1. It is easy to see that a polynomial Q(z)− P (z) has exactly max{m,n} solutions (counting multiplicities), where degQ = m, degP = n, but a transcendental entire function may have no solution. For example, let f(z) = eα(z) + P (z), then function f(z)− P (z) has no any solution, where α(z) is an entire function. Theorem 1.2. Let f(z) and g(z) be two nonconstant entire functions and n, k, l and p(≥ 2) be four positive integers satisfying 5l > 4n + 5k + 7. If Ep) ( 1, (L(f))(k) ) = Ep) ( 1, (L(g))(k) ) , then either f = b1e bz + c, g = b2e −bz + c or f and g satisfy the algebraic equation R(f, g) ≡ 0, where b1, b2, b are three constants satisfying (−1)k(b1b2) n(nb)2k = 1 and R(ω1, ω2) = L(ω1)− L(ω2). Corollary 1.1. Let f(z) and g(z) be two nonconstant entire functions and n, k and l be three positive integers satisfying 5l > 4n + 5k + 7. If [ L(f) ](k) and [ L(g) ](k) share 1 IM, then either f = b1e bz + c, g = b2e −bz + c or f and g satisfy the algebraic equation R(f, g) ≡ 0, where b1, b2, b are three constants satisfying (−1)k(b1b2) n(nb)2k = 1 and R(ω1, ω2) = L(ω1)− L(ω2). Remark 1.2. When l = n, l = n−1, c = 0, from Corollary 1.1 we can easily get Theorems C, D. Corollary 1.2. Let f(z) and g(z) be two nonconstant entire functions and n, k and l be three positive integers satisfying 2l > n + 2k + 4. If [ L(f) ](k) and [ L(g) ](k) share 1 CM, then either f = b1e bz + c, g = b2e −bz + c or f and g satisfy the algebraic equation R(f, g) ≡ 0, where b1, b2, b are three constants satisfying (−1)k(b1b2) n(nb)2k = 1 and R(ω1, ω2) = L(ω1)− L(ω2). Remark 1.3. When l = n, c = 0, from Corollary 1.2 we can easily get Theorem A. When l = n− 1, l = n−m, c = 0, Corollary 1.2 promotes Theorems B, E. Remark 1.4. If L(f) ≡ L(g), we obtain anf n + an−1f n−1 + . . .+ a1f ≡ angn + an−1g n−1 + . . .+ a1g. Let h = f/g. If h is a constant, then substituting f = gh into above equation we deduce ang n(hn − 1) + an−1g n−1(hn−1 − 1) + . . .+ a1g(h− 1) ≡ 0, which implies hd = 1, d = (n, . . . , n− i, . . . , 1), an−i 6= 0 for some i = 0, 1, . . . , n−1. Thus f ≡ tg for a constant t such that td = 1. If h is not a constant, then we know by above equation that f and g satisfy the algebraic equation R(f, g) ≡ 0, where R(ω1, ω2) = L(ω1)− L(ω2). Remark 1.5. Moreover, let L(z) is a generic polynomial of degree at least 5. Then from the equation L(f) ≡ L(g), one can conclude that f ≡ g and no other nonconstant meromorphic solutions f and g. In [15] Yang and Hua exhibits some classes of such polynomials. And some related definitions and results, we refer the reader to [16, 17]. 2. Some lemmas. Lemma 2.1 (see [1]). Let f(z) be a nonconstant meromorphic function and a1(z), a2(z) be two meromorphic functions such that T (r, ai) = S(r, f), i = 1, 2. Then T (r, f) ≤ N(r, f) +N ( 1 f − a1 ) +N ( r, 1 f − a2 ) + S(r, f). ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 12 1708 CHUN WU Lemma 2.2 (see [1]). Let f be a nonconstant meromorphic function, k be a positive integer, and c be a nonzero finite complex number. Then T (r, f) ≤ N(r, f) +N ( r, 1 f ) +N ( r, 1 f (k) − c ) −N ( r, 1 f (k+1) ) + S(r, f) ≤ ≤ N(r, f) +Nk+1 ( r, 1 f ) +N ( r, 1 f (k) − c ) −N0 ( r, 1 f (k+1) ) + S(r, f), where N0 ( r, 1 f (k+1) ) denotes the counting function which only counts those points such that f (k+1) = 0 but f(f (k) − c) 6= 0. Lemma 2.3 (see [11]). Let an(6= 0), an−1, . . . , a0 be constants and f be a nonconstant mero- morphic function, then T ( r, anf n + an−1f n−1 + . . .+ a0 ) = nT (r, f). Lemma 2.4 (see [12]). Let f(z) be a nonconstant meromorphic function, s, k be two positive integers. Then Ns ( r, 1 f (k) ) ≤ kN(r, f) +Ns+k ( r, 1 f ) + S(r, f). Clearly, N ( r, 1 f (k) ) = N1 ( r, 1 f (k) ) . Lemma 2.5 (see [13]). Let f be a nonconstant meromorphic function, k(≥ 1) be a positive integer and let ϕ( 6≡ 0,∞) be a small function of f. Then T (r, f) ≤ N(r, f) +N ( r, 1 f ) +N ( r, 1 f (k) − ϕ ) −N ( r, 1( f (k)/ϕ )′ ) + S(r, f). (2.1) Lemma 2.6 (see [14]). Let f(z) be a nonconstant meromorphic function and k be a positive integer. Suppose that f (k) 6≡ 0, then N ( r, 1 f (k) ) ≤ N ( r, 1 f ) + kN(r, f) + S(r, f). Lemma 2.7 (see [18]). Let f, g share (1, 0). Then (i) Nf>1 ( r, 1 g − 1 ) ≤ N ( r, 1 f ) +N(r, f)−N0 ( r, 1 f ′ ) + S(r, f), (ii) Ng>1 ( r, 1 f − 1 ) ≤ N ( r, 1 g ) +N(r, g)−N0 ( r, 1 g′ ) + S(r, g). Lemma 2.8. Let f(z) and g(z) be two nonconstant entire functions, k, p(≥ 2) be two positive integers. If Ep)(1, f (k)) = Ep)(1, g (k)) and ∆ = 2δk+1(0, g) + δk+1(0, f) + δk+2(0, g) + δk+2(0, f) > 4, then 1 f (k) − 1 = bg(k) + a− b g(k) − 1 , where a, b are two constants. ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 12 VALUE-SHARING AND UNIQUENESS OF ENTIRE FUNCTIONS 1709 Proof. Let Φ(z) = f (k+2) f (k+1) − 2 f (k+1) f (k) − 1 − g(k+2) g(k+1) + 2 g(k+1) g(k) − 1 . (2.2) Clearly m(r,Φ) = S(r, f) + S(r, g). We consider the cases Φ(z) 6≡ 0 and Φ(z) ≡ 0. Let Φ(z) 6≡ 0, then if z0 is a common simple 1-point of f (k) and g(k), substituting their Taylor series at z0 into (2.2), we see that z0 is a zero of Φ(z). Thus, we have N11 ( r, 1 f (k) − 1 ) = = N11 ( r, 1 g(k) − 1 ) ≤ N ( r, 1 Φ ) ≤ T (r,Φ) +O(1) ≤ N(r,Φ) + S(r, f) + S(r, g). (2.3) Noting that Ep)(1, f (k)) = Ep)(1, g (k)), we deduce from (2.2) that N(r,Φ) ≤ N (p+1 ( r, 1; f (k)|g(k) 6= 1 ) +N (p+1 ( r, 1; g(k)|f (k) 6= 1 ) + +N (2 ( r, 1 f (k) ) +N (2 ( r, 1 g(k) ) +N0 ( r, 1 f (k+1) ) +N0 ( r, 1 g(k+1) ) + +NL ( r, 1 f (k) − 1 ) +NL ( r, 1 g(k) − 1 ) . (2.4) Here N0 ( r, 1 f (k+1) ) has the same meaning as in Lemma 2.2. From Lemma 2.2, we obtain T (r, g) ≤ Nk+1 ( r, 1 g ) +N ( r, 1 g(k) − 1 ) −N0 ( r, 1 g(k+1) ) + S(r, g). (2.5) Since N ( r, 1 g(k) − 1 ) = N11 ( r, 1 g(k) − 1 ) +N (2 ( r, 1 f (k) − 1 ) + +Ng(k)>1 ( r, 1 f (k) − 1 ) +N (p+1(r, 1; g(k)|f (k) 6= 1). (2.6) Thus we deduce from (2.3) – (2.6) that T (r, g) ≤ N (p+1 ( r, 1; f (k) ∣∣ g(k) 6= 1 ) + 2N (p+1 ( r, 1; g(k) ∣∣ f (k) 6= 1 ) +Nk+1 ( r, 1 g ) + +N (2 ( r, 1 f (k) ) +N (2 ( r, 1 g(k) ) +N0 ( r, 1 f (k+1) ) +N (2 ( r, 1 f (k) − 1 ) + +NL ( r, 1 f (k) − 1 ) +NL ( r, 1 g(k) − 1 ) +Ng(k)>1 ( r, 1 f (k) − 1 ) + S(r, f) + S(r, g). (2.7) ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 12 1710 CHUN WU From the definition of N0 ( r, 1 f (k+1) ) , we see that N0 ( r, 1 f (k+1) ) +N (2 ( r, 1 f (k) − 1 ) +N(2 ( r, 1 f (k) ) −N (2 ( r, 1 f (k) ) ≤ N ( r, 1 f (k+1) ) . The above inequality and Lemma 2.6 give N0 ( r, 1 f (k+1) ) +N (2 ( r, 1 f (k) − 1 ) ≤ N ( r, 1 f (k+1) ) −N(2 ( r, 1 f (k) ) +N (2 ( r, 1 f (k) ) ≤ ≤ N ( r, 1 f (k) ) −N(2 ( r, 1 f (k) ) +N (2 ( r, 1 f (k) ) + S(r, f) ≤ N ( r, 1 f (k) ) + S(r, f). (2.8) Substituting (2.8) in (2.7), we get T (r, g) ≤ N (p+1 ( r, 1; f (k) ∣∣ g(k) 6= 1 ) + 2N (p+1 ( r, 1; g(k) ∣∣ f (k) 6= 1 ) +Nk+1 ( r, 1 g ) + +N (2 ( r, 1 f (k) ) +N (2 ( r, 1 g(k) ) +N ( r, 1 f (k) ) +NL ( r, 1 f (k) − 1 ) + +NL ( r, 1 g(k) − 1 ) +Ng(k)>1 ( r, 1 f (k) − 1 ) + S(r, f) + S(r, g). (2.9) Since Ep)(1, f (k)) = Ep)(1, g (k)), we have pN (p+1 ( r, 1; g(k) ∣∣ f (k) 6= 1 ) +NL ( r, 1 g(k) − 1 ) ≤ N ( r, 1 g(k) − 1 ) −N ( r, 1 g(k) − 1 ) . From Lemma 2.6, we obtain N ( r, 1 g(k) − 1 ) −N ( r, 1 g(k) − 1 ) +N ( r, 1 g(k) ) −N ( r, 1 g(k) ) + +N0 ( 1 g(k+1) ) ≤ N ( r, 1 g(k+1) ) ≤ N ( r, 1 g(k) ) + S(r, g). This shows N ( r, 1 g(k) − 1 ) −N ( r, 1 g(k) − 1 ) ≤ N ( r, 1 g(k) ) −N0 ( 1 g(k+1) ) . Therefore, pN (p+1 ( r, 1; g(k)|f (k) 6= 1 ) +NL ( r, 1 g(k) − 1 ) ≤ N ( r, 1 g(k) ) −N0 ( 1 g(k+1) ) . From this, we have 2N (p+1 ( r, 1; g(k)|f (k) 6= 1 ) +NL ( r, 1 g(k) − 1 ) ≤ ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 12 VALUE-SHARING AND UNIQUENESS OF ENTIRE FUNCTIONS 1711 ≤ N ( r, 1 g(k) ) ≤ Nk+1 ( r, 1 g ) + S(r, g). (2.10) Because N (p+1 ( r, 1; f (k)|g(k) 6= 1 ) +NL ( r, 1 f (k) − 1 ) ≤ N (2 ( r, 1 f (k) − 1 ) ≤ ≤ N ( r, f (k) f (k+1) ) + S(r, f) ≤ T ( r, f (k+1) f (k) ) + S(r, f) ≤ ≤ N ( r, f (k+1) f (k) ) + S(r, f) ≤ N ( r, 1 f (k) ) + S(r, f). (2.11) Combining (2.9) – (2.11), Lemmas 2.4 and 2.7, we get T (r, g) ≤ 2Nk+1 ( r, 1 g ) +Nk+1 ( r, 1 f ) +Nk+2 ( r, 1 g ) +Nk+2 ( r, 1 f ) + S(r, f) + S(r, g). Without loss of generality, we suppose that there exists a set I with infinite measure such that T (r, f) ≤ T (r, g) for r ∈ I. Hence T (r, g) ≤ { 2 [ 1− δk+1(0, g) ] + [ 1− δk+1(0, f) ] + + [ 1− δk+2(0, g) ] + [ 1− δk+2(0, f) ] + ε } T (r, g) + S(r, g) for r ∈ I and 0 < ε < ∆− 4, that is {∆− 4− ε}T (r, g) ≤ S(r, g), i.e., ∆− 4 ≤ 0 or ∆ ≤ 4, which is a contradiction to our hypotheses ∆ > 4. Hence, we get Φ(z) ≡ 0. Then by (2.2), we have f (k+2) f (k+1) − 2f (k+1) f (k) − 1 ≡ g(k+2) g(k+1) − 2g(k+1) g(k) − 1 . By integrating two sides of the above equality, we obtain 1 f (k) − 1 = bg(k) + a− b g(k) − 1 , (2.12) where a(6= 0) and b are constants. Lemma 2.8 is proved. Lemma 2.9. Let f(z) and g(z) be two nonconstant entire functions, k be a positive integer. If f (k) and g(k) share a nonzero polynomial 1 IM and ∆ = δk+2(0, g) + δk+2(0, f) + δk+1(0, f) + 2δk+1(0, g) > 4, then 1 f (k) − 1 = bg(k) + a− b g(k) − 1 , where a, b are two constants. Proof. Since f (k) and g(k) share the value 1 IM, we have N (p+1(r, 1; g(k) | f (k) 6= 1) = 0. Proceeding as in the proof of Lemma 2.8, we obtain conclusion of Lemma 2.9. ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 12 1712 CHUN WU Lemma 2.10. Let f(z) and g(z) be two nonconstant entire functions, k be a positive integer. If f (k) and g(k) share a nonzero polynomial 1 CM and ∆ = δk+2(0, g) + δk+2(0, f) > 1, then 1 f (k) − 1 = bg(k) + a− b g(k) − 1 , where a, b are two constants. Proof. Since f (k) and g(k) share the value 1 CM, we have NL ( r, 1 F − 1 ) = NL ( r, 1 G− 1 ) = = 0 and N (p+1 ( r, 1; g(k)|f (k) 6= 1 ) = 0. Proceeding as in the proof of Lemma 2.8, we obtain conclusion of Lemma 2.10. Lemma 2.11 (see [19]). Let f(z) be a nonconstant entire function and k(≥ 2) be a positive integer. If ff (k) 6= 0, then f = eaz+b, where a 6= 0, b are constants. 3. Proof of theorems. 3.1. Proof of Theorem 1.1. Because f is a transcendental entire, we get T (r, P ) = o(T (r, f)). Suppose that z0 6∈ {z : P (z) = 0} is a zero of L(f) with its multiplicity l ≥ k + 2, then z0 is a zero of (L(f)(k)/P )′ with its multiplicity l − k − 1 ≥ 1. From Lemmas 2.3 and 2.5, we have nT (r, f) = T (r, L(f)) + S(r, f) ≤ ≤ N ( r, 1 L(f) ) +N ( r, 1 L(f)(k) − P ) −N ( r, 1 (L(f)(k)/P )′ ) + S(r, f) ≤ ≤ Nk+1 ( r, 1 L(f) ) +N ( r, 1 L(f)(k) − P ) −N0 ( r, 1 (L(f)(k)/P )′ ) + S(r, f) ≤ ≤ Nk+1 ( r, 1 (f − c1)l1 ) + . . .+Nk+1 ( r, 1 (f − cs)ls ) +N ( r, 1 L(f)(k) − P ) + S(r, f) ≤ ≤ (k + s)T (r, f) +N ( r, 1 L(f)(k) − P ) + S(r, f). Thus, we get (n− k − s)T (r, f) ≤ N ( r, 1 L(f)(k) − P ) + S(r, f). Noting that n > k + s, we get [ L(f)](k) ] = P has infinitely many solutions. 3.2. Proof of Theorem 1.2. Let L(z) and l be given by (1.1), (1.2), respectively. Without loss of generality, we suppose that an = 1, l = l1, and c = c1, we get Θ(0, L(f)) = 1− lim r→∞ N ( r, 1 L(f) ) T ( r, L(f) ) ≥ 1− lim r→∞ ∑s j=1 N ( r, 1 f − cj ) nT (r, f) ≥ 1− s n ≥ l − 1 n . Similarly, we have Θ ( 0, L(g) ) ≥ l − 1 n . Moreover, we have ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 12 VALUE-SHARING AND UNIQUENESS OF ENTIRE FUNCTIONS 1713 δk+1 ( 0, L(f) ) = 1− lim r→∞ Nk+1 ( r, 1 L(f) ) T (r, L(f)) ≥ ≥ 1− lim r→∞ ∑s j=2 Nk+1 ( r, 1 (f − cj)lj ) +Nk+1 ( r, 1 (f − c)l ) nT (r, f) ≥ ≥ 1− lim r→∞ (s− 1)T (r, f) + (k + 1)T (r, f) + S(r, f) nT (r, f) ≥ ≥ 1− s+ k n ≥ l − k − 1 n . Similarly, we obtain δk+1 ( 0, L(g) ) ≥ 1− s+ k n ≥ l − k − 1 n , δk+2 ( 0, L(g) ) ≥ 1− s+ k + 1 n ≥ l − k − 2 n , δk+2 ( 0, L(f) ) ≥ 1− s+ k + 1 n ≥ l − k − 2 n . Because 5l > 4n+ 5k + 7, we get ∆ = 2δk+1 ( 0, L(g) ) + δk+1 ( 0, L(f) ) + δk+2 ( 0, L(g) ) + δk+2 ( 0, L(f) ) > 4. By Lemma 2.8, we can have 1 L(f)(k) − 1 = bL(g)(k) + a− b L(g)(k) − 1 . (3.1) Next, we consider the following three cases: Case 1. b 6= 0 and a = b. Then from (3.1) we obtain 1 L(f)(k) − 1 = bL(g)(k) L(g)(k) − 1 . (3.2) 1.1. If b = −1, then it follows from (3.2) that [ L(f) ](k)[ L(g) ](k) ≡ 1. That is [ (f − c)l(f − c2)l2 . . . (f − cs)ls ](k)[ (g − c)l(g − c2)l2 . . . (g − cs)ls ](k) = 1. (3.3) 1.1.1. When s = 1, we can rewrite (3.3)[ (f − c)n ](k)[ (g − c)n ](k) = 1. Since 5l > 4n+ 5k + 7, l = n, then n > 5k + 7. So f − c 6= 0, g − c 6= 0, according Lemma 2.11, we have ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 12 1714 CHUN WU f = b1e bz + c, g = b2e −bz + c, where b1, b2, b are three constants satisfying (−1)k(b1b2) n(nb)2k = 1. 1.1.2. When s ≥ 2, we notice that 5l > 4n+5k+7. Hence l > 5k+7. Suppose that z0 is a l-fold zero of f − c, we know that z0 must be a (l − k)-fold zero of [ (f − c)l(f − c2)l2 . . . (f − cs)ls ](k) . Noting that g is an entire function, it follows from (3.3), which is a contradiction. Hence f − c 6= 0, g − c 6= 0. So we get f = eα(z) + c, where α(z) is a nonconstant entire function. Thus we have [f i](k) = [ (eα + c)i ](k) = pi ( α′, α′′, . . . , α(k) ) eiα, i = 1, 2, . . . , n, (3.4) where pi, i = 1, 2, . . . , n, is differential polynomials about α′, α′′, . . . , α(k). Obviously, pi 6≡ 0, T (r, pi) = S(r, f), i = 1, 2, . . . , n, we get from (3.3) and (3.4) that N ( r, 1 pne(n−1)α + . . .+ p1 ) = S(r, f). According to Lemmas 2.1, 2.3 and f = eα + c, we get (n− 1)T (r, f − c) = T (r, pne (n−1)α + . . .+ p1) + S(r, f) ≤ ≤ N ( r, 1 pne(n−1)α + . . .+ p1 ) +N ( r, 1 pne(n−1)α + . . .+ p2eα ) + S(r, f) ≤ ≤ N ( r, 1 pne(n−2)α + . . .+ p2 ) + S(r, f) ≤ ≤ (n− 2)T (r, f − c) + S(r, f), which is a contradiction. 1.2. If a = b 6= −1, then (3.2) that can be written as L(g)(k) = −1 b · 1 L(f)(k) − (1 + b)/b . (3.5) From (3.5) we get N ( r, 1 L(f)(k) − (1 + b)/b ) = N(r, g) = S(r, f). (3.6) By (3.6) and Lemma 2.2, we have nT (r, f) = T (r, L(f)) +O(1) ≤ ≤ Nk+1 ( r, 1 L(f) ) +N ( r, 1 L(f)(k) − (1 + b)/b ) + S(r, f) ≤ ≤ Nk+1 ( r, 1 (f − c)l ) +Nk+1 ( r, 1 (f − c2)l2 . . . (f − cs)ls ) + S(r, f) ≤ ≤ (k + s)T (r, f) ≤ (k + n− l + 1)T (r, f) + S(r, f), which is a contradiction, because 5l > 4n+ 5k + 7. ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 12 VALUE-SHARING AND UNIQUENESS OF ENTIRE FUNCTIONS 1715 Case 2. b 6= 0 and a 6= b. We discuss the following we subcases: 2.1. Suppose that b = −1, then a 6= 0 and (3.1) can be rewritten as L(f)(k) = a a+ 1− L(g)(k) . (3.7) From (3.7) we obtain N ( r, 1 a+ 1− L(g)(k) ) = N(r, f) = S(r, g). (3.8) From (3.8), Lemmas 2.2 and 2.4, we get nT (r, g) = T (r, L(g)) +O(1) ≤ Nk+1 ( r, 1 L(g) ) + S(r, g). Next, by using the argument as in Case 1.2, we have a contradiction. 2.2. Suppose that b 6= −1, then (3.1) be rewritten as L(f)(k) − b+ 1 b = −a b2 1 L(g)(k) + (a− b)/b . (3.9) From (3.9), we have N ( r, 1 L(f)(k) − (b+ 1)/b ) = N(r, g). (3.10) From (3.10), Lemmas 2.2, 2.4 and in the same manner as in Case 1.2, we can get a contradiction. Case 3. b = 0 and a 6= 0. Then (3.1) can be rewritten as L(g)(k) = aL(f)(k) + (1− a), (3.11) L(g) = aL(f) + (1− a)p1(z), (3.12) where p1 is a polynomial with its degp1 ≤ k. If a 6= 1, then (1− a)p1 6≡ 0. This together with (3.12) and Lemma 2.1, we get nT (r, g) = T (r, L(g)) +O(1) ≤ N ( r, 1 L(g) ) +N ( r, 1 L(f) ) + S(r, g) ≤ ≤ s∑ i=1 N ( r, 1 g − ci ) + s∑ j=1 N ( r, 1 f − cj ) + S(r, g) ≤ ≤ s [ T (r, g) + T (r, f) ] + S(r, g). (3.13) Because n = l+ l2 + . . .+ ls, we get n− l = l2 + . . .+ ls ≥ s− 1, i.e., n− l ≥ s− 1, n− s ≥ l− 1. From 5l > 4n+ 5k+ 7, we have l− 1 > 4(n− l) + 5k+ 6 > 4(s− 1) + 5k+ 6, so n− s ≥ l− 1 > > 4(s− 1) + 5k + 6, i.e., n− s > 4(s− 1) + 5k + 6, thus, s < n− 5k − 2 5 . Thus nT (r, g) < n− 5k − 2 5 [ T (r, g) + T (r, f) ] + S(r, g). (3.14) On the other hand, from (3.12) and Lemma 2.3, we see that T (r, g) = T (r, f) + S(r, g). Substituting this into (3.14), we deduce that 3n+ 10k + 4 5 T (r, g) < S(r, g), which is a contradiction. ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 12 1716 CHUN WU Thus a = 1, and so it follows from (3.12) that L(f) = L(g). Next we consider the case when f and g are polynomials. Suppose that f − c and g − c have u and v pairwise distinct zeros, respectively. Then f − c and g − c are of the forms f − c = k1(z − a1)n1(z − a2)n2 . . . (z − au)nu , g − c = k2(z − b1)m1(z − b2)m2 . . . (z − bv)mv , so that [f − c]l = kl1(z − a1)ln1(z − a2)ln2 . . . (z − au)lnu , (3.15) [g − c]l = kl2(z − b1)lm1(z − b2)lm2 . . . (z − bv)lmv , (3.16) where k1 and k2 are nonzero constants, nil > 5k + 7, mjl > 5k + 7, ni, mj , i = 1, 2, . . . u, j = 1, 2, . . . v, are positive integers. Differentiating (3.12), we get L(g)(k+1) = aL(f)(k+1). (3.17) From (3.15), (3.16) and (3.17), we have (z − a1)ln1−k−1(z − a2)ln2−k−1 . . . (z − au)lnu−k−1ξ1(z) = = (z − b1)lm1−k−1(z − b2)lm2−k−1 . . . (z − bv)lmv−k−1ξ2(z), (3.18) where ξ1(z) and ξ2(z) are polynomials deg ξ1 = (n − l) ∑u i=1 ni + (u − 1)(k + 1) and deg ξ2 = = (n − l) ∑v j=1 mj + (v − 1)(k + 1). It follows that 5l > 4n + 5k + 7, we have 2l − n > > 3(n− l) + 5k + 7 > 5k + 7. Then (2l − n)ni > 5k + 7, (2l − n)mj > 5k + 7, i = 1, 2, . . . , u, j = 1, 2, . . . , v. So that u∑ i=1 [ nil − (k + 1) ] − u∑ i=1 ni(n− l) = u∑ i=1 [ ni(2l − n)− (k + 1) ] > u(4k + 6) > (u− 1)(k + 1), i.e., u∑ i=1 [ nil − (k + 1) ] > (n− l) u∑ i=1 ni + (u− 1)(k + 1). Similarly, v∑ j=1 [ mjl − (k + 1) ] > (n− l) v∑ j=1 mj + (v − 1)(k + 1). ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 12 VALUE-SHARING AND UNIQUENESS OF ENTIRE FUNCTIONS 1717 Thus from (3.18) we deduce that there exists z0 such that L(f(z0)) = L(g(z0)) = 0, where z0 has multiplicity greater than 5k + 7. This together with (3.12), we deduce p1(z) ≡ 0, which also prove the claim. Therefore from (3.11) and (3.12) we get a = 1 and so L(f) ≡ L(g). Hence, this completes the proof of Theorem1.2. 3.3 Proof of Corollary 1.1 (1.2). By using Lemma 2.9 (2.10) and the condition 5l > 4n+ 5k + +7(2l > n+2k+4), proceeding as in the proof of Theorem 1.2, we can similarly prove Corollary 1.1 (1.2). We omit the details here. 1. Hayman W. K. Meromorphic functions. – Oxford: Clarendon Press, 1964. 2. Yang L. Value distribution theory. – Berlin; Beijing: Springer-Verlag/Sci. Press, 1993. 3. Yang C. C., Yi H. X. Uniqueness theory of meromorphic functions // Math. Appl. – Dordrecht: Kluwer Acad. Publ., 2003. – 557. 4. Fang M. L. Uniqueness and value-sharing of entire functions // Comput. and Math. Appl. – 2002. – 44. – P. 823 – 831. 5. Chen J. F., Zhang X. Y., Lin W. C., Chen S. J. Uniqueness of entire functions that share one value // Comput. and Math. Appl. – 2008. – 56. – P. 3000 – 3014. 6. Zhang X. Y., Chen J. F., Lin W. C. Entire or meromorphic functions sharing one value // Comput. and Math. Appl. – 2008. – 56. – P. 1876 – 1883. 7. Fang M. L., Qiu H. Meromorphic functions that share fixed-points // J. Math. Anal. and Appl. – 2002. – 268. – P. 426 – 439. 8. Lin W. C., Yi H. X. Uniqueness theorems for meromorphic functions concerning fixed-points // Complex Variat. Theory and Appl. – 2004. – 49. – P. 793 – 806. 9. Dou J., Qi X. G., Yang L. Z. Entire functions that share fixed-points // Bull. Malays. Math. Sci. Soc. – 2011. – 34. – P. 355 – 367. 10. Yang L. Normality for family of meromorphic functions // Sci. Sinica. Ser. A. – 1986. – 29. – P. 1263 – 1274. 11. Yang C. C. On deficiencies of differential polynomials II // Math. Z. – 1972. – 149. – S. 107 – 112. 12. Lahiri I., Sarkar A. Uniqueness of a meromorphic function and its derivative // J. Inequal. Pure and Appl. Math. – 2004. – 5, № 1. – Art 20. 13. Yang L. Normality for family of meromorphic functions // Sci. Sinica. Ser. A. – 1986. – 29. – P. 1263 – 1274. 14. Yang C. C., Yi H. X. Uniqueness theory of meromorphic functions. – Beijing: Sci. Press, 1995. 15. Yang C. C., Hua X. H. Unique polynomials of entire and meromorphic functions // Mat., Fizika, Analiz, Geometriya. – 1997. – 4. – P. 391 – 398. 16. Hua X. H., Yang C. C. Uniqueness problems of entire and meromorphic functions // Bull. Hong Kong Math. Soc. – 1997. – 1. – P. 289 – 300. 17. Yang C. C., Li P. Some further results on the functional equation // Value Distribution Theory and Related Topics. – Dordrecht: Kluwer Acad. Publ., 2004. – P. 219 – 231. 18. Banerjee A. Meromorphic functions sharing one value // Int. J. Math. and Math. Sci. – 2005. – 22. – P. 3587 – 3598. 19. Frank G. Eine vermutung von Hayman über nullstellen meromorpher Funktion // Math. Z. – 1976. – 149. – S. 29 – 36. Received 07.11.12 ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 12