Strongly radical supplemented modules
Zoschinger studied modules whose radicals have supplements and called these modules radical supplemented. Motivated by this, we call a module strongly radical supplemented (briefly srs) if every submodule containing the radical has a supplement. We prove that every (finitely generated) left module i...
Saved in:
Date: | 2011 |
---|---|
Main Authors: | Büyükaşık, E., Türkmen, E. |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2011
|
Series: | Український математичний журнал |
Subjects: | |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/166362 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Strongly radical supplemented modules / E. Büyükaşık, E. Türkmen // Український математичний журнал. — 2011. — Т. 63, № 8. — С. 1140–1146. — Бібліогр.: 7 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
G-Supplemented Modules
by: Koşar, B., et al.
Published: (2015) -
I-radicals and right perfect rings
by: Rump, W.
Published: (2007) -
I-Radicals, Their Lattices, and Some Classes of Rings
by: Horbachuk, O.L., et al.
Published: (2002) -
On Centralizing and Strong Commutativity Preserving Maps of Semiprime Rings
by: Gölbaşı, Ö., et al.
Published: (2015) -
Some inverse problems for strong parabolic systems
by: Akhundov, A.Ya.
Published: (2006)