Remarks on certain identities with derivations on semiprime rings
Let n be a fixed positive integer, let R be a (2n)! -torsion-free semiprime ring, let α be an automorphism or an anti-automorphism of R, and let D₁,D₂:R→R be derivations. We prove the following result: If (D²₁(x) + D₂(x))ⁿ ∘ α(x)ⁿ = 0 holds for all xЄR, then D₁=D₂=0. The same is true if R is a 2-tor...
Saved in:
Date: | 2014 |
---|---|
Main Authors: | Fosner, A., Baydar, N., Strasek, R. |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2014
|
Series: | Український математичний журнал |
Subjects: | |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/166468 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Remarks on certain identities with derivations on semiprime rings / A. Fosner, N. Baydar, R. Strasek // Український математичний журнал. — 2014. — Т. 66, № 10. — С. 1436–1440. — Бібліогр.: 13 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Remarks on Certain Identities with Derivations on Semiprime Rings
by: A. Foљner, et al.
Published: (2014) -
On Centralizing and Strong Commutativity Preserving Maps of Semiprime Rings
by: Gölbaşı, Ö., et al.
Published: (2015) -
Remarks on summability of series formed of deviation probabilities of sums of independent identically distributed random variables
by: Pruss. A.R.
Published: (1996) -
Some Remarks on Spectral Synthesis Sets
by: Joseph, J., et al.
Published: (2015) -
Nonexistence of nonzero derivations on some classes of zero-symmetric 3-prime near-rings
by: Ahmed A. M. Kamal, et al.
Published: (2014)