A common fixed point for generalized (ψ, φ)f,g-weak contractions

We extend the common fixed point theorem established by Zhang and Song in 2009 to generalized (ψ, φ)f,g weak contractions. Moreover, we give an example that illustrates the main result. Finally, some common fixed point results are obtained for mappings satisfying a contraction condition of the integ...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автори: Razani, A., Parvaneh, V., Abbas, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2011
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/166391
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A common fixed point for generalized (ψ, φ)f,g-weak contractions / A. Razani, V. Parvaneh, M. Abbas // Український математичний журнал. — 2011. — Т. 63, № 11. — С. 1544–1554. — Бібліогр.: 15 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-166391
record_format dspace
spelling irk-123456789-1663912020-02-20T01:27:13Z A common fixed point for generalized (ψ, φ)f,g-weak contractions Razani, A. Parvaneh, V. Abbas, M. Статті We extend the common fixed point theorem established by Zhang and Song in 2009 to generalized (ψ, φ)f,g weak contractions. Moreover, we give an example that illustrates the main result. Finally, some common fixed point results are obtained for mappings satisfying a contraction condition of the integral type in complete metric spaces. Теорему про спiльну нерухому точку, що була встановлена Чжаном i Суном у 2009 роцi, поширено на узагальненi (ψ, φ)f,g-слабкi стискуючi вiдображення. Наведено приклад, що iлюструє основний результат. Отримано деякi результати про спiльну нерухому точку для вiдображень, що задовольняють умову стиску iнтегрального типу у повних метричних просторах. 2011 Article A common fixed point for generalized (ψ, φ)f,g-weak contractions / A. Razani, V. Parvaneh, M. Abbas // Український математичний журнал. — 2011. — Т. 63, № 11. — С. 1544–1554. — Бібліогр.: 15 назв. — англ. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/166391 517.5 en Український математичний журнал Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Статті
Статті
spellingShingle Статті
Статті
Razani, A.
Parvaneh, V.
Abbas, M.
A common fixed point for generalized (ψ, φ)f,g-weak contractions
Український математичний журнал
description We extend the common fixed point theorem established by Zhang and Song in 2009 to generalized (ψ, φ)f,g weak contractions. Moreover, we give an example that illustrates the main result. Finally, some common fixed point results are obtained for mappings satisfying a contraction condition of the integral type in complete metric spaces.
format Article
author Razani, A.
Parvaneh, V.
Abbas, M.
author_facet Razani, A.
Parvaneh, V.
Abbas, M.
author_sort Razani, A.
title A common fixed point for generalized (ψ, φ)f,g-weak contractions
title_short A common fixed point for generalized (ψ, φ)f,g-weak contractions
title_full A common fixed point for generalized (ψ, φ)f,g-weak contractions
title_fullStr A common fixed point for generalized (ψ, φ)f,g-weak contractions
title_full_unstemmed A common fixed point for generalized (ψ, φ)f,g-weak contractions
title_sort common fixed point for generalized (ψ, φ)f,g-weak contractions
publisher Інститут математики НАН України
publishDate 2011
topic_facet Статті
url http://dspace.nbuv.gov.ua/handle/123456789/166391
citation_txt A common fixed point for generalized (ψ, φ)f,g-weak contractions / A. Razani, V. Parvaneh, M. Abbas // Український математичний журнал. — 2011. — Т. 63, № 11. — С. 1544–1554. — Бібліогр.: 15 назв. — англ.
series Український математичний журнал
work_keys_str_mv AT razania acommonfixedpointforgeneralizedpsphfgweakcontractions
AT parvanehv acommonfixedpointforgeneralizedpsphfgweakcontractions
AT abbasm acommonfixedpointforgeneralizedpsphfgweakcontractions
AT razania commonfixedpointforgeneralizedpsphfgweakcontractions
AT parvanehv commonfixedpointforgeneralizedpsphfgweakcontractions
AT abbasm commonfixedpointforgeneralizedpsphfgweakcontractions
first_indexed 2025-07-14T21:21:55Z
last_indexed 2025-07-14T21:21:55Z
_version_ 1837658936935710720
fulltext UDC 517.5 A. Razani, V. Parvaneh (Islamic Azad Univ., Karaj, Iran), M. Abbas (Lahore Univ. Management Sci., Pakistan) A COMMON FIXED POINT FOR GENERALIZED (ψ,ϕ)f,g-WEAK CONTRACTIONS СПIЛЬНА НЕРУХОМА ТОЧКА ДЛЯ УЗАГАЛЬНЕНИХ (ψ,ϕ)f,g-СЛАБКИХ СТИСКУЮЧИХ ВIДОБРАЖЕНЬ We extend the common fixed point theorem established by Zhang and Song in 2009 to generalized (ψ,ϕ)f,g- weak contractions. Moreover, we give an example that illustrates the main result. Finally, some common fixed point results are obtained for mappings satisfying a contraction condition of the integral type in complete metric spaces. Теорему про спiльну нерухому точку, що була встановлена Чжаном i Суном у 2009 роцi, поширено на узагальненi (ψ,ϕ)f,g-слабкi стискуючi вiдображення. Наведено приклад, що iлюструє основний результат. Отримано деякi результати про спiльну нерухому точку для вiдображень, що задовольняють умову стиску iнтегрального типу у повних метричних просторах. 1. Introduction. Let (X, d) be a metric space. A mapping T : X → X is said to be ϕ- weak contraction, if there exists a map ϕ : [0,∞)→ [0,∞) with ϕ(0) = 0 and ϕ(t) > 0 for all t > 0 such that d(Tx, Ty) ≤ d(x, y)− ϕ(d(x, y)) for all x, y ∈ X. The above notion has been defined by Alber et al. [2] in 1997. They obtained some fixed point results in Hilbert spaces. Then Rhoades [14] extended those results in Banach spaces. In 2006, Beg and Abbas [5] studied some generalizations of Rhoades’s results [14] for a pair of mappings such that one is weakly contractive with respect to the other. In 2009, Zhang et al. [15] introduced the concept of generalized ϕ-weak contraction as follows: Definition 1.1. Two mappings T, S : X → X are called generalized ϕ-weak con- tractions, if there exists a lower semicontinuous function ϕ : [0,∞) → [0,∞) with ϕ(0) = 0 and ϕ(t) > 0 for all t > 0 such that d(Tx, Sy) ≤ N(x, y)− ϕ(N(x, y)), for all x, y ∈ X, where N(x, y) = max { d(x, y), d(x, Tx), d(y, Sy), 1 2 [ d(x, Sy) + d(y, Tx) ]} . Zhang et al. proved the following theorem. Theorem 1.1. Let (X, d) be a complete metric space, and T, S : X → X are generalized ϕ-weak contractions mappings where ϕ : [0,∞)→ [0,∞) is a lower semi- continuous function with ϕ(0) = 0 and ϕ(t) > 0 for all t > 0. Then there exists a unique point u ∈ X such that u = Tu = Su. So far, many authors extended Theorem 1.1 (see [1, 7, 12]). Moreover, Doric [7] generalized it, by the definition of generalized (ψ,ϕ)-weak contractions. c© A. RAZANI, V. PARVANEH, M. ABBAS, 2011 1544 ISSN 1027-3190. Укр. мат. журн., 2011, т. 63, № 11 A COMMON FIXED POINT FOR GENERALIZED (ψ,ϕ)f,g-WEAK CONTRACTIONS 1545 Definition 1.2. Two mappings T, S : X → X are called generalized (ψ,ϕ)-weak contractive, if there exist two maps ϕ,ψ : [0,∞)→ [0,∞) such that ψ(d(Tx, Sy)) ≤ ψ(N(x, y))− ϕ(N(x, y)), for all x, y ∈ X, where N and ϕ are as in Definition 1.1 and ψ : [0,∞) → [0,∞) is a continuous monotone nondecreasing function with ψ(0) = 0 and ψ(t) > 0 for all t > 0. Theorem 1.2 [7]. Let (X, d) be a complete metric space, and T, S : X → X be generalized (ψ,ϕ)-weak contractive self-mappings. Then there exists a unique point u ∈ X such that u = Tu = Su. Moradi et al. [12] extended the Zhang and Song’s result by introducing the notion of ϕf -weak contractive mappings. Definition 1.3. Two mappings T, S : X → X are called generalized ϕf -weak contractive, if there exist two maps ϕ : [0,∞) → [0,∞) and f : X → X where ϕ is a lower semicontinuous function with ϕ(0) = 0 and ϕ(t) > 0 for all t > 0 such that d(Tx, Sy) ≤ P (x, y)− ϕ(P (x, y)), for all x, y ∈ X, where P (x, y) = max { d(fx, fy), d(fx, Tx), d(fy, Sy), 1 2 [ d(fy, Tx) + d(fx, Sy) ]} . Moradi et al. [12] proved the following theorem: Theorem 1.3. Let (X, d) be a complete metric space and E be a nonempty closed subset of X. Let T, S : E → E be two generalized ϕf -weak contractive. Assume that f is a continuous function on E and (I) TE ⊆ fE and SE ⊆ fE. (II) The pairs (T, f) and (S, f) are weakly compatible. If for all x ∈ X d(fTx, Tfx) ≤ d(fx, Tx) and d(fSx, Sfx) ≤ d(fx, Sx), then f, T and S have a unique common fixed point. 2. Main results. In this paper, we establish common fixed point theorems for mappings satisfying (ψ,ϕ)f,g-weakly contractive condition in a complete metric space. Our result is an extension of Theorem 1.1 and Theorem 1.2. In fact, our generalization is different from other generalization in [1, 7, 12]. From now as in [1], we assume: Φ = { ϕ ∣∣ϕ : [0,∞)→ [0,∞) is a lower semicontinuous function, ϕ(t) > 0 for all t > 0 and ϕ(0) = 0 } , and Ψ = { ψ ∣∣ψ : [0,∞)→ [0,∞) is a continuous and nondecreasing function and ψ(t) = 0⇐⇒ t = 0 } . We introduce the following definitions. ISSN 1027-3190. Укр. мат. журн., 2011, т. 63, № 11 1546 A. RAZANI, V. PARVANEH, M. ABBAS Definition 2.1. Two mappings T, S : X → X are called generalized (ψ,ϕ)f,g- weak contractive, if there exists maps ϕ,ψ : [0,∞) → [0,∞) and f, g : X → X such that ψ(d(Tx, Sy)) ≤ ψ(M(x, y))− ϕ(M(x, y)), (2.1) for all x, y ∈ X, where M(x, y) = max { d(fx, gy), d(fx, Tx), d(gy, Sy), 1 2 [ d(gy, Tx) + d(fx, Sy) ]} , ψ ∈ Ψ and ϕ ∈ Φ. Abbas et al. extended Zhang and Song’s theorem by the above concept [1]. We call this class of mappings, generalized (ψ,ϕ)f,g-weak contractive mappings. Definition 2.2. Let T and S be two self mappings of a metric space (X, d). T and S are said to be weakly compatible, if for all x ∈ X the equality Tx = Sx implies TSx = STx. With respect to the above definition, we prove a common fixed point theorem as follows: Theorem 2.1. Let (X, d) be a complete metric space and E be a nonempty closed subset of X. Suppose f and g are continuous functions of X. Let T, S : E → E be two generalized (ψ,ϕ)f,g-weak contractive maps, such that (A) TE ⊆ gE and SE ⊆ fE, (B) T and f as well as S and g are weakly compatible. In addition, for all x ∈ X d(fTx, Tfx) ≤ d(fx, Tx) and d(gSx, Sgx) ≤ d(gx, Sx), (2.2) and for all x, y ∈ X d(fgx, gfy) ≤ d(gx, fy). (2.3) Then T, f, S and g have a unique common fixed point. Proof. Let x0 ∈ E be arbitrary. From (A), we can find two sequences {xn}∞n=0 and {yn}∞n=0 such that y1 = Tx0 = gx1, y2 = Sx1 = fx2, y3 = Tx2 = gx3, . . . . . . , y2n+1 = Tx2n = gx2n+1, y2n+2 = Sx2n+1 = fx2n+2, . . . , respectively. The rest of the proof is done in three steps as follows: Step I. For all n = 0, 1, . . . lim n→∞ d(yn, yn+1) = 0. Define dn = d(yn, yn+1). Suppose dn0 = 0 for some n0. Then yn0 = yn0+1. Conse- quently, the sequence yn is constant for n ≥ n0. Indeed, let n0 = 2k. Then y2k = y2k+1 and we obtain from (2.1) ψ(d(y2k+1, y2k+2)) = ψ(d(Tx2k, Sx2k+1)) ≤ ≤ ψ(M(x2k, x2k+1))− ϕ(M(x2k, x2k+1)), (2.4) where M(x2k, x2k+1) = max { d(y2k, y2k+1), d(y2k, y2k+1), d(y2k+2, y2k+1), ISSN 1027-3190. Укр. мат. журн., 2011, т. 63, № 11 A COMMON FIXED POINT FOR GENERALIZED (ψ,ϕ)f,g-WEAK CONTRACTIONS 1547 1 2 [ d(y2k, y2k+2) + d(y2k+1, y2k+1) ]} = = max { 0, 0, d(y2k+1, y2k+2), 1 2 [d(y2k, y2k+2)] } = d(y2k+1, y2k+2). Now from (2.1) ψ(d(y2k+1, y2k+2)) = ψ(d(Sx2k+1, Tx2k)) ≤ ≤ ψ(d(y2k+1, y2k+2))− ϕ(d(y2k+1, y2k+2)), and so ϕ(d(y2k+1, y2k+2)) = 0, that is, y2k+1 = y2k+2. Similarly, if n0 = 2k+ 1, one can easily obtain y2k+2 = y2k+3 and so the sequence yn is constant (for n ≥ n0) and yn0 is a common fixed point of T, S, f and g. If we set z = yn0 , then z is a unique common fixed point for T, S, f and g. Suppose dn = d(yn, yn+1) > 0 for all n. We prove for each n = 1, 2, 3, . . . d(yn+1, yn+2) ≤M(xn+1, xn+2) = d(yn, yn+1). (2.5) Let n = 2k. Using condition (2.1), we obtain ψ(d(y2k+1, y2k+2)) = ψ(d(Tx2k, Sx2k+1)) ≤ ≤ ψ(M(x2k, x2k+1))− ϕ(M(x2k, x2k+1)) ≤ ≤ ψ(M(x2k, x2k+1)) and since the function ψ is nondecreasing, it follows d(y2k+1, y2k+2) ≤M(x2k, x2k+1). (2.6) Here, M(x2k, x2k+1) = max { d(fx2k, gx2k+1), d(fx2k, Tx2k), d(gx2k+1, Sx2k+1), 1 2 [ d(gx2k+1, Tx2k) + d(fx2k, Sx2k+1) ]} = = max { d(y2k, y2k+1), d(y2k, y2k+1), d(y2k+1, y2k+2), 1 2 [ d(y2k+1, y2k+1) + d(y2k, y2k+2) ]} ≤ ≤ max { d(y2k, y2k+1), d(y2k+2, y2k+1), 1 2 [ d(y2k, y2k+1) + d(y2k+1, y2k+2) ]} = = max { d(y2k, y2k+1), d(y2k+1, y2k+2) } . ISSN 1027-3190. Укр. мат. журн., 2011, т. 63, № 11 1548 A. RAZANI, V. PARVANEH, M. ABBAS If d(y2k+1, y2k+2) ≥ d(y2k, y2k+1) > 0, then M(x2k+2, x2k+1) = d(y2k+2, y2k+1), and this implies ψ(d(y2k+2, y2k+1)) ≤ ψ(d(y2k+2, y2k+1))− ϕ(d(y2k+2, y2k+1)) which is only possible when d(y2k+2, y2k+1) = 0. This is a contradiction. Hence, d(y2k+1, y2k+2) ≤ d(y2k+1, y2k) and M(x2k+2, x2k+1) ≤ d(y2k+1, y2k). Since, by definition of M(x, y), M(x2k+2, x2k+1) ≥ d(y2k+1, y2k), (2.5) is proved for d(y2k+1, y2k+2). Similarly, one can obtain d(y2k+2, y2k+3) ≤M(x2k+1, x2k+2) = d(y2k+1, y2k+2). So, (2.5) holds for all n. Thus (2.5) shows that the sequence d(yn, yn+1) is a nonincreasing sequence of real numbers and so there exists limn→∞ d(yn, yn+1) = limn→∞M(xn, xn+1) = r ≥ 0. Suppose r > 0. Then from ψ(d(yn+1, yn+2)) ≤ ψ(M(xn, xn+1))− ϕ(M(xn, xn+1)), if n→∞, it follows that ψ(r) ≤ ψ(r)− lim inf n→∞ ϕ(M(xn, xn+1)) ≤ ψ(r)− ϕ(r), i.e., ϕ(r) ≤ 0. But, ϕ ∈ Φ, so r = 0, which is a contradiction. We conclude that lim n→∞ d(yn, yn+1) = lim n→∞ M(xn, xn+1) = 0. (2.7) Step II. {yn} is a Cauchy sequence. It is sufficient to show the subsequence {y2n} is a Cauchy sequence. If not, there exists ε > 0 for which one can find subsequences {y2m(k)} and {y2n(k)} of {y2n} such that n(k) > m(k) > k and d(y2m(k), y2n(k)) ≥ ε and n(k) is the least index with this property, that is, d(y2m(k), y2n(k)−2) < ε. (2.8) From (2.8) and triangle inequality ε ≤ d(y2m(k), y2n(k)) ≤ ≤ d(y2m(k), y2n(k)−2) + d(y2n(k)−2, y2n(k)−1) + d(y2n(k)−1, y2n(k)) ≤ ≤ ε+ d(y2n(k)−2, y2n(k)−1) + d(y2n(k)−1, y2n(k)). If k →∞ and using (2.7) we have lim k→∞ d(y2m(k), y2n(k)) = ε. (2.9) ISSN 1027-3190. Укр. мат. журн., 2011, т. 63, № 11 A COMMON FIXED POINT FOR GENERALIZED (ψ,ϕ)f,g-WEAK CONTRACTIONS 1549 In addition, from the known relation |d(x, z)− d(x, y)| ≤ d(y, z), we obtain∣∣d(y2m(k), y2n(k)+1)− d(y2m(k), y2n(k)) ∣∣ ≤ d(y2n(k), y2n(k)+1), (2.10)∣∣d(y2m(k), y2n(k)+2)− d(y2m(k), y2n(k)+1) ∣∣ ≤ d(y2n(k)+2, y2n(k)+1), (2.11)∣∣d(y2n(k)+1, y2m(k)+1)− d(y2n(k)+1, y2m(k)) ∣∣ ≤ d(y2m(k), y2m(k)+1), (2.12)∣∣d(y2n(k)+2, y2m(k)+1)− d(y2n(k)+1, y2m(k)+1) ∣∣ ≤ d(y2n(k)+1, y2n(k)+2), (2.13) and using (2.7), (2.9), (2.10), (2.11), (2.12) and (2.13) we get lim k→∞ d(y2m(k), y2n(k)+1) = lim k→∞ d(y2m(k), y2n(k)+2) = = lim k→∞ d(y2n(k)+1, y2m(k)+1) = lim k→∞ d(y2n(k)+2, y2m(k)+1) = ε. (2.14) From the definition of M(x, y) and the above limits, lim k→∞ M(x2m(k), x2n(k+1)) = ε. Because, M(x2m(k), x2n(k)+1) = max { d(fx2m(k), gx2n(k)+1), d(fx2m(k), Tx2m(k)), d(gx2n(k)+1, Sx2n(k)+1), 1 2 [ d(gx2n(k)+1, Tx2m(k)) + d(fx2m(k), Sx2n(k)+1) ]} = = max { d(y2m(k), y2n(k)+1), d(y2m(k), y2m(k)+1), d(y2n(k)+1, y2n(k)+2), 1 2 [ d(y2n(k)+1, y2m(k)+1) + d(y2m(k), y2n(k)+2) ]} , and if k →∞, we have M(x2m(k), x2n(k)+1)→ max { ε, 0, 0, 1 2 [ε+ ε] } = ε. Now, we apply condition (2.1), to obtain ψ(d(y2m(k)+1, y2n(k)+2)) ≤ ψ(M(x2m(k), x2n(k)+1))− ϕ(M(x2m(k), x2n(k)+1)). Again, if k →∞, we obtain ψ(ε) ≤ ψ(ε) − ϕ(ε) which is a contradiction with ε > 0. Thus, {y2n} is a Cauchy sequence and hence {yn} is a Cauchy sequence. ISSN 1027-3190. Укр. мат. журн., 2011, т. 63, № 11 1550 A. RAZANI, V. PARVANEH, M. ABBAS Step III. There exists t such that gt = ft = St = Tt = t. Since (X, d) is complete and {yn} is Cauchy, there exists z ∈ X such that limn→∞ yn = z. Since E is closed and {yn} ⊆ E, we have z ∈ E. We know that z = lim n→∞ y2n = lim n→∞ fx2n = lim n→∞ Sx2n−1 = = lim n→∞ y2n+1 = lim n→∞ gx2n+1 = lim n→∞ Tx2n. Since f and g are continuous, we have fyn → fz and gyn → gz. On the other hand, from (2.2) and (2.3) d(Ty2n, gz) ≤ d(Ty2n, fy2n+1) + d(fy2n+1, gy2n) + d(gy2n, gz) = = d(Tfx2n, fTx2n) + d(fgx2n+1, gfx2n) + d(gy2n, gz) ≤ ≤ d(Tx2n, fx2n) + d(gx2n+1, fx2n) + d(gy2n, gz) = = d(y2n+1, y2n) + d(y2n+1, y2n) + d(gy2n, gz). Therefore, from (2.7) and continuity of g, lim n→∞ d(Ty2n, gz) = 0. Also, from (2.3) we have d(Ty2n, fz) ≤ d(Ty2n, fy2n+1) + d(fy2n+1, fz) = = d(Tfx2n, fTx2n) + d(fy2n+1, fz) ≤ ≤ d(Tx2n, fx2n) + d(fy2n+1, fz) = = d(y2n+1, y2n) + d(fy2n+1, fz). Therefore, from (2.7) lim n→∞ d(Ty2n, fz) = 0. From (2.1) ψ(d(Ty2n, Sz)) ≤ ψ(M(y2n, z))− ϕ(M(y2n, z)), where M(y2n, z) = max { d(fy2n, gz), d(fy2n, T y2n), d(gz, Sz), 1 2 [ d(gz, Ty2n) + d(fy2n, Sz) ]} . Also, ISSN 1027-3190. Укр. мат. журн., 2011, т. 63, № 11 A COMMON FIXED POINT FOR GENERALIZED (ψ,ϕ)f,g-WEAK CONTRACTIONS 1551 lim n→∞ d(Ty2n, gz) = lim n→∞ d(Ty2n, fz) = 0. Consequently, fz = gz. If n→∞, we have lim n→∞ M(y2n, z) = max { d(fz, gz), d(fz, fz), d(gz, Sz), 1 2 [ d(gz, fz) + d(fz, Sz) ]} . So, we have lim n→∞ M(y2n, z) = d(fz, Sz). Therefore, ψ(d(fz, Sz)) ≤ ψ(d(fz, Sz))− ϕ(d(fz, Sz))). This implies ϕ(d(fz, Sz)) = 0, and hence Sz = fz. We can analogously prove Tz = = gz. Therefore, Tz = gz = fz = Sz = t. Using weak compatibility of the pairs (T, f) and (S, g), we have Tt = ft and gt = St. So, ψ(d(Tt, t)) = ψ(d(Tt, Sz)) ≤ ψ(M(t, z))− ϕ(M(t, z)) = = ψ ( max { d(ft, gz), d(ft, T t), d(gz, Sz), 1 2 [d(gz, T t) + d(ft, Sz)] }) − −ϕ ( max { d(ft, gz), d(ft, T t), d(gz, Sz), 1 2 [d(gz, T t) + d(ft, Sz)] }) = = ψ ( max { d(Tt, t), d(Tt, T t), d(t, t), 1 2 [d(t, T t) + d(Tt, t)] }) − −ϕ ( max { d(Tt, t), d(Tt, T t), d(t, t), 1 2 [d(t, T t) + d(Tt, t)] }) = = ψ(d(Tt, t))− ϕ(d(Tt, t)). That is, ϕ(d(Tt, t)) = 0 and this implies Tt = t. Therefore, ft = Tt = t. Analogously, gt = St = t. Hence gt = St = t = ft = Tt. Theorem 2.1 is proved. Note that the proof of Steps I and II is approximately analogous to what which has been done in the other papers such as [1, 7, 12, 13], specially. Example 2.1. Let X = R be endowed with the Euclidean metric and E = [0, 1]. Suppose T, S : E → E is defined by Tx = 1 2 = Sx, for all x ∈ E. We define functions f, g : E → X by f(x) =  x, 0 ≤ x ≤ 1 2 , 1 2 , 1 2 ≤ x ≤ 1, ISSN 1027-3190. Укр. мат. журн., 2011, т. 63, № 11 1552 A. RAZANI, V. PARVANEH, M. ABBAS g(x) =  1 2 , 0 ≤ x ≤ 1 2 , x, 1 2 ≤ x ≤ 1, and function ψ,ϕ : [0,∞)→ [0,∞) by ϕ(t) = t3 and ψ(t) = t2. Thus for all x ∈ X d(fTx, Tfx) ≤ d(fx, Tx), d(gSx, Sgx) ≤ d(gx, Sx), and d(fgx, gfy) ≤ d(gx, fy) for all x, y ∈ X. Since 0 ≤M(x, y) ≤ 1 and d(Tx, Sy) = 0, we have ψ(d(Tx, Sy)) ≤ ψ(M(x, y))− ϕ(M(x, y)). So mappings T and S satisfy relation (2.1). This example cannot be studied by the Theorem 1.3 ( Theorem 2.1 of [12]). But, all conditions of Theorem 2.1 are hold, and T, S, f and g have a unique common fixed point ( x = 1 2 ) . 3. Applications. In this section, we obtain some common fixed point theorems for mappings satisfying a contraction condition of integral type in a complete metric space. In [6], Branciari obtained a fixed point result for a single mapping satisfying an integral type inequality. Then Altun et al. [3] established a fixed point theorem for weakly compatible maps satisfying a general contractive inequality of integral type. As in [13], we denote by Υ the set of all functions φ : [0,+∞)→ [0,+∞) verifying the following conditions: (I) φ is a positive Lebesgue integrable mapping on each compact subset of [0,+∞). (II) For all ε > 0, ∫ ε 0 φ(t)dt > 0. Corollary 3.1. Replace the generalized (ψ,ϕ)f,g-weak contractive condition of Theorem 2.1 by the following condition: There exists a φ ∈ Υ such that ψ(d(Tx,Sy))∫ 0 φ(t)dt ≤ ψ(M(x,y))∫ 0 φ(t)dt− ϕ(M(x,y))∫ 0 φ(t)dt. (3.1) If other conditions of Theorem 2.1 satisfy, then T, S, f and g have a unique common fixed point. Proof. Consider the function Γ(x) = ∫ x 0 φ(t)dt. Then (3.1) becomes Γ(ψ(d(Tx, Sy))) ≤ Γ(ψ(M(x, y)))− Γ(ϕ(M(x, y)), and taking ψ1 = Γoψ and ϕ1 = Γoϕ and applying Theorem 2.1, we obtain the proof (it is easy to verify that ψ1 ∈ Ψ and ϕ1 ∈ Φ). Corollary 3.2. Replace the generalized (ψ,ϕ)f,g-weak contractive condition of Theorem 2.1 by the following condition: There exists a φ ∈ Υ such that ISSN 1027-3190. Укр. мат. журн., 2011, т. 63, № 11 A COMMON FIXED POINT FOR GENERALIZED (ψ,ϕ)f,g-WEAK CONTRACTIONS 1553 ψ  d(Tx,Sy)∫ 0 φ(t)dt  ≤ ψ M(x,y)∫ 0 φ(t)dt − ϕ M(x,y)∫ 0 φ(t)dt . (3.2) If other conditions of Theorem 2.1 satisfy, then T, S, f and g have a unique common fixed point. Proof. Again, as in Corollary 3.1, define the function Γ(x) = ∫ x 0 φ(t)dt. Then (3.2) changes to ψ(Γ(d(Tx, Sy))) ≤ ψ(Γ(M(x, y)))− ϕ(Γ(M(x, y))). Now, if we define ψ1 = ψoΓ and ϕ1 = ϕoΓ and applying Theorem 2.1, then the proof is complete (it is easy to verify ψ1 ∈ Ψ and ϕ1 ∈ Φ). Now, we recall the definition of altering distance function as follows [10]: Definition 3.1. The function ϕ : [0,+∞)→ [0,+∞) is called an altering distance function if the following properties are satisfied: (a) ϕ is continuous and nondecreasing, (b) ϕ(t) = 0⇐⇒ t = 0. Remark 3.1. In Theorem 2.1, assume ψ and ϕ are altering distance functions, then theorem is hold. Corollary 3.3. Replace the generalized (ψ,ϕ)f,g-weak contractive condition of Theorem 2.1 by the following condition: There exists a φ ∈ Υ such that ψ1  ψ2(d(Tx,Sy))∫ 0 φ(t)dt  ≤ ψ1  ψ2(M(x,y))∫ 0 φ(t)dt − ϕ1  ϕ2(M(x,y))∫ 0 φ(t)dt , (3.3) for altering distance functions ψ1, ψ2, ϕ1 and ϕ2. If other conditions of Theorem 2.1 satisfy, then T, S, f and g have a unique common fixed point. Proof. Consider the function Γ(x) = ∫ x 0 φ(t)dt. Then (3.3) will be ψ1(Γ(ψ2(d(Tx, Sy)))) ≤ ψ1(Γ(ψ2(M(x, y))))− ϕ1(Γ(ϕ2(M(x, y)))), and taking Ψ̂ = ψ1oΓoψ2 and Φ̂ = ϕ1oΓoϕ2 and applying Theorem 2.1, we obtain the proof (it is easy to verify that Ψ̂ and Φ̂ are altering distance functions). As in [13], let N ∈ N∗ be fixed. Let {φi}1≤i≤N be a family of N functions which belong to Υ. For all t ≥ 0, we define I1(t) = t∫ 0 φ1(s)ds, I2(t) = I1t∫ 0 φ2(s)ds = ∫ ∫ t 0 φ1(s)ds 0 φ2(s)ds, I3(t) = I2t∫ 0 φ3(s)ds = ∫ ∫ ∫ t 0 φ1(s)ds 0 φ2(s)ds 0 φ3(s)ds, ISSN 1027-3190. Укр. мат. журн., 2011, т. 63, № 11 1554 A. RAZANI, V. PARVANEH, M. ABBAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IN (t) = I(N−1)t∫ 0 φN (s)ds. We have the following result. Corollary 3.4. Replace the generalized (ψ,ϕ)f,g-weak contractive condition of Theorem 2.1 by the following condition: ψ  I(N−1)(d(Tx,Sy))∫ 0 φN (s)ds  ≤ ≤ ψ  I(N−1)(M(x,y))∫ 0 φN (s)ds − ϕ  I(N−1)(M(x,y))∫ 0 φN (s)ds , (3.4) where ψ ∈ Ψ and ϕ ∈ Φ. If other conditions of Theorem 2.1 satisfy, then T, S, f and g have a unique common fixed point. Proof. Consider Ψ̂ = ψoIN and Φ̂ = ϕoIN . Then the above inequality becomes Ψ̂(d(Tx, Sy)) ≤ Ψ̂(M(x, y))− Φ̂(M(x, y))). Applying Theorem 2.1, we obtain the desired result (it is easy to verify that Ψ̂ ∈ Ψ and Φ̂ ∈ Φ). 1. Abbas M., Doric D. Common fixed point theorem for four mappings satisfying generalized weak contractive condition // Filomat. – 2010. – 24, № 2. – P. 1 – 10. 2. Alber Ya. I., Guerre-Delabriere S. Principle of weakly contractive maps in Hilbert spaces // New Results in Operator Theory: Adv. and Appl. – 1997. – 98. – P. 7 – 22. 3. Altun I., Turkoglu D., Rhoades B. E. Fixed points of weakly compatible maps satisfying a general contractive condition of integral type // Fixed Point Theory and Appl. – 2007. – Article ID 17301. 4. Azam A., Shakeel M. Weakly contractive maps and common fixed points // Mat. Vesnik. – 2008. – 60. – P. 101 – 106. 5. Beg I., Abbas M. Coincidence point and invariant approximation for mappings satisfying generalized weak contractive condition // Fixed Point Theory and Appl. – 2006. – Art. ID 74503. – P. 1 – 7. 6. Branciari A. A fixed point theorem for mapping satisfying a general contractive condition of general type // Int. J. Math. and Math. Sci. – 2002. – 29, №. 9. – P. 531 – 536. 7. Doric D. Common fixed point for generalized (ψ,ϕ)-weak contractions // Appl. Math. Lett. – 2009. – 22. – P. 1896 – 1900. 8. Dutta P. N., Choudhury B. S. A generalization of contraction principle in metric spaces // Fixed Point Theory and Appl. – 2008. – Article ID 406368. 9. Jungck G., Rhoades B. E. Fixed point for set valued functions without continuity // Indian J. Pure and Appl. Math. – 1998. – 29, №. 3. – P. 227 – 238. 10. Khan M. S., Swalel M., Sessa S. Fixed point theorems by altering distances between the points // Bull. Aust. Math. Soc. – 1984. – 30. – P. 1 – 9. 11. Luong N. V., Thuan N. X. A fixed point theorem for ψ∫ ϕ-weakly contractive mapping in metric spaces // Int. J. Math. Anal. – 2010. – 4, №. 5. – P. 233 – 242. 12. Moradi S., Fathi Z., Analouee E. Common fixed point of single valued generalized ϕf -weak contractive mappings // Appl. Math. Lett. – 2011. – 24, №. 5. – P. 771 – 776. 13. Radenovic S., Kadelburg Z Generalized weak contractions in partially ordered metric spaces // Comput. and Math. Appl. – 2010. – 60. – P. 1776 – 1783. 14. Rhoades B. E. Some theorems on weakly contractive maps // Nonlinear Anal.. – 2001. – 47. – P. 2683 – 2693. 15. Zhang Q., Song Y. Fixed point theory for generalized ϕ-weak contractions // Appl. Math. Lett. – 2009. – 22. – P. 75 – 78. Received 24.05.11 ISSN 1027-3190. Укр. мат. журн., 2011, т. 63, № 11