Iodine-assisted solid-state synthesis and characterization of nanocrystalline zirconium diboride nanosheets
A solid-state route was developed to prepare zirconium diboride nanosheets with the dimension of about 500 nm and thickness of about 20 nm from zirconium dioxide, iodine and sodium borohydride at 700 °C in an autoclave reactor. The obtained ZrB₂ product was investigated by X-ray diffraction, scannin...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , , , , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут надтвердих матеріалів ім. В.М. Бакуля НАН України
2018
|
Назва видання: | Сверхтвердые материалы |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/167102 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Iodine-assisted solid-state synthesis and characterization of nanocrystalline zirconium diboride nanosheets / Liangbiao Wang, Dejian Zhao, Qinglin Cheng, Quanquan Lu, Weiqiao Liu, Keyan Bao, Binglong Zhu, Quanfa Zhou // Сверхтвердые материалы. — 2018. — № 4. — С. 35-40. — Бібліогр.: 18 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-167102 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1671022020-03-16T01:25:53Z Iodine-assisted solid-state synthesis and characterization of nanocrystalline zirconium diboride nanosheets Liangbiao Wang Dejian Zhao Qinglin Cheng Quanquan Lu Weiqiao Liu Keyan Bao Binglong Zhu Quanfa Zhou Получение, структура, свойства A solid-state route was developed to prepare zirconium diboride nanosheets with the dimension of about 500 nm and thickness of about 20 nm from zirconium dioxide, iodine and sodium borohydride at 700 °C in an autoclave reactor. The obtained ZrB₂ product was investigated by X-ray diffraction, scanning electron microscope and transmission electron microscopy. The obtained product was also studied by thermogravimetric analysis. It had good thermal stability and oxidation resistance below 400 °C in air. Furthermore, the possible formation mechanism of ZrB₂ was also discussed. Розроблено твердотільний напрямок отримання наношарів дибориду цирконію розміром ~ 500 нм і товщиною ~ 20 нм з діоксиду цирконію, йоду та боргідриду натрію при 700 °С в автоклавному реакторі. Отриманий продукт ZrB₂ досліджували рентгенівською дифракцією, скануючим електронним мікроскопом і трансмісійною електронною мікроскопією. Отриманий продукт також вивчали термогравіметричним аналізом. Він мав гарну термостійкість і стійкість до окиснення нижче 400 °C на повітрі. Крім того, обговорено також можливий механізм утворення ZrB₂. Разработан твердотельный путь получения нанослоев диборида циркония размером ~ 500 нм и толщиной ~ 20 нм из диоксида циркония, йода и боргидрида натрия при 700 °С в автоклавной реакторе. Полученный продукт ZrB₂ исследовали рентгеновской дифракцией, сканирующим электронным микроскопом и трансмиссионной электронной микроскопией. Полученный продукт также изучали термогравиметрическим анализом. Он имел хорошую термостойкость и устойчивость к окислению ниже 400 °C на воздухе. Кроме того, обсуждали также возможный механизм образования ZrB₂. 2018 Article Iodine-assisted solid-state synthesis and characterization of nanocrystalline zirconium diboride nanosheets / Liangbiao Wang, Dejian Zhao, Qinglin Cheng, Quanquan Lu, Weiqiao Liu, Keyan Bao, Binglong Zhu, Quanfa Zhou // Сверхтвердые материалы. — 2018. — № 4. — С. 35-40. — Бібліогр.: 18 назв. — англ. 0203-3119 http://dspace.nbuv.gov.ua/handle/123456789/167102 661.883.1:548.734:620.187 en Сверхтвердые материалы Інститут надтвердих матеріалів ім. В.М. Бакуля НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Получение, структура, свойства Получение, структура, свойства |
spellingShingle |
Получение, структура, свойства Получение, структура, свойства Liangbiao Wang Dejian Zhao Qinglin Cheng Quanquan Lu Weiqiao Liu Keyan Bao Binglong Zhu Quanfa Zhou Iodine-assisted solid-state synthesis and characterization of nanocrystalline zirconium diboride nanosheets Сверхтвердые материалы |
description |
A solid-state route was developed to prepare zirconium diboride nanosheets with the dimension of about 500 nm and thickness of about 20 nm from zirconium dioxide, iodine and sodium borohydride at 700 °C in an autoclave reactor. The obtained ZrB₂ product was investigated by X-ray diffraction, scanning electron microscope and transmission electron microscopy. The obtained product was also studied by thermogravimetric analysis. It had good thermal stability and oxidation resistance below 400 °C in air. Furthermore, the possible formation mechanism of ZrB₂ was also discussed. |
format |
Article |
author |
Liangbiao Wang Dejian Zhao Qinglin Cheng Quanquan Lu Weiqiao Liu Keyan Bao Binglong Zhu Quanfa Zhou |
author_facet |
Liangbiao Wang Dejian Zhao Qinglin Cheng Quanquan Lu Weiqiao Liu Keyan Bao Binglong Zhu Quanfa Zhou |
author_sort |
Liangbiao Wang |
title |
Iodine-assisted solid-state synthesis and characterization of nanocrystalline zirconium diboride nanosheets |
title_short |
Iodine-assisted solid-state synthesis and characterization of nanocrystalline zirconium diboride nanosheets |
title_full |
Iodine-assisted solid-state synthesis and characterization of nanocrystalline zirconium diboride nanosheets |
title_fullStr |
Iodine-assisted solid-state synthesis and characterization of nanocrystalline zirconium diboride nanosheets |
title_full_unstemmed |
Iodine-assisted solid-state synthesis and characterization of nanocrystalline zirconium diboride nanosheets |
title_sort |
iodine-assisted solid-state synthesis and characterization of nanocrystalline zirconium diboride nanosheets |
publisher |
Інститут надтвердих матеріалів ім. В.М. Бакуля НАН України |
publishDate |
2018 |
topic_facet |
Получение, структура, свойства |
url |
http://dspace.nbuv.gov.ua/handle/123456789/167102 |
citation_txt |
Iodine-assisted solid-state synthesis and characterization of nanocrystalline zirconium diboride nanosheets / Liangbiao Wang, Dejian Zhao, Qinglin Cheng, Quanquan Lu, Weiqiao Liu, Keyan Bao, Binglong Zhu, Quanfa Zhou // Сверхтвердые материалы. — 2018. — № 4. — С. 35-40. — Бібліогр.: 18 назв. — англ. |
series |
Сверхтвердые материалы |
work_keys_str_mv |
AT liangbiaowang iodineassistedsolidstatesynthesisandcharacterizationofnanocrystallinezirconiumdiboridenanosheets AT dejianzhao iodineassistedsolidstatesynthesisandcharacterizationofnanocrystallinezirconiumdiboridenanosheets AT qinglincheng iodineassistedsolidstatesynthesisandcharacterizationofnanocrystallinezirconiumdiboridenanosheets AT quanquanlu iodineassistedsolidstatesynthesisandcharacterizationofnanocrystallinezirconiumdiboridenanosheets AT weiqiaoliu iodineassistedsolidstatesynthesisandcharacterizationofnanocrystallinezirconiumdiboridenanosheets AT keyanbao iodineassistedsolidstatesynthesisandcharacterizationofnanocrystallinezirconiumdiboridenanosheets AT binglongzhu iodineassistedsolidstatesynthesisandcharacterizationofnanocrystallinezirconiumdiboridenanosheets AT quanfazhou iodineassistedsolidstatesynthesisandcharacterizationofnanocrystallinezirconiumdiboridenanosheets |
first_indexed |
2025-07-14T23:46:45Z |
last_indexed |
2025-07-14T23:46:45Z |
_version_ |
1837668034982969344 |
fulltext |
ISSN 0203-3119. Сверхтвердые материалы, 2018, № 4 35
UDC 661.883.1:548.734:620.187
Liangbiao Wang1, *, Dejian Zhao1, Qinglin Cheng1,
Quanquan Lu1, Weiqiao Liu1, Keyan Bao2, Binglong Zhu1,
Quanfa Zhou1,**
1Jiangsu Key Laboratory of Precious Metals Chemistry
and Engineering, School of Chemistry and Environment Engineering,
Jiangsu University of Technology, Changzhou 213001, P. R. China
2College of Chemistry and Pharmcy Engineering,
Nanyang Normal University, Nanyang, Henan 473061, P. R. China
*lbwang@jsut.edu.cn
**labzqf@jsut.edu.cn
Iodine-assisted solid-state synthesis
and characterization of nanocrystalline
zirconium diboride nanosheets
A solid-state route was developed to prepare zirconium diboride
nanosheets with the dimension of about 500 nm and thickness of about 20 nm from
zirconium dioxide, iodine and sodium borohydride at 700 °C in an autoclave reactor.
The obtained ZrB2 product was investigated by X-ray diffraction, scanning electron
microscope and transmission electron microscopy. The obtained product was also
studied by thermogravimetric analysis. It had good thermal stability and oxidation
resistance below 400 °C in air. Furthermore, the possible formation mechanism of
ZrB2 was also discussed.
Keywords: solid-state route, X-ray diffraction, zirconium diboride,
nanosheets, chemical synthesis.
INTRODUCTION
Transition metal borides had attracted consideration interests be-
cause of their excellent properties, such as high melting point, high chemical stabil-
ity, good electrical and thermal conductivity, and high hardness [1–4]. These vari-
ous unique properties presented a wide range of applications, such as refractory
lining materials, cutting tools, electronic materials and aerospace technologies.
Among these, zirconium diboride (ZrB2) was used widely in high temperature
environments due to its high melting point (3245 °C), high thermal conductivity
(57.9 W·m–1·K–1), high hardness (22 GPa), low density (6.10 g/cm3), and good
corrosion resistance [5, 6]. In addition, ZrB2 was a superconductor with a very
sharp superconducting transition at 5.5 K [7].
Up to now, several synthetic methods had been developed to synthesize ZrB2
materials, such as, the carbothermal reduction of zirconium dioxide and boron
carbide (B4C) at 1400 °C [8], self-propagating high temperature synthesis (SHS)
[9], high temperature reaction from a ZrO2–C–BN precursor [10], solid-state re-
duction of zirconium dioxide and boron oxide by a metallic reducing agent (such as
magnesium or aluminum) at temperatures of about 1500 °C [11] and the mechano-
chemistry treatment of zirconia and amorphous boron at 1100 °C [12]. ZrB2 can
© LIANGBIAO WANG, DEJIAN ZHAO, QINGLIN CHENG, QUANQUAN LU, WEIQIAO LIU, KEYAN BAO,
BINGLONG ZHU, QUANFA ZHOU, 2018
http://stmj.org.ua 36
also be prepared by chemical vapor deposition (CVD) from ZrCl4, H2 and BCl3
[13]. Amprphous ZrB2.76 was also obtained by thermolysis of zirconium precursor
(Zr(BH4)4) [14]. A general rout towards metal boride nanocrytals had been deve-
loped by ionothermal process at a relatively mild temperature (500–900 °C) [15].
ZrB2 can also be obtained by a co-reduction method at low temperature [16, 17].
Very recently, a solid-state reaction between zirconium dioxide and sodium boro-
hydride was reported to produce pure nanosized ZrB2 at the temperature of
1100 °C [18]. Herein, we reported a solid-state reaction of zirconium dioxide and
solid borohydride with iodine assisted to produce ZrB2 nanosheets at the tempera-
ture of 700 °C in an autoclave.
EXPERIMENTAL
All the reagents used in the experiments were purchased from Shanghai Chemi-
cal Reagents Company. All manipulations in our experiments were carried out in a
glove box purged with flowing argon gas. In a typical procedure, zirconium diox-
ide (0.25 g), iodine (0.54 g) and sodium borohydride (0.76 g) were put into a
stainless steel autoclave of 20 mL capacity. The autoclave was sealed and heated in
an electric stove with a heating ramp rate of 10 °C/min from room temperature to
700 °C. The autoclave was maintained at 700 °C for 10 h, and then followed by
cooling to room temperature in the furnace naturally. The product collected from
the autoclave was washed by absolute ethyl alcohol, distilled water and dilute HCl
aqueous solution for several times to remove the impurities. Finally the final prod-
uct was dried under vacuum at 60 °C for 10 h for further characterization.
X-ray diffraction (XRD) pattern of the obtained product was performed with a
Philips X′Pert X-ray powder diffractometer using CuKα radiation (λ = 1.54178 Å).
The microstructure of the obtained product was investigated with a field-emitting
scanning electron microscope (FE-SEM, JEOL-JSM-6700F), a transmission
electron microscope (TEM, H7650), and a high-resolution transmission electron
microscope (HRTEM, JEOL-2010) with an accelerating voltage of 200 kV.
Thermogravimetric analysis (TGA) profile was performed on a Shimadzu-50
thermoanalyzer apparatus under flowing air and argon below 1000 °C at a rate of
10 °C /min.
RESULTS AND DISCUSSION
XRD was used to check the crystal structure and the phase purity of the
obtained product. A typical XRD pattern of the obtained product was shown in
Fig. 1. All the peaks in Fig. 1 of the (001), (100), (101), (002), (110), (102), (111),
(200), and (201) reflections can be indexed to pure hexagonal ZrB2 with lattice
constants of a = 3.169 Å and c = 3. 543 Å, which were consistent with the reported
values of hexagonal ZrB2 (Joint Committee on Powder Diffraction Standards
(JCPDS) cards, No. 65-3389). No impurity peaks from ZrO2 or Zr were detected in
Fig. 1, suggesting the ZrB2 product with high purity. All the peaks with strong
diffraction intensity indicated the obtained ZrB2 with excellent crystallinity.
FE-SEM, TEM and HRTEM were used to study the microstructure of the
obtained ZrB2 product. The FE-SEM image of the obtained ZrB2 is shown in Figs.
2, a and b. The FE-SEM image (see Fig. 2, a) revealed that the ZrB2 product was
composed of nanosheets and nanoparticles. A high-magnification image (see Fig.
2, b) showed that the obtained ZrB2 product was composed of hexagonal plate and
irregular nanosheets. The TEM image (Fig. 3, a) of the ZrB2 product showed the
dimension of zirconium diboride (ZrB2) nanosheets was about 500 nm with
thickness of about 20 nm on average. In the HRTEM image (see Fig. 3, b), the
ISSN 0203-3119. Сверхтвердые материалы, 2018, № 4 37
obvious lattice fringes of hexagonal ZrB2 indicated that the obtained ZrB2 product
was well crystalline. The plane intervals was measured to be about 0.22 nm, which
corresponded to the separation between (101) lattice planes of hexagonal ZrB2.
10 20 30 40 50 60 70
(1
11
)
(1
02
)
(2
01
)
(2
00
) (1
10
)
(0
02
)
(1
00
)
(1
01
)
(0
01
)
2θ, deg
In
te
n
si
ty
,
ar
b.
u
n
it
s
Fig. 1. XRD pattern of the obtained ZrB2.
1 μm 200 nm
a b
Fig. 2. FE-SEM images of the obtained ZrB2 product: low-magnification image (a), high-
magnification image (b).
0.22 nm
200 nm
2 nm
a b
Fig. 3. TEM image of ZrB2 nanosheets (a), HRTEM image of ZrB2 nanosheets (b).
The thermal stabilities and oxidation resistances of materials determine their
application conditions. Thus, it is very important to study the thermal stability and
oxidation resistance of the obtained ZrB2 product. The TGA of the ZrB2 is shown
http://stmj.org.ua 38
in Fig. 4. The TGA was carried out from room temperature to 1000 °C with a
heating ramp rate of 10 °C/min under flowing air and argon gases. The weight of
the product from room temperature to 1000 °C under the flowing air is shown in
the curve 1. The TGA curve 1 shows that the weight of the product had not
changed below 400 °C. When the temperature is over 400 °C, the ZrB2 product
begins to oxidize to zirconium dioxide (ZrO2) and diboron trioxide (B2O3). The
weight increment was about 55.2 % by converting the ZrB2 into zirconium dioxide
(ZrO2) and diboron trioxide (B2O3). The weight of the ZrB2 product from room
temperature to 1000 °C under the flowing argon gas is shown in the curve 2, which
shows that the weight of the product was almost unchanged below 1000 °C. The
ZrB2 product obtained by our designed route had anti-oxidation behaviour under
400 °C and good thermal stability.
0 200 400 600 800 T, °C
0
10
20
30
40
50
2
1
wt %
Fig. 4. TGA profile of the ZrB2 product under flowing air (1) and argon (2).
The possible formation mechanism of ZrB2 can be proposed here. The reaction
between ZrO2 and NaBH4 used to produce ZrB2 was highly exothermic, but the
reaction was initiated at high temperature of 1100 °C. In our experimental process,
the mole ratio of the raw materials is ZrO2 : I2 : NaBH4 = 1 :1 : 10. With the
assistance of iodine, hexagonal ZrB2 nanosheets were prepared from ZrO2 and
NaBH4 in an autoclave, in which the exothermic reaction between iodine and NaH
(coming from the pyrolysis of NaBH4) led to the formation of ZrB2 nanosheets at a
relatively low temperature. The solid-state synthesis of crystalline ZrB2 by the
reaction of ZrO2 and NaBH4 with I2 assisted in an autoclave can be described as
follows
ZrO2 + 6NaBH4 + I2 = ZrB2 + 2Na2O + 2NaI + 6H2 + 4BH3. (1)
When the temperature increased over 500 °C, the NaBH4, as the boride source,
decomposed to BH3 and NaH, which is shown in Eqs.
NaBH4 = NaH + BH3; (2)
2NaH + I2 = 2NaI + H2. (3)
The possible formation process of ZrB2 nanosheets could be illustrated as
follows
ZrO2 + 2BH3 + 4NaH = ZrB2 + 2Na2O + 5H2. (4)
ISSN 0203-3119. Сверхтвердые материалы, 2018, № 4 39
According to free energy calculations of the Eq. (3), the present solid state
reaction is highly exothermic (ΔrHm = –462.84 kJ/mol). A great deal of heat
generated from the reaction of NaH and iodine and resulted in a high temperature
in an autoclave, which favored crystallization of ZrB2. Meanwhile, H2 as byproduct
coming from the Eq. (1) can bring high pressure in the autoclave, which is also
beneficial to the formation of crystalline ZrB2. The influence of iodine and reaction
temperature on the formation of ZrB2 was investigated. The optimal reaction
temperature is 700 °C. Although the present synthetic route is thermodynamically
spontaneous, pure ZrB2 could not be obtained at the temperature of 600 °C. In
addition, iodine played a key role in the formation of ZrB2 nanosheets. ZrB2 cannot
be obtained by the reaction of ZrO2 and NaBH4 at 700 °C.
CONCLUSIONS
In summary, ZrB2 nanosheets with with the dimensions of about 500 nm and
thickness of about 20 nm were successfully prepared at 700 °C in an autoclave by
using zirconium dioxide, sodium borohydride and iodine as reactants. The ZrB2
nanosheets obtained by the designed route have anti-oxidation behaviour under
400 °C and good thermal stability. In comparison with previous synthetic routes,
the present route has the advantages of utilizing inexpensive starting materials,
simple apparatus and simple operation.
ACKNOWLEDGEMENTS
This work was supported by Natural Science Foundation of Jiangsu Province
(No. BK20160292), Natural Science Foundation of the Higher Educations
Institutions of Jiangsu Province (No. 16KJB150013), the National Natural Science
Foundation of China (No. U1404505), the Program for Innovative Talent in
University of Henan Province (16HASTIT010).
Розроблено твердотільний напрямок отримання наношарів дибориду
цирконію розміром ∼ 500 нм і товщиною ∼ 20 нм з діоксиду цирконію, йоду та боргідриду
натрію при 700 °С в автоклавному реакторі. Отриманий продукт ZrB2 досліджували
рентгенівською дифракцією, скануючим електронним мікроскопом і трансмісійною елек-
тронною мікроскопією. Отриманий продукт також вивчали термогравіметричним ана-
лізом. Він мав гарну термостійкість і стійкість до окиснення нижче 400 °C на повітрі.
Крім того, обговорено також можливий механізм утворення ZrB2.
Ключові слова: твердотільна схема, рентгенівська дифракція, диборид
цирконію, нанорозміри, хімічний синтез.
Разработан твердотельный путь получения нанослоев диборида цирко-
ния размером ∼ 500 нм и толщиной ∼ 20 нм из диоксида циркония, йода и боргидрида
натрия при 700 °С в автоклавной реакторе. Полученный продукт ZrB2 исследовали рент-
геновской дифракцией, сканирующим электронным микроскопом и трансмиссионной
электронной микроскопией. Полученный продукт также изучали термогравиметриче-
ским анализом. Он имел хорошую термостойкость и устойчивость к окислению ниже
400 °C на воздухе. Кроме того, обсуждали также возможный механизм образования
ZrB2.
Ключевые слова: твердотельная схема, рентгеновская дифракция, ди-
борид циркония, наноразмеры, химический синтез.
1. Adams R. M. Boron, metallo-boron compounds and boranes. – New York: Interscience, 1964.
2. Samsonov G. V., Vinitskii I. M. Handbook of refractory compounds. – New York: Plenum
Press, 1980.
3. Zhang G. J., Ji Z., Ni D. W., Liu H. T., Kan Y. M. Boride ceramics: densification, microstruc-
ture tailoring and properties improvement // J. Inorg. Mater. – 2012. – 27, N 3. – P. 225–233.
http://stmj.org.ua 40
4. Upadhya K., Yang J. M., Hoffman W. P. Materials for ultrahigh temperature structural applica-
tions // Am. Ceram. Soc. Bull. – 1997. – 76, N 12. – P. 51–56.
5. Fahrenholtz W. G., Hilmas G. E. Refractory diborides of zirconium and hafnium // J. Am.
Ceram. Soc. – 2007. – 90, N 5. – P. 1347–1364.
6. Ni D. W., Zhang G. J., Kan Y. M., Sakka Y. Highly textured ZrB2-based ultrahigh temperature
ceramics via strong magnetic field alignment // Scripta Mater. – 2009. – 60, N 8. – P. 615–
618.
7. Gasparov V. A., Sidorov N. S., Zver’kova I. I., Kulakov M. P. Electron transport in diborides:
Observation of superconductivity in ZrB2 // JETP Lett. – 2001. – 73, N 10. – P. 532–535.
8. Zhao H., He Y., Jin Z. Z. Preparation of zirconium boride powder // J. Am. Ceram. Soc. –
1995. – 78, N 9. – P. 2534–2536.
9. Camurlu H. E., Maglia F. Self-propagating high-temperature synthesis of ZrB2 or TiB2 rein-
forced Ni–Al composite powder // J. Alloys. Compds. – 2009. – 478, N 1–2. – P. 721–725.
10. Yan C. L., Liu R. J., Zhang C. R., Cao Y., Long X. Synthesis of ZrB2 powders from ZrO2,
BN, and C // J. Am. Ceram. Soc. – 2016. – 99, N 1. – P. 16–19.
11. Schwarzkopf P., Kieffer R. Refractory hard metals. – New York: MacMillan Co., 1953.
12. Setoudeh N., Welham N. J. Formation of zirconium diboride (ZrB2) by room temperature
mechanochemical reaction between ZrO2, B2O3 and Mg // J. Alloys. Compd. – 2006. – 420,
N 1–2. – P. 225–228.
13. Reich S. S., Hanko K., Szepes L. Deposition of thin-films of zirconium and hafnium boride by
plasma enhanced chemical vapor-deposition // Adv. Mater. – 1992. – 4, N 10. – P. 650–653.
14. Andrievskii R. A., Kravchenko S. E., Shikin S. P. Preparation and some properties of ultrafine
zirconium boride and titanium boride powders // Inorg. Mater. – 1995. – 31, N 8. – P. 965–
968.
15. Portehault D., Devi S., Beaunier P., Gervais C., Giordano C., Sanchez C., Antonietti M.
A general solution route toward metal boride nanocrystals // Angew. Chem. Int. Edit. – 2011.
– 50, N 14. – P. 3262–3265.
16. Chen L. Y., Gu Y. L., Shi L., Ma J. Yang Z. Low-temperature synthesis of nanocrystalline
ZrB2 via Co-reduction of ZrCl4 and BBr3 // Bull. Chem. Soc. Jpn. – 2004. – 77, N 7. –
P. 1423–1424.
17. Zhu Y. C., Li Q. W., Mei T., Qian Y. Solid state synthesis of nitride, carbide and boride
nanocrystals in an autoclave // J. Mater. Chem. – 2011. – 21, N 36. – P. 13756–13764.
18. Zoli L., Costa A. L., Sciti D. Synthesis of nanosized zirconium diboride powder via oxide-
borohydride solid-state reaction // Scripta Mater. – 2015. – 109. – P. 100–103.
Received 13.02.17
|