Application of gas hydrate technologies for coal mine methane transportation
Purpose. Improving the efficiency of application of gas hydrate technologies for converting coal mine methane into a solid crystalline state with its subsequent transportation to consumers by intensifying the hydrate formation process. Methods. Experimental studies were carried out in the laborator...
Gespeichert in:
Datum: | 2020 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут фізики гірничих процесів НАН України
2020
|
Schriftenreihe: | Физико-технические проблемы горного производства |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/166525 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Application of gas hydrate technologies for coal mine methane transportation / K.S. Sai // Физико-технические проблемы горного производства: Сб. научн. тр. — 2020. — Вип. 22. — С. 170-184. — Бібліогр.: 25 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-166525 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1665252020-02-26T01:26:00Z Application of gas hydrate technologies for coal mine methane transportation Sai, K.S. Технико-экономические проблемы горного производства Purpose. Improving the efficiency of application of gas hydrate technologies for converting coal mine methane into a solid crystalline state with its subsequent transportation to consumers by intensifying the hydrate formation process. Methods. Experimental studies were carried out in the laboratory of innovative technologies of the Dnipro University of Technology (Dnipro, Ukraine). The thermobaric parameters of the hydrate formation process varied to produce of gas hydrate samples from mine methane by artificial means. Physical modeling and field experiments were carried out in an ILKA KTK-3000 climate chamber, as well as on an NPO-5 unit, which made it possible to simulate specified thermobaric parameters (temperature, pressure). The least squares method was used to determine the linear regression parameters. Findings. Gas hydrates and their thermobaric conditions were experimentally obtained under three variants: free mixing of gas and water in a reactor, forced mixing of a water-gas mixture and mixing of a water-gas mixture in a magnetic field. The functional relationship between the initial parameters of the hydrate formation process is determined for the three variants considered. The adequacy of the constructed models was verified by calculating the determination coefficient for each model using the square of the linear correlation coefficient. It is reasonable to transportation of gas in a solid gas hydrate state due to the effect of self-preservation, which is safer and economically feasible. Originality. By mathematical modeling found that the determination indices for all the considered variants of the hydrate formation process are larger than the determination coefficients, which confirms the fact that the parabolic model is more adequate. Practical implications. The optimal method for intensification of the hydrate formation process for substantiating artificially created gas hydrates from coal mine methane as an alternative energy source is justified. Мета. Підвищення ефективності застосування газогідратних технологій для переведення шахтного метану у твердий кристалічний стан з наступним його транспортуванням до кінцевих споживачів шляхом інтенсифікації процесу гідратоутворення. Методи. Експериментальні дослідження виконувались у лабораторії інноваційних технологій НТУ «Дніпровська політехніка» (м. Дніпро). Варіювались термобаричні параметри процесу гідратоутворення з отриманням зразків газових гідратів з шахтного метану штучним шляхом. Проведено фізичне моделювання та натурні експериментах у кліматермокамері ILKA КТК-3000, а також на установці НПО-5, що дозволяє моделювати задані термобаричні параметри (температура, тиск). Для визначення параметрів лінійної регресії було використано метод найменших квадратів. Результати. Експериментально отримані газогідрати та їх термобаричні умови при трьох варіантах – вільному перемішуванні у реакторі газу та води, примусовому перемішування водогазової суміші й перемішуванні водогазової суміші у магнітному полі. Визначено функціональну залежність між вихідними параметрами процесу гідратоутворення для трьох розглянутих варіантів. Виконано перевірку адекватності побудованих моделей за допомогою розрахунку коефіцієнта детермінації за кожною моделлю за допомогою квадрата лінійного коефіцієнта кореляції. Обґрунтовано перевезення газу у твердому газогідратному стані за рахунок ефекту самоконсервації, який є більш безпечним та економічно доцільним. Наукова новизна. Математичним моделюванням встановлено, що індекси детермінації для всіх розглянутих варіантів процесу гідратоутворення є більшими, ніж коефіцієнти детермінації, що підтверджує той факт, що параболічна модель є більш адекватною. Практична значимість. Обґрунтовано оптимальний спосіб інтенсифікації процесу гідратоутворення для отримання штучно створених газових гідратів з метану вугільних шахт як альтернативного енергоносія. Цель. Повышение эффективности применения газогидратных технологий для перевода шахтного метана в твердое кристаллическое состояние с последующим его транспортированием к конечным потребителям путем интенсификации процесса гидратообразования. Методы. Экспериментальные исследования выполнялись в лаборатории инновационных технологий НТУ «Днепровская политехника» (г. Днепр). Варьировались термобарические параметры процесса гидратообразования с получением образцов газовых гидратов из шахтного метана искусственным путем. Проведено физическое моделирование и натурные экспериментах в климатермокамере ILKA КТК-3000, а также на установке НПО-5, позволяющей моделировать заданные термобарические параметры (температура, давление). Для определения параметров линейной регрессии был использован метод наименьших квадратов. Результаты. Экспериментально получены газогидраты и их термобарические условиях при трех вариантах – свободном перемешивании в реакторе газа и воды, принудительном перемешивания водогазовой смеси и перемешивании водогазовой смеси в магнитном поле. Определена функциональная зависимость между исходными параметрами процесса гидратообразования для трех рассмотренных вариантов. Выполнена проверка адекватности построенных моделей с помощью расчета коэффициента детерминации по каждой модели с помощью квадрата линейного коэффициента корреляции. Обоснованно транспортирование газа в твердом газогидратном состоянии за счет эффекта самоконсервации, который является более безопасным и экономически целесообразным. Научная новизна. Математическим моделированием установлено, что индексы детерминации для всех рассмотренных вариантов процесса гидратообразования являются большими, чем коэффициенты детерминации, что подтверждает тот факт, что параболическая модель является более адекватной. Практическая значимость. Обоснованно оптимальный способ интенсификации процесса гидратообразования для получения искусственно созданных газовых гидратов из метана угольных шахт в качестве альтернативного энергоносителя. 2020 Article Application of gas hydrate technologies for coal mine methane transportation / K.S. Sai // Физико-технические проблемы горного производства: Сб. научн. тр. — 2020. — Вип. 22. — С. 170-184. — Бібліогр.: 25 назв. — англ. 2664-17716 DOI: https://doi.org/10.37101/ftpgp22.01.012 http://dspace.nbuv.gov.ua/handle/123456789/166525 622.279 en Физико-технические проблемы горного производства Інститут фізики гірничих процесів НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Технико-экономические проблемы горного производства Технико-экономические проблемы горного производства |
spellingShingle |
Технико-экономические проблемы горного производства Технико-экономические проблемы горного производства Sai, K.S. Application of gas hydrate technologies for coal mine methane transportation Физико-технические проблемы горного производства |
description |
Purpose. Improving the efficiency of application of gas hydrate technologies for converting coal mine methane into a solid crystalline state with its subsequent transportation to consumers by intensifying the hydrate formation process.
Methods. Experimental studies were carried out in the laboratory of innovative technologies of the Dnipro University of Technology (Dnipro, Ukraine). The thermobaric parameters of the hydrate formation process varied to produce of gas hydrate samples from mine methane by artificial means. Physical modeling and field experiments were carried out in an ILKA KTK-3000 climate chamber, as well as on an NPO-5 unit, which made it possible to simulate specified thermobaric parameters (temperature, pressure). The least squares method was used to determine the linear regression parameters.
Findings. Gas hydrates and their thermobaric conditions were experimentally obtained under three variants: free mixing of gas and water in a reactor, forced mixing of a water-gas mixture and mixing of a water-gas mixture in a magnetic field. The functional relationship between the initial parameters of the hydrate formation process is determined for the three variants considered. The adequacy of the constructed models was verified by calculating the determination coefficient for each model using the square of the linear correlation coefficient. It is reasonable to transportation of gas in a solid gas hydrate state due to the effect of self-preservation, which is safer and economically feasible.
Originality. By mathematical modeling found that the determination indices for all the considered variants of the hydrate formation process are larger than the determination coefficients, which confirms the fact that the parabolic model is more adequate.
Practical implications. The optimal method for intensification of the hydrate formation process for substantiating artificially created gas hydrates from coal mine methane as an alternative energy source is justified. |
format |
Article |
author |
Sai, K.S. |
author_facet |
Sai, K.S. |
author_sort |
Sai, K.S. |
title |
Application of gas hydrate technologies for coal mine methane transportation |
title_short |
Application of gas hydrate technologies for coal mine methane transportation |
title_full |
Application of gas hydrate technologies for coal mine methane transportation |
title_fullStr |
Application of gas hydrate technologies for coal mine methane transportation |
title_full_unstemmed |
Application of gas hydrate technologies for coal mine methane transportation |
title_sort |
application of gas hydrate technologies for coal mine methane transportation |
publisher |
Інститут фізики гірничих процесів НАН України |
publishDate |
2020 |
topic_facet |
Технико-экономические проблемы горного производства |
url |
http://dspace.nbuv.gov.ua/handle/123456789/166525 |
citation_txt |
Application of gas hydrate technologies for coal mine methane transportation / K.S. Sai // Физико-технические проблемы горного производства: Сб. научн. тр. — 2020. — Вип. 22. — С. 170-184. — Бібліогр.: 25 назв. — англ. |
series |
Физико-технические проблемы горного производства |
work_keys_str_mv |
AT saiks applicationofgashydratetechnologiesforcoalminemethanetransportation |
first_indexed |
2025-07-14T22:03:44Z |
last_indexed |
2025-07-14T22:03:44Z |
_version_ |
1837661553979031552 |
fulltext |
Физико-технические проблемы горного производства 2020, вып. 22
170
UDC 622.279 https://doi.org/10.37101/ftpgp22.01.012
APPLICATION OF GAS HYDRATE TECHNOLOGIES
FOR COAL MINE METHANE TRANSPORTATION
K.S. Sai
1*
1
Dnipro University of Technology, Dnipro, Ukraine
*
Corresponding author: e-mail: kateryna.sai@gmail.com
ЗАСТОСУВАННЯ ГАЗОГІДРАТНИХ ТЕХНОЛОГІЙ
ДЛЯ ТРАНСПОРТУВАННЯ МЕТАНУ ВУГІЛЬНИХ ШАХТ
К.С. Сай
1*
1
Національний технічний університет «Дніпровська політехніка», м. Дніпро,
Україна
*
Відповідальний автор: e-mail: kateryna.sai@gmail.com
ABSTRACT
Purpose. Improving the efficiency of application of gas hydrate technologies for
converting coal mine methane into a solid crystalline state with its subsequent
transportation to consumers by intensifying the hydrate formation process.
Methods. Experimental studies were carried out in the laboratory of innovative
technologies of the Dnipro University of Technology (Dnipro, Ukraine). The
thermobaric parameters of the hydrate formation process varied to produce of gas
hydrate samples from mine methane by artificial means. Physical modeling and
field experiments were carried out in an ILKA KTK-3000 climate chamber, as
well as on an NPO-5 unit, which made it possible to simulate specified thermobar-
ic parameters (temperature, pressure). The least squares method was used to de-
termine the linear regression parameters.
Findings. Gas hydrates and their thermobaric conditions were experimentally ob-
tained under three variants: free mixing of gas and water in a reactor, forced mix-
ing of a water-gas mixture and mixing of a water-gas mixture in a magnetic field.
The functional relationship between the initial parameters of the hydrate for-
mation process is determined for the three variants considered. The adequacy of
the constructed models was verified by calculating the determination coefficient
for each model using the square of the linear correlation coefficient. It is reasona-
ble to transportation of gas in a solid gas hydrate state due to the effect of self-
preservation, which is safer and economically feasible.
Originality. By mathematical modeling found that the determination indices for
all the considered variants of the hydrate formation process are larger than the de-
termination coefficients, which confirms the fact that the parabolic model is more
adequate.
https://doi.org/10.37101/ftpgp22.01.012
mailto:kateryna.sai@gmail.com
mailto:kateryna.sai@gmail.com
Физико-технические проблемы горного производства 2020, вып. 22
171
Practical implications. The optimal method for intensification of the hydrate
formation process for substantiating artificially created gas hydrates from coal
mine methane as an alternative energy source is justified.
Keywords: gas hydrate, methane, crystallization centers, intensification, effect of
self-preservation, transportation
1. INTRODUCTION
Despite the rapid development of scientific and technological progress, under-
ground coal mining in Ukraine remains difficult and due to insignificant thickness
of seams, their gas-bearing content and unstable rocks [1]. Analysis of the devel-
opment of coal deposits in modern conditions shows the need for new solutions to
a number of problems in terms of ensuring the safety of mines, integrated devel-
opment of mineral resources and environmental protection [2, 3]. Such problems
include the problem of methane utilization, which is discharged to the surface in
various ways of degassing, as well as being carried by a ventilating air jet to the
surface of the earth. The activity of the coal-industrial complex of Ukraine today
is controlled by many regulatory acts, among which methane gas occupies a spe-
cial place [4].
Modern technologies of coal mining underground cause, that the atmosphere
receives a huge amount of hydrocarbon, which is, of course, a topical problem for
not only the coal industry, but the whole country. Many scientific works are de-
voted to the issue of coal methane processing [5–7]. It should also be noted that
the high prices for hydrocarbons, the depletion of traditional gas fields, the use of
hydrocarbons as an argument in international relations are pushing the interna-
tional community to develop alternative energy projects. About half of US natural
gas production is already provided through non-traditional natural gas, and alter-
native energy development projects are being actively developed in Canada, the
United Kingdom, Poland, Turkey and Ukraine.
Analysis of the composition of gas coming to the surface from the degassing
wells of Ukraine’s coal mines shows that the methane content ranges from 2 to
95%. Well flow rates also vary over wide ranges [8]. In view of this, the task is to
find a way of utilizing coal gas for which the chemical composition would not be
a harsh condition. Today, this solution is the conversion of gas mixtures of degas-
sing wells into a solid state, i.e. the formation of gas hydrates [9].
Gas hydrates are compounds of gas and water that are stable at low tempera-
tures and high pressures. Gas hydrates refers to non-stoichiometric compounds,
i.e. compounds of variable composition. The most common gas hydrates are me-
thane hydrates. Gas hydrate technology for the storage and transportation of natu-
ral gas is a real future prospect, since 1 m
3
of gas hydrate contains about 200 m
3
of methane, which is not characterized by spontaneous combustion inherent in
free or liquefied methane [10, 11]. Obtaining gas hydrates from the methane-air
mixture of their transportation are quite relevant at the present time and economi-
cally feasible in the development of coal deposits [12]. The integrated approach
will allow to integrate coal and methane technology into a single system, increase
the profitability of coal mines, safety of work and ensure the energy independence
of our country [13, 14].
Физико-технические проблемы горного производства 2020, вып. 22
172
2. METHOD OF RESEARCH
In developing a method for producing gas hydrates, one of the main tasks is to
accelerate the hydration process. To date, in the experimental study of the kinetics
of gas hydrate formation, there are two fundamentally different directions: the
first – when the studies are conducted in the absence of forced mixing, i.e., the
supply of hydrate-forming components occurs as a result of diffusion, and heat
dissipation in heat and law; and the second direction (dynamic mode), when the
effect of diffusion and thermal conductivity is removed by mixing the substance.
In the laboratory of innovative technologies of Dnipro University of Technolo-
gy (Dnipro, Ukraine), thermobaric parameters of the hydration formation process
were created during the experimental researches and samples of gas hydrates were
obtained by artificial means. Experimental research methodology is based on
physical modeling and field experiments in the KTK-3000 climate chamber [15].
The basis of the technique is the use of the experimental unit of NPO-5, which
allows to simulate the given thermobaric parameters of the process of obtaining
gas hydrates in a wide range of temperatures and pressures [16].
Laboratory research were aimed to creating samples of pure gas hydrate. In gen-
eral, the method of laboratory research included the preparation of samples for phys-
ical modeling, conducting a series of experiments and processing of the obtained ex-
perimental data.
3. METHODS OF INTENSIFICATION OF THE GAS HYDRATE FOR-
MATION
To develop a process of continuous production of gas hydrates, it is necessary
to understand the kinetics of gas hydrate formation. Most known research of gas
hydrates are mainly focused on studying the mechanism of their formation and
dissociation [17-19]. At the same time, their results showed that these processes
occur rather slowly. Formation of gas hydrates under laboratory conditions usual-
ly takes from several hours to several days.
Devices for the formation of artificial gas hydrates differ in the ways of creat-
ing interphase gas-water contact:
– spraying water into the gas phase;
– introducing gas into the liquid phase by foaming the substances;
– combined method of introducing of reagents.
One of the main direct of physical-chemical research of gas hydrates is the
study of the kinetics of hydrate formation, which is especially relevant when
modeling the process of obtaining of gas hydrates in laboratory and industrial
conditions [20].
To intensification of gas hydrates formation process it is possible to use the fol-
lowing methods [21, 22]:
– application of surface-active substance (SAS);
– impact of the shock wave on the water-gas mixture;
– application of electromagnetic static field;
– intense mixing of water saturated of gas dissolved in it.
Физико-технические проблемы горного производства 2020, вып. 22
173
It is established that the use of SAS influences on the period of crystallization
centers nucleation, the size and concentration of hydrated particles at the stages of
their nucleation and growth. It is established that at the nucleation stage SAS in-
crease the number of crystallization centers, and at the hydrate growth stage inhib-
it the processes of hydrate particle aggregation [23]. As an aqueous hydration-
forming medium, it is possible to use an aqueous solution of low-concentration
SAS at a pressure and temperature above the equilibrium required for gas hydrate
formation [24]. Cationic, anionic, or nonionic surfactants, such as polyoxyeth-
ylene ethers, sorbitans, long-chain alcohols, sulphates, diols, fatty acids, alkylated
ammonium compounds, sulphonyls, sulfonates, can be used as accelerators of the
gas hydrate formation process. Preferably, the SAS is a quaternary ammonium
compound containing four alkyl groups, of which at least one has from 1 to 6 car-
bon atoms.
To increase the kinetics of gas hydrate formation, it is also possible to create of
shock waves of pressure in a gas-liquid medium. Such waves can be generated by
electromagnetic pulse emitters or pneumatic shocks, or other devices, and can
reach values in hundreds of atmospheres. The propagation of a shock wave of suf-
ficient length over the gas-liquid medium, due to the weak attenuation, leads to
the following physical phenomenon: the gas phase is crushed into small gas bub-
bles. Therefore, the interphase surface increases. Moreover, increasing the intensi-
ty of the shock wave leads to the fragmentation of the gas phase into smaller in-
clusions. The relative kinetics of gas inclusions in a fluid in a shock wave pressure
significantly exceeds the relative kinetics of the gas phase in the absence of a
shock wave. As the wave amplitude increases, the relative kinetics of the gas
phase in the liquid increases.
The electromagnetic static field also significantly affects the kinetics of gas
hydrate growth. Research of the influence of electromagnetic fields on gas hydrate
formation processes have shown that denser and more stable crystalline hydrates
are formed under these conditions. In addition, it was found that under the influ-
ence of magnetic fields, the accumulation of gas hydrates is significantly acceler-
ated.
4. RESULTS OF RESEARCH
Experimental studies of the gas hydrate formation process were performed in
three variants:
variant 1 – free mixing of gas and water in a reactor;
variant 2 – forced mixing of water-gas mixture;
variant 3 – mixing of a water-gas mixture in a magnetic field.
When conducting the experiment in the reactor of gas hydrate formation was
set to a constant pressure of 7 MPa, the experiment was carried out in a tempera-
ture range from +0.5 to + 7.5°C, technologically mixing in the reactor gas and wa-
ter. To create a magnetic field, 4 magnets were placed inside the reactor.
In the first variant, the first signs of gas hydrate formation were detected at
+0.5°C after 6.1 hours; in the second, at the same thermobaric parameters, – after
4 hours; and for the third – after 2 hours (Fig. 1).
Физико-технические проблемы горного производства 2020, вып. 22
174
Figure 1. Formation periods of gas hydrates in three variants: variant 1 – free mixing
of gas and water in a reactor; variant 2 – forced mixing of water-gas mixture; vari-
ant 3 – mixing of a water-gas mixture in a magnetic field
To analyze the data obtained in the experimental studies, the functional de-
pendence between the original parameters for all variants was determined. The
adequacy of the constructed models was verified by calculating the determination
coefficient for each model.
The least squares method was used to determine linear regression parameters.
Let between the data ( ) there is a linear relationship. General view of linear
dependence – , where a and b are unknown. Model parameters were
calculated by the formulas:
1 1 1
2
2
1 1
n n n
i i i i
i i i
n n
i i
i i
n x y x y
a
n x x
;
2
1 1 1 1
2
2
1 1
n n n n
i i i i i
i i i i
n n
i i
i i
y x x y x
b
n x x
.
A modified least squares method was used to determine the parabolic regres-
sion parameters.
Let between the data ( ) there is a parabolic dependence. General view of
parabolic dependence – , where a , b and c are unknown. The
model parameters are calculated from the following system of equations:
0
2
4
6
8
10
12
14
1 2 3 4 5 6 7 8 9 10 11T
im
e
o
f
g
as
h
y
d
ra
te
f
o
rm
at
io
n
,
h
o
u
rs
Temperature, °C
Variant 1 Variant 2 Variant 3
Физико-технические проблемы горного производства 2020, вып. 22
175
4 3 2 2
1 1 1 1
3 2
1 1 1 1
2
1 1 1
n n n n
i i i i i
i i i i
n n n n
i i i i i
i i i i
n n n
i i i
i i i
a x b x c x x y
a x b x c x x y
a x b x nc y
.
The adequacy of the constructed models was verified by calculating the deter-
mination coefficient for each model. To evaluate the quality of the selection of the
linear function, the square of the linear correlation coefficient was calculated
,
called the coefficient of determination. The coefficient of determination character-
izes the proportion of variance of the productive trait y , which is explained by
regression in the total variance of the productive trait:
2
2
2
1
fin
xy
y
r
,
where:
22 1
ˆfin xESS y y
n
;
22 2 21
yTSS y y y y
n
.
The generalized results of the calculated parameters for the linear model are
shown in Figure 2, with the determination coefficients for each variant.
The quality of a nonlinear regression model is determined by a nonlinear corre-
lation index called the correlation index for nonlinear forms of communication. It
is calculated using the dispersion decomposition theorem. The determination in-
dex for the nonlinear coupling characteristics is similar to the normal coefficient
of determination.
If the nonlinear regression equation using factor substitutions can be reduced to
a paired linear regression equation, then all the hypothesis testing methods for the
paired linear dependence will apply to this equation:
2
2
2 1
2 2
1
1 1 1
n
i x
ост i
xy n
y
i
i
y y
ESS
R
TSS
y y
.
Физико-технические проблемы горного производства 2020, вып. 22
176
Figure 2. Linear regression models and equations with coefficients of determination
for each of the three variants
Generalized results of the calculated parameters for the parabolic model are
shown in Figure 3 with the determination indices for each variant.
Figure 3. Parabolic regression models and equations with determination indices
for each of the three variants
To perform the adequacy analysis and module selection, the results obtained
were summarized in a common table (Table 1).
Therefore, since the determination indices for all variants are greater than the
coefficients of determination, the parabolic model is more adequate.
0
2
4
6
8
10
12
14
1 2 3 4 5 6 7 8 9 10 11T
im
e
o
f
g
as
h
y
d
ra
te
f
o
rm
at
io
n
,
h
o
u
rs
Temperature, °C
Variant 1 Variant 2 Variant 3
0
2
4
6
8
10
12
14
1 2 3 4 5 6 7 8 9 10 11T
im
e
o
f
g
as
h
y
d
ra
te
f
o
rm
at
io
n
,
h
o
u
rs
Temperature, °C
Variant 1 Variant 2 Variant 3
Физико-технические проблемы горного производства 2020, вып. 22
177
Table 1. Determination coefficients (indices) for the constructed models
Linear model Parabolic model
Variant 1 0.9723 0.9984
Variant 2 0.9869 0.9972
Variant 3 0.9984 0.9986
We finally accept the equation of dependence between the parameters of the
formation time of gas hydrates (T) from the temperature (t):
– for variant 1– 20.0195 0.4601 5.4624T t t t ;
– for variant 2– 20.0198 0.6541 3.2867T t t t ;
– for variant 3 – 20.0017 0.4508 1.4509T t t t .
5. SUBSTANTIATE OF METHOD OF COAL MINE METHANE TRANS-
PORTATION IN GAS HYDRATE STATE
When developing a method of transportation gas, safety and cost factors must
be paramount [25] Currently, two variants are being considered: in gas hydrate
state and liquefied state. The second method has become more widely used, but
only because the application of the self-preservation effect of gas hydrates at the
industrial level has not yet been fully understood. And thanks to this effect, natu-
ral gas can be transported in a solid gas hydrate state at atmospheric pressure and
negative temperatures.
Self-preservation of gas hydrates is known as a very slow hydrate decomposi-
tion when the outside pressure drops below the equilibrium value for the “gas-ice-
gas hydrate” system at a temperature below zero degrees and, as a consequence,
an icy crust is formed on the surface of the hydrate, which significantly reduces
the kinetics dissociation of gas hydrate. This property of gas hydrates is critical
and plays a significant role in substantiate the parameters of their transportation
under atmospheric pressure and temperatures below zero degrees Celsius.
Studies have shown that only the presence of a crust on the surface of a gas hy-
drate is an insufficient condition. It is also necessary to take into account the role
of such factors as the ratio between pressure and temperature, the microstructure
of ice, the kinetics of formation of ice crystals, the composition of gas. The com-
bination of these factors leads to the effect that the formation of a sufficiently thin
crust creates a sufficient diffusion barrier for the released gas molecules. It is like-
ly that the released gas molecules dissolve in the boundary layer between the ice
and the gas hydrate, maintaining the necessary chemical activity for the stability
of the latter, thus, the icy crust does not require high pressure. Therefore, self-
preservation should be considered as a complex phenomenon in which part of the
gas hydrate, which is exposed to external factors, is spent in order to form a pro-
tective ice crust.
Table 2 provides a comparison of two methods of gas transportation.
Физико-технические проблемы горного производства 2020, вып. 22
178
Table 2. Comparison of properties of gas hydrates and liquefied gas
Characteristic Gas hydrates Liquefied natural gas
State solid liquid
Gas content in 1 m
3
, m
3
up to 200 up to 600
Temperature, °С -20ºС -162ºС
Specific gravity, kg / m
3
850.00 – 950.00 420.00 – 470.00
From Table 2 it is obvious that gas hydrates can be transported at a higher tem-
perature than gas in the liquefied state. This allows us to speak about the cost-
effectiveness of this mode of transportation. There are also advantages such as
capital and operating costs, energy consumption, greenhouse gas emissions during
formation and transportation, and, most importantly, safety in gas transportation,
since the possibility of a sudden explosion reduces to zero.
It should be noted that special gas-tight containers are required to transport gas
in the form of gas hydrates. During the transport of hydrates, the pressure and
temperature inside the tank must be controlled to prevent the ice crust from melt-
ing on the surface of the hydrates. As already mentioned, the transportation of hy-
drates can be carried out even at atmospheric pressure and temperature below zero
degrees Celsius. Therefore, it is necessary to apply active cooling of the space in
which gas hydrates are located in order to maintain the required transportation
temperature.
6. CONCLUSIONS
1. The existing methods of intensification of the process of gas hydrate for-
mation are analyzed, the features of devices (units) for obtaining artificial gas hy-
drates are revealed.
2. Experimental researches on creation of gas hydrates have been carried out
and thermobaric parameters of the gas hydrate formation process have been estab-
lished using various methods of process intensification.
3. The functional dependence between the initial parameters of the gas hydrate
formation process for 3 considered variants is determined. The least squares
method was used to determine linear regression parameters. A modified least
squares method was used to determine the parameters of the parabolic regression
that was accepted in the calculations.
4. The adequacy of the constructed models is verified by calculating the coeffi-
cient of determination for each model using the square of the linear coefficient of
correlation. As a result, the determination indices for all variants have more de-
termination coefficients, which confirms the fact that the parabolic model is more
adequate.
5. Comparison of the parameters of gas transportation methods. Emphasis is
placed on the technology of gas transportation in the solid gas hydrate state due to
the self-preservation effect, which is more secure and economically feasible when
comparing the thermobaric parameters of gas mixture transportation.
Физико-технические проблемы горного производства 2020, вып. 22
179
7. ACKNOWLEDGEMENTS
The presented results were obtained in the framework of the complex imple-
mentation of research papers GP-500 «Synthesis, optimization and parameterisa-
tion of innovation technologies for the development of gas-coal fields resources»
(State registration No. 0119U000248).
REFERENCES
1. Khorolskyi, A., Hrinov, V., Mamaikin, O., & Demchenko, Y. (2019). Models and
methods to make decisions while mining production scheduling. Mining of Mineral De-
posits, 13(4), 53–62. https://doi.org/10.33271/mining13.04.053
2. Petlovanyi, M., Lozynskyi, V., Saik, P., & Sai, K. (2019). Predicting the producing
well stability in the place of its curving at the underground coal seams gasification. E3S
Web of Conferences, (123), 01019. https://doi.org/10.1051/e3sconf/201912301019
3. Khorolskyi, A., Hrinov, V., & Kaliushenko, O. (2019). Network models for search-
ing for optimal economic and environmental strategies for field development. Procedia
Environmental Science, Engineering and Management, 6(3), 463–471.
4. 95/05871 Coal-bed methane in Ukraine: Facta and prospects. (1995). Fuel and En-
ergy Abstracts, 36(6), 418. https://doi.org/10.1016/0140-6701(95)97514-k
5. Alsaab, D., Elie, M., Izart, A., Sachsenhofer, R.F., Privalov, V.A., Suarez-Ruiz, I.,
& Panova, E.A. (2009). Distribution of thermogenic methane in Carboniferous coal
seams of the Donets Basin (Ukraine): “Applications to exploitation of methane and fore-
cast of mining hazards.” International Journal of Coal Geology, 78(1), 27–37.
https://doi.org/10.1016/j.coal.2008.09.004
6. Boger, C., Marshall, J.S., & Pilcher, R.C. (2014). Worldwide coal mine methane
and coalbed methane activities. Coal Bed Methane, 351–407.
https://doi.org/10.1016/b978-0-12-800880-5.00018-8
7. Ganushevych, K., Sai, K., & Korotkova, A. (2014). Creation of gas hydrates from
mine methane. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining,
505–509. https://doi.org/10.1201/b17547-85
8. Cai, J., Xu, C., Xia, Z., Chen, Z., & Li, X. (2017). Hydrate-based methane recovery
from coal mine methane gas in scale-up equipment with bubbling. Energy Procedia,
(105), 4983–4989. https://doi:10.1016/j.egypro.2017.03.996
9. Diedich, I., & Nazimko, V. (2014). Assessment of goaf degassing wells shear due
to their longwall undermining. Progressive Technologies of Coal, Coalbed Methane, and
Ores Mining, 137–140. https://doi:10.1201/b17547-25
10. Carroll, J. (2014). Natural gas hydrates: a guide for engineers. Oxford, United
Kingdom: Elsevier, 340 p.
11. Makogon, Y.F. (1997). Hydrates of hydrocarbons. Tulsa, Oklahoma, United
States: Pennwell Books, 482 p.
12. Sai, K., Malanchuk, Z., Petlovanyi, M., Saik, P., & Lozynskyi, V. (2019). Re-
search of thermodynamic conditions for gas hydrates formation from methane in the coal
mines. Solid State Phenomena, (291), 155–172. https://doi.org/10.4028/
www.scientific.net/ssp.291.155
13. Hrinov, V.H., Khorolskyi, A.O., & Kaliushchenko, O.P. (2019). Elaboration of
environmental scenarios for the effective development of valuable mineral deposits. Min-
eral Resources of Ukraine, (2), 46–50. https://doi.org/10.31996/mru.2019.2.46-50
14. Petlovanyi, M., Sai, K., & Prokopenko, K. (2019). Prospects of utilization mining
methane on the basis of gas hydrate technologies. Topical Issues of the Development of
https://doi.org/10.33271/mining13.04.053
https://doi.org/10.1051/e3sconf/201912301019
https://doi.org/10.1016/0140-6701(95)97514-k
https://doi.org/10.1016/j.coal.2008.09.004
https://doi.org/10.1016/b978-0-12-800880-5.00018-8
https://doi.org/10.1201/b17547-85
https://doi:10.1016/j.egypro.2017.03.996
https://doi:10.1201/b17547-25
https://doi.org/10.4028/%20www.scientific.net/ssp.291.155
https://doi.org/10.4028/%20www.scientific.net/ssp.291.155
https://doi.org/10.31996/mru.2019.2.46-50
Физико-технические проблемы горного производства 2020, вып. 22
180
Modern Science: Abstracts of III International Scientific and Practical Conference. Sofia,
Bulgaria: Publishing House “ACCENT”, 396–402.
15. Bondarenko, V., Svietkina, O., & Sai, K. (2018). Effect of mechanoactivated
chemical additives on the process of gas hydrate formation. Eastern-European Journal of
Enterprise Technologies, 1(6(91)), 17–26. https://doi.org/10.15587/1729-
4061.2018.123885
16. Ovchynnikov, M., Ganushevych, K., & Sai, K. (2013). Methodology of gas hy-
drates formation from gaseous mixtures of various compositions. Annual Scientific-
Technical Collection – Mining of Mineral Deposits 2013, 203–206.
https://doi.org/10.1201/b16354-36
17. Kobayashi, I., Ito, Y., & Mori, Y. H. (2001). Microscopic observations of clath-
rate-hydrate films formed at liquid/liquid interfaces. I. Morphology of hydrate films.
Chemical Engineering Science, 56(14), 4331–4338. https://doi.org/10.1016/s0009-
2509(00)00544-3
18. Servio, P., & Englezos, P. (2003). Morphology of methane and carbon dioxide hy-
drates formed from water droplets. AIChE Journal, 49(1), 269–276.
https://doi.org/10.1002/aic.690490125
19. Sundramoorthy, J.D., Hammonds, P., Lal, B., & Phillips, G. (2016). Gas hydrate
gas hydrate equilibrium measurement and observation of gas hydrate dissociation
with/without a KHI. Procedia Engineering, (148), 870–877. https://doi.org/
10.1016/j.proeng.2016.06.476
20. Sai, K., Petlovanyi, M., & Prokopenko, K. (2019). Kinetic features of the dissocia-
tion process of gas hydrate deposits. XV International Scientific and Practical Conference
«International Trends in Science and Technology». Warsaw, Poland: RS Global S. z
O.O., 10–16.
21. Abbasian Rad, S., Rostami Khodaverdiloo, K., Karamoddin, M., Varaminian, F.,
& Peyvandi, K. (2015). Kinetic study of amino acids inhibition potential of Glycine and l
-leucine on the ethane hydrate formation. Journal of Natural Gas Science and Engineer-
ing, (26), 819–826. https://doi.org/10.1016/j.jngse.2015.06.053
22. Sa, J.-H., Kwak, G.-H., Han, K., Ahn, D., Cho, S. J., Lee, J. D., & Lee, K.-H.
(2016). Inhibition of methane and natural gas hydrate formation by altering the structure
of water with amino acids. Scientific Reports, 6(1). https://doi.org/10.1038/srep31582
23. Farhang, F. (2014). Kinetics of the formation of CO2 hydrates in the presence of
sodium halides and hydrophobic fumed silica nanoparticles: PhD Thesis. Queensland:
The University of Queensland, 177. https://doi.org/10.14264/uql.2014.385
24. Kumar, A., Bhattacharjee, G., Kulkarni, B.D., & Kumar, R. (2015). Role of sur-
factants in promoting gas hydrate formation. Industrial & Engineering Chemistry Re-
search, 54(49), 12217–12232. https://doi.org/10.1021/acs.iecr.5b03476
25. Hanushevych, K., & Srivastava, V. (2017). Coalbed methane: places of origin,
perspectives of extraction, alternative methods of transportation with the use of gas hy-
drate and nanotechnologies. Mining of Mineral Deposits, 11(3), 23–34.
https://doi.org/10.15407/mining11.03.023
СПИСОК ЛІТЕРАТУРИ
1. Khorolskyi, A., Hrinov, V., Mamaikin, O., & Demchenko, Y. (2019). Models and
methods to make decisions while mining production scheduling. Mining of Mineral De-
posits, 13(4), 53–62. https://doi.org/10.33271/mining13.04.053
2. Petlovanyi, M., Lozynskyi, V., Saik, P., & Sai, K. (2019). Predicting the producing
well stability in the place of its curving at the underground coal seams gasification. E3S
Web of Conferences, (123), 01019. https://doi.org/10.1051/e3sconf/201912301019
https://doi.org/10.15587/1729-4061.2018.123885
https://doi.org/10.15587/1729-4061.2018.123885
https://doi.org/10.1201/b16354-36
https://doi.org/10.1016/s0009-2509(00)00544-3
https://doi.org/10.1016/s0009-2509(00)00544-3
https://doi.org/10.1002/aic.690490125
https://doi.org/%2010.1016/j.proeng.2016.06.476
https://doi.org/%2010.1016/j.proeng.2016.06.476
https://doi.org/10.1016/j.jngse.2015.06.053
https://doi.org/10.1038/srep31582
https://doi.org/10.14264/uql.2014.385
https://doi.org/10.1021/acs.iecr.5b03476
https://doi.org/10.15407/mining11.03.023
https://doi.org/10.33271/mining13.04.053
https://doi.org/10.1051/e3sconf/201912301019
Физико-технические проблемы горного производства 2020, вып. 22
181
3. Khorolskyi, A., Hrinov, V., & Kaliushenko, O. (2019). Network models for search-
ing for optimal economic and environmental strategies for field development. Procedia
Environmental Science, Engineering and Management, 6(3), 463–471.
4. 95/05871 Coal-bed methane in Ukraine: Facta and prospects. (1995). Fuel and En-
ergy Abstracts, 36(6), 418. https://doi.org/10.1016/0140-6701(95)97514-k
5. Alsaab, D., Elie, M., Izart, A., Sachsenhofer, R.F., Privalov, V.A., Suarez-Ruiz, I.,
& Panova, E.A. (2009). Distribution of thermogenic methane in Carboniferous coal
seams of the Donets Basin (Ukraine): “Applications to exploitation of methane and fore-
cast of mining hazards.” International Journal of Coal Geology, 78(1), 27–37.
https://doi.org/10.1016/j.coal.2008.09.004
6. Boger, C., Marshall, J.S., & Pilcher, R.C. (2014). Worldwide coal mine methane
and coalbed methane activities. Coal Bed Methane, 351–407.
https://doi.org/10.1016/b978-0-12-800880-5.00018-8
7. Ganushevych, K., Sai, K., & Korotkova, A. (2014). Creation of gas hydrates from
mine methane. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining,
505–509. https://doi.org/10.1201/b17547-85
8. Cai, J., Xu, C., Xia, Z., Chen, Z., & Li, X. (2017). Hydrate-based methane recovery
from coal mine methane gas in scale-up equipment with bubbling. Energy Procedia,
(105), 4983–4989. https://doi:10.1016/j.egypro.2017.03.996
9. Diedich, I., & Nazimko, V. (2014). Assessment of goaf degassing wells shear due
to their longwall undermining. Progressive Technologies of Coal, Coalbed Methane, and
Ores Mining, 137–140. https://doi:10.1201/b17547-25
10. Carroll, J. (2014). Natural gas hydrates: a guide for engineers. Oxford, United
Kingdom: Elsevier, 340 p.
11. Makogon, Y.F. (1997). Hydrates of hydrocarbons. Tulsa, Oklahoma, United
States: Pennwell Books, 482 p.
12. Sai, K., Malanchuk, Z., Petlovanyi, M., Saik, P., & Lozynskyi, V. (2019). Re-
search of thermodynamic conditions for gas hydrates formation from methane in the coal
mines. Solid State Phenomena, (291), 155–172. https://doi.org/10.4028/
www.scientific.net/ssp.291.155
13. Hrinov, V.H., Khorolskyi, A.O., & Kaliushchenko, O.P. (2019). Elaboration of
environmental scenarios for the effective development of valuable mineral deposits. Min-
eral Resources of Ukraine, (2), 46–50. https://doi.org/10.31996/mru.2019.2.46-50
14. Petlovanyi, M., Sai, K., & Prokopenko, K. (2019). Prospects of utilization mining
methane on the basis of gas hydrate technologies. Topical Issues of the Development of
Modern Science: Abstracts of III International Scientific and Practical Conference. Sofia,
Bulgaria: Publishing House “ACCENT”, 396–402.
15. Bondarenko, V., Svietkina, O., & Sai, K. (2018). Effect of mechanoactivated
chemical additives on the process of gas hydrate formation. Eastern-European Journal of
Enterprise Technologies, 1(6(91)), 17–26. https://doi.org/10.15587/1729-
4061.2018.123885
16. Ovchynnikov, M., Ganushevych, K., & Sai, K. (2013). Methodology of gas hy-
drates formation from gaseous mixtures of various compositions. Annual Scientific-
Technical Collection – Mining of Mineral Deposits 2013, 203–206.
https://doi.org/10.1201/b16354-36
17. Kobayashi, I., Ito, Y., & Mori, Y. H. (2001). Microscopic observations of clath-
rate-hydrate films formed at liquid/liquid interfaces. I. Morphology of hydrate films.
Chemical Engineering Science, 56(14), 4331–4338. https://doi.org/10.1016/s0009-
2509(00)00544-3
https://doi.org/10.1016/0140-6701(95)97514-k
https://doi.org/10.1016/j.coal.2008.09.004
https://doi.org/10.1016/b978-0-12-800880-5.00018-8
https://doi.org/10.1201/b17547-85
https://doi:10.1016/j.egypro.2017.03.996
https://doi:10.1201/b17547-25
https://doi.org/10.4028/%20www.scientific.net/ssp.291.155
https://doi.org/10.4028/%20www.scientific.net/ssp.291.155
https://doi.org/10.31996/mru.2019.2.46-50
https://doi.org/10.15587/1729-4061.2018.123885
https://doi.org/10.15587/1729-4061.2018.123885
https://doi.org/10.1201/b16354-36
https://doi.org/10.1016/s0009-2509(00)00544-3
https://doi.org/10.1016/s0009-2509(00)00544-3
Физико-технические проблемы горного производства 2020, вып. 22
182
18. Servio, P., & Englezos, P. (2003). Morphology of methane and carbon dioxide hy-
drates formed from water droplets. AIChE Journal, 49(1), 269–276.
https://doi.org/10.1002/aic.690490125
19. Sundramoorthy, J.D., Hammonds, P., Lal, B., & Phillips, G. (2016). Gas hydrate
gas hydrate equilibrium measurement and observation of gas hydrate dissociation
with/without a KHI. Procedia Engineering, (148), 870–877.
https://doi.org/10.1016/j.proeng.2016.06.476
20. Sai, K., Petlovanyi, M., & Prokopenko, K. (2019). Kinetic features of the dissocia-
tion process of gas hydrate deposits. XV International Scientific and Practical Conference
«International Trends in Science and Technology». Warsaw, Poland: RS Global S. z
O.O., 10–16.
21. Abbasian Rad, S., Rostami Khodaverdiloo, K., Karamoddin, M., Varaminian, F.,
& Peyvandi, K. (2015). Kinetic study of amino acids inhibition potential of Glycine and l
-leucine on the ethane hydrate formation. Journal of Natural Gas Science and Engineer-
ing, (26), 819–826. https://doi.org/10.1016/j.jngse.2015.06.053
22. Sa, J.-H., Kwak, G.-H., Han, K., Ahn, D., Cho, S. J., Lee, J. D., & Lee, K.-H.
(2016). Inhibition of methane and natural gas hydrate formation by altering the structure
of water with amino acids. Scientific Reports, 6(1). https://doi.org/10.1038/srep31582
23. Farhang, F. (2014). Kinetics of the formation of CO2 hydrates in the presence of
sodium halides and hydrophobic fumed silica nanoparticles: PhD Thesis. Queensland:
The University of Queensland, 177. https://doi.org/10.14264/uql.2014.385
24. Kumar, A., Bhattacharjee, G., Kulkarni, B.D., & Kumar, R. (2015). Role of sur-
factants in promoting gas hydrate formation. Industrial & Engineering Chemistry Re-
search, 54(49), 12217–12232. https://doi.org/10.1021/acs.iecr.5b03476
25. Hanushevych, K., & Srivastava, V. (2017). Coalbed methane: places of origin,
perspectives of extraction, alternative methods of transportation with the use of gas hy-
drate and nanotechnologies. Mining of Mineral Deposits, 11(3), 23–34.
https://doi.org/10.15407/mining11.03.023
ABSTRACT (IN UKRAINIAN)
Мета. Підвищення ефективності застосування газогідратних технологій для
переведення шахтного метану у твердий кристалічний стан з наступним йо-
го транспортуванням до кінцевих споживачів шляхом інтенсифікації проце-
су гідратоутворення.
Методи. Експериментальні дослідження виконувались у лабораторії іннова-
ційних технологій НТУ «Дніпровська політехніка» (м. Дніпро). Варіювались
термобаричні параметри процесу гідратоутворення з отриманням зразків га-
зових гідратів з шахтного метану штучним шляхом. Проведено фізичне мо-
делювання та натурні експериментах у кліматермокамері ILKA КТК-3000, а
також на установці НПО-5, що дозволяє моделювати задані термобаричні
параметри (температура, тиск). Для визначення параметрів лінійної регресії
було використано метод найменших квадратів.
Результати. Експериментально отримані газогідрати та їх термобаричні
умови при трьох варіантах – вільному перемішуванні у реакторі газу та во-
ди, примусовому перемішування водогазової суміші й перемішуванні водо-
газової суміші у магнітному полі. Визначено функціональну залежність між
вихідними параметрами процесу гідратоутворення для трьох розглянутих
варіантів. Виконано перевірку адекватності побудованих моделей за допо-
https://doi.org/10.1002/aic.690490125
https://doi.org/10.1016/j.proeng.2016.06.476
https://doi.org/10.1016/j.jngse.2015.06.053
https://doi.org/10.1038/srep31582
https://doi.org/10.14264/uql.2014.385
https://doi.org/10.1021/acs.iecr.5b03476
https://doi.org/10.15407/mining11.03.023
Физико-технические проблемы горного производства 2020, вып. 22
183
могою розрахунку коефіцієнта детермінації за кожною моделлю за допомо-
гою квадрата лінійного коефіцієнта кореляції. Обґрунтовано перевезення
газу у твердому газогідратному стані за рахунок ефекту самоконсервації,
який є більш безпечним та економічно доцільним.
Наукова новизна. Математичним моделюванням встановлено, що індекси
детермінації для всіх розглянутих варіантів процесу гідратоутворення є бі-
льшими, ніж коефіцієнти детермінації, що підтверджує той факт, що пара-
болічна модель є більш адекватною.
Практична значимість. Обґрунтовано оптимальний спосіб інтенсифікації
процесу гідратоутворення для отримання штучно створених газових гідратів
з метану вугільних шахт як альтернативного енергоносія.
Ключові слова: газогідрат, метан, центри кристалізації, інтенсифікація,
ефект самоконсервації, транспортування
ABSTRACT (IN RUSSIAN)
Цель. Повышение эффективности применения газогидратных технологий
для перевода шахтного метана в твердое кристаллическое состояние с по-
следующим его транспортированием к конечным потребителям путем ин-
тенсификации процесса гидратообразования.
Методы. Экспериментальные исследования выполнялись в лаборатории ин-
новационных технологий НТУ «Днепровская политехника» (г. Днепр). Ва-
рьировались термобарические параметры процесса гидратообразования с
получением образцов газовых гидратов из шахтного метана искусственным
путем. Проведено физическое моделирование и натурные экспериментах в
климатермокамере ILKA КТК-3000, а также на установке НПО-5, позволя-
ющей моделировать заданные термобарические параметры (температура,
давление). Для определения параметров линейной регрессии был использо-
ван метод наименьших квадратов.
Результаты. Экспериментально получены газогидраты и их термобариче-
ские условиях при трех вариантах – свободном перемешивании в реакторе
газа и воды, принудительном перемешивания водогазовой смеси и переме-
шивании водогазовой смеси в магнитном поле. Определена функциональная
зависимость между исходными параметрами процесса гидратообразования
для трех рассмотренных вариантов. Выполнена проверка адекватности по-
строенных моделей с помощью расчета коэффициента детерминации по
каждой модели с помощью квадрата линейного коэффициента корреляции.
Обоснованно транспортирование газа в твердом газогидратном состоянии за
счет эффекта самоконсервации, который является более безопасным и эко-
номически целесообразным.
Научная новизна. Математическим моделированием установлено, что ин-
дексы детерминации для всех рассмотренных вариантов процесса гидрато-
образования являются большими, чем коэффициенты детерминации, что
подтверждает тот факт, что параболическая модель является более адекват-
ной.
Практическая значимость. Обоснованно оптимальный способ интенсифи-
кации процесса гидратообразования для получения искусственно созданных
Физико-технические проблемы горного производства 2020, вып. 22
184
газовых гидратов из метана угольных шахт в качестве альтернативного
энергоносителя.
Ключевые слова: газогидрат, метан, центры кристаллизации, интенсифика-
ция, эффект самоконсервации, транспортирование
ABOUT AUTHOR
Sai Kateryna, Candidate of Technical Sciences, Associate Professor, Dnipro
University of Technology, Associate Professor of the Mining Engineering and Education
Department, 19 Yavornytskoho Ave., Dniprо, Ukraine, 49005, E-mail:
kateryna.sai@gmail.com
mailto:kateryna.sai@gmail.com
|