Mitigation of mutual coupling in microstrip antenna arrays
This article demonstrates the alleviation of mutual coupling of a simple and low-cost four-element microstrip array antenna by loading I-shaped slot-type electromagnetic band gap structure in the ground plane. FR-4 glass epoxy is used as dielectric substrate. Moreover, the proposed array antenna sho...
Збережено в:
Дата: | 2019 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
2019
|
Назва видання: | Технология и конструирование в электронной аппаратуре |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/167883 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Mitigation of mutual coupling in microstrip antenna arrays / K. Prahlada Rao, R.M. Vani, P.V. Hunagund // Технология и конструирование в электронной аппаратуре. — 2019. — № 5-6. — С. 16-24. — Бібліогр.: 21 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-167883 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1678832020-04-13T01:26:22Z Mitigation of mutual coupling in microstrip antenna arrays K. Prahlada Rao Van, R.M. Hunagund, P.V. СВЧ-техника This article demonstrates the alleviation of mutual coupling of a simple and low-cost four-element microstrip array antenna by loading I-shaped slot-type electromagnetic band gap structure in the ground plane. FR-4 glass epoxy is used as dielectric substrate. Moreover, the proposed array antenna shows a better performance in terms of multi-band resonance. The antenna is resonating at four frequencies and a virtual size reduction of 78.48% is obtained. The designed array antenna possesses directional radiation properties. Mentor Graphics IE3D software is used to design and simulate the designed antennas and the measured results are obtained using vector network analyser. Работа посвящена исследованию возможности повышения эфективности микрополосковых антенных решеток, которые рассчитаны на работу в узкой полосе частот. Для решения этой проблемы предлагается использовать структуры, которые образуют активные электромагнитные зоны (АЭЗ) в плоскости микрополосковой антенной решетки. Эти зоны могут способствовать распространению или подавлению электромагнитных волн, что приводит к минимизации влияния поверхностных волн, уменьшению взаимного влияния элементов антенных решеток, а также к существенному снижению уровня заднего лепестка диаграммы направленности антенны. Роботу присвячено дослідженню можливості підвищення ефективності мікросмужкових антенних решіток, які розраховані на роботу у вузькій смузі частот. Для вирішення цієї проблеми пропонується використовувати структури, які утворюють активні електромагнітні зони (АЕЗ) в площині мікросмужкової антенної решітки. Ці зони можуть сприяти поширенню або придушенню електромагнітних хвиль, що призводить до мінімізації впливу поверхневих хвиль, зменшенню взаємного впливу між елементами антенних решіток, а також суттєвому зниженню рівня задньої пелюстки діаграми спрямованості антени. 2019 Article Mitigation of mutual coupling in microstrip antenna arrays / K. Prahlada Rao, R.M. Vani, P.V. Hunagund // Технология и конструирование в электронной аппаратуре. — 2019. — № 5-6. — С. 16-24. — Бібліогр.: 21 назв. — англ. 2225-5818 DOI: 10.15222/TKEA2019.5-6.16 http://dspace.nbuv.gov.ua/handle/123456789/167883 621.3 en Технология и конструирование в электронной аппаратуре Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
СВЧ-техника СВЧ-техника |
spellingShingle |
СВЧ-техника СВЧ-техника K. Prahlada Rao Van, R.M. Hunagund, P.V. Mitigation of mutual coupling in microstrip antenna arrays Технология и конструирование в электронной аппаратуре |
description |
This article demonstrates the alleviation of mutual coupling of a simple and low-cost four-element microstrip array antenna by loading I-shaped slot-type electromagnetic band gap structure in the ground plane. FR-4 glass epoxy is used as dielectric substrate. Moreover, the proposed array antenna shows a better performance in terms of multi-band resonance. The antenna is resonating at four frequencies and a virtual size reduction of 78.48% is obtained. The designed array antenna possesses directional radiation properties. Mentor Graphics IE3D software is used to design and simulate the designed antennas and the measured results are obtained using vector network analyser. |
format |
Article |
author |
K. Prahlada Rao Van, R.M. Hunagund, P.V. |
author_facet |
K. Prahlada Rao Van, R.M. Hunagund, P.V. |
author_sort |
K. Prahlada Rao |
title |
Mitigation of mutual coupling in microstrip antenna arrays |
title_short |
Mitigation of mutual coupling in microstrip antenna arrays |
title_full |
Mitigation of mutual coupling in microstrip antenna arrays |
title_fullStr |
Mitigation of mutual coupling in microstrip antenna arrays |
title_full_unstemmed |
Mitigation of mutual coupling in microstrip antenna arrays |
title_sort |
mitigation of mutual coupling in microstrip antenna arrays |
publisher |
Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України |
publishDate |
2019 |
topic_facet |
СВЧ-техника |
url |
http://dspace.nbuv.gov.ua/handle/123456789/167883 |
citation_txt |
Mitigation of mutual coupling in microstrip antenna arrays / K. Prahlada Rao, R.M. Vani, P.V. Hunagund // Технология и конструирование в электронной аппаратуре. — 2019. — № 5-6. — С. 16-24. — Бібліогр.: 21 назв. — англ. |
series |
Технология и конструирование в электронной аппаратуре |
work_keys_str_mv |
AT kprahladarao mitigationofmutualcouplinginmicrostripantennaarrays AT vanrm mitigationofmutualcouplinginmicrostripantennaarrays AT hunagundpv mitigationofmutualcouplinginmicrostripantennaarrays |
first_indexed |
2025-07-15T01:54:43Z |
last_indexed |
2025-07-15T01:54:43Z |
_version_ |
1837676090561134592 |
fulltext |
Tekhnologiya i konstruirovanie v elektronnoi apparature, 2019, No 5—6
16 ISSN 2225-5818
MICROWAVE ENGINEERING
1
UDC 621.3
1K. PRAHLADA RAO, 2R. M. VANI, 1P. V. HUNAGUND
India, Gulbarga University, 1Department of PG Studies and Research
in Applied Electronics; 2University Science Instrumentation Centre
E-mail: pra_kaluri@rediffmail.com;
prahladielts@yahoo.co.in; pra.shr124@gmail.com
MITIGATION OF MUTUAL COUPLING
IN MICROSTRIP ANTENNA ARRAYS
Due to increase in the demand to transmit
large amount of data in active and passive com-
munication devices, antenna designers are fight-
ing tooth and nail to design wide-band antennas.
Microstrip patch antennas came into existence in
the year 1971 and have replaced various anten-
nas in variety of applications because of their
advantages and superior performance. Since
then, extensive research has been carried out by
exploiting the various features of these antennas
[1]. Microstrip antennas consist of a sandwich of
radiating patch, dielectric substrate and ground
plane. The radiating patch forms the upper layer,
dielectric substrate the middle layer and ground
plane the lower layer. Microstrip antennas can be
easily fabricated, possess planar structure, have
good compatibility with other electrical devices
and are economical. However, they suffer from a
few limitations like narrow bandwidth and high
mutual coupling between the array elements [2].
The limitations of microstrip antennas and ar-
rays can be overcome to a certain extent by using
periodic structures, defective ground structures
(DGS), metamaterials, etc. Electromagnetic band
gap (EBG) structures fall under the category of
periodic structures. The high value of mutual cou-
pling is due to the emission of surface waves in
the dielectric substrate. Surface waves pose serious
threat to the performance of microstrip antennas
and arrays. These waves restrict the frequency
range of operation of the antennas, reducing the
antenna efficiency, gain, and output power level
and limiting the bandwidth. Moreover, they in-
crease the end-fire radiation and cross-polarization
This article demonstrates the alleviation of mutual coupling of a simple and low-cost four-element
microstrip array antenna by loading I-shaped slot-type electromagnetic band gap structure in the ground
plane. FR-4 glass epoxy is used as dielectric substrate. Moreover, the proposed array antenna shows a
better performance in terms of multi-band resonance. The antenna is resonating at four frequencies and a
virtual size reduction of 78.48% is obtained. The designed array antenna possesses directional radiation
properties. Mentor Graphics IE3D software is used to design and simulate the designed antennas and
the measured results are obtained using vector network analyser.
Keywords: dielectric substrate, electromagnetic band gap structure, microstrip antenna array, mutual
coupling, resonant frequency, return loss.
levels. EBG structures are capable of improving
the performance characteristics of microstrip ar-
ray antennas. EBG structures allow or forbid the
propagation of electromagnetic waves over certain
frequency ranges. These bands of frequencies are
called band gaps [3].
The authors of [4] designed a 2×5 EBG structure
to reduce mutual coupling between patch antennas
of MIMO array by 21 dB. The conventional MIMO
array is fed by coaxial feed and bandwidth is equal
to 3%, producing a gain value of 6.86 dBi. The EBG
structure has reduced antenna current from 8.5 to
3.9 A/m. However, the antenna efficiency has been
reduced from 65 to 53 %. The authors of [5] have
obtained a reduction of 36 dB in mutual coupling
in the first band (1.68—2.65 GHz) and 22.1 dB in
the second band (6.50—8.86 GHz) using a novel
eagle-shaped EBG structure. The bandwidths pro-
duced were equal to 31.5 and 30.4 % respectively
at appreciable gains of 4 and 6.2 dB. The authors
of [6] have presented a novel structure suppressing
the mutual coupling between nearby patches from
–20.95 to –25.6 dB. However, the gain of the
antenna is reduced indicating radiation losses. In
[7], the authors have proposed the design of 2×2
microstrip patch array with a 2×2 EBG substrate
with respect to the rectangular ground plane. The
overall bandwidth of the proposed antenna is 16%.
The gain of the antenna with the EBG is 8.45 dBi.
In [8], the authors have proposed a novel com-
pact mushroom-like EBG configuration with a band
gap centered at 5.8 GHz WLAN. Mutual coupling
was reduced to about 26 dB. The authors of [9]
have demonstrated the effectiveness of mushroom-
DOI: 10.15222/TKEA2019.5-6.16
Tekhnologiya i konstruirovanie v elektronnoi apparature, 2019, No 5—6
17ISSN 2225-5818
MICROWAVE ENGINEERING
2
like EBG structure in improving the performance
of microstrip antenna. Lowest back lobe radia-
tion of –10.55 dB is also produced. The authors
of [10] have analyzed the isolation properties of
different EBG structures and compared them in
antenna arrays. With one row of mushroom-like
EBG structure, the mutual coupling is –22.5
dB. An approximately 4 dB reduction in mutual
coupling is observed with fork-shaped EBG struc-
tures. The EBG structure with vias produces the
best isolation of 6 dB. The authors of [11] have
designed dual-band MIMO antenna system with
enhanced isolation. Using a double rectangular
DGS, the antenna resonates at 2.6 and 5.7 GHz
with bandwidths of 5.7 and 4.3 %, respectively.
The proposed antenna has a stable high isolation
around –20 dB over all frequencies. At 2.6 GHz,
gain and radiation efficiency are 2.63 dB and
59%. The corresponding values at 5.7 GHz are 1.6
dB and 39.8%. MIMO antenna with a double-side
EBG structure reduces mutual coupling from –20 to
–40 dB. At 2.6 GHz, the antenna gain and radiation
efficiency are improved to 4.25 dB and 68.7%. At
5.7 GHz, the antenna gain increases to 1.76 dB and
radiation efficiency to 39.8%.
In [12], the authors have reviewed various EBG
structures and the methods involved in improving
the performance of microstrip antenna arrays. One
of the methods is surrounding the antenna with
the EBG structure. Four rows of EBG patches are
used to suppress the surface waves. Lowermost
back lobe radiation of 15 dB lesser than other
EBG structures is produced. After achieving posi-
tive results using single microstrip patch antenna
with EBG structure, four columns of EBG patches
were inserted between the array elements, produc-
ing an 8 dB reduction in mutual coupling. The
authors of [13] have proposed using rectangular
and circular EBG structures to investigate the
performance of the antenna used in a microwave
brain imaging system. The circular EBG is produc-
ing better bandwidth of 291.6 MHz compared to
275.5 MHz of the rectangular EBG. Moreover,
circular and rectangular EBGs allow for gains
of 6.7 and 6.06 dBi, respectively.
The authors of [14] have reported a 5.6 dB
coupling reduction by etching out the proposed
comb-shaped EBG structure from the ground plane
of the microstrip patch MIMO antenna. A metal
line strip between the radiating patches is used to
further reduce the isolation by 16.2 dB at 5.8 GHz.
The authors of [15] have designed a dual band
circular patch MIMO antenna on an EBG surface.
A healthy reduction in mutual coupling equal to
25 dB is generated between the antenna elements.
The –10 dB impedance bandwidth is extended
by 28.9 and 27.8% at the low and high frequency
band. Moreover, the gains are enhanced by 5 and
6.9 dB and the back-lobe radiations are decreased
by 15 and 10.3 dB at the resonant frequencies
of 5.75 and 6.44 GHz respectively. The authors
of [16] have employed fractal and two via edge
located (TVEL) EBG structures near the feed
line to cause triple frequency band notch char-
acteristics over WiMAX (3.3—4 GHz), WLAN
(5.1—5.8 GHz) and satellite downlink communica-
tions (7.2—7.8 GHz), respectively.
The authors of [17] have demonstrated the
filtering characteristics of a compact triple-
band-stop filter based on a complementary
split ring resonator. The dual-band-stop filter
is suppressing bands corresponding to 2.4 and
3.5 GHz (WLAN/WiMax applications), respec-
tively. The single-band-stop filter is suppressing
the 5.2 GHz band (WLAN application). The
authors of [18] have obtained reduction in mu-
tual coupling by inserting meander line resonator
between the patch antennas. With edge-to-edge
distance of 6 mm between the two patches, 8—10 dB
reduction in mutual coupling is produced through-
out the 10 dB impedance bandwidth without af-
fecting the radiation pattern. The authors of [19]
have proposed a highly miniaturized microstrip
antenna array for small wireless devices. The
resonant frequency of the antenna array is shifted
from 5.8 to 2.45 GHz, thereby achieving minia-
turization of 78.63%. However, the bandwidth of
the proposed array is decreased to 157.5 MHz.
The authors of [20] have presented the design of a
two-element microstrip antenna array using dumb-
bell shaped DGS. The gain and bandwidth of the
proposed antenna array are 1.94 dB and 100 MHz,
respectively. The size reduction obtained is equal
to 79%. The gain and bandwidth are enhanced to
4.14 dB and 120 MHz, respectively.
As per the literature review performed, the
performance of microstrip antenna arrays is not
encouraging in terms of bandwidth. The previous
research work shows low bandwidth values of mi-
crostrip antenna arrays. Hence, the purpose of the
present work is to study the ways to enhance the
bandwidth of microstrip antenna arrays in order
to achieve better values than those obtained in the
previously published research works.
Object of study
The conventional array antenna (CAA) design
consists of four identical rectangular radiating
patches placed adjacent to each other (Fig.1). The
design frequency of the CAA is 6 GHz. Here, the
CAA is fed using the corporate feeding technique
employing three transmission lines of imped-
Tekhnologiya i konstruirovanie v elektronnoi apparature, 2019, No 5—6
18 ISSN 2225-5818
MICROWAVE ENGINEERING
3
ances: 50, 70 and 100 Ω. FR-4 glass epoxy with
a dielectric constant of 4.2 and a loss tangent of
0.0245 is used as a dielectric substrate. The height
of the dielectric substrate is 1.6 mm. The distance
between the adjacent radiating patches (edge to
edge) of the CAA is equal to λ/4, where λ is the
wavelength calculated at the design frequency
of 6 GHz. The schematic in Fig. 1 is used to
determine the return loss characteristics of the
CAA. The CAA’s dimensions are summarized in
the Table.
Mutual coupling is a very important parameter
that determines the antenna performance. In order
to measure mutual coupling between the array
elements, the four radiating patches are fed inde-
pendently as shown in Fig. 2, assuming all the
four antennas of the array are equally fed.
The I-shaped slot-type EBG structure is now
incorporated in the ground plane of CAA to design
the modified antenna array. The unit cell of the
used EBG structure is shown in Fig. 3. The dimen-
sions of the unit cell are A = 9 mm, B = 2 mm,
C = 2.75 mm and D = 1.5 mm.
Fig. 4 depicts the I-shaped slot EBG structure,
consisting of periodically placed I-shape slots ar-
ranged in the form of a matrix of 4 rows and 9
columns. The unit cells are arranged along the X
and Y axes at a distance of s = 5 mm from each
other.
Fig. 5 depicts the schematic of the modified
antenna array and is used to determine the return
loss characteristics of the modified antenna array.
The schematic shown in Fig. 6 is used to measure
the mutual coupling of the modified antenna array.
CAA has a solid ground instead of I-shaped
slot EBG structure. Fig. 7 and Fig. 8 depict the
photographs of the fabricated modified antenna
array.
Fig. 1. Schematic of the CAA [21]
LtLp
L1
Lc
L2 L3
Wp
Lf
Wf
W1
Wt
Wc
W2W3
Parameter values of conventional four-element array
antenna [21]
Parameter Value,
mm
Length of the patch (Lp) 15.73
Width of the patch (Wp) 11.76
Length of the quarter wave transformer (Lt) 6.47
Width of the quarter wave transformer (Wt) 0.47
Length of the 50 Ω line (L1) 6.52
Width of the 50 Ω line (W1) 3.05
Length of the coupler 3.05
Width of the coupler 3.05
Length of the 70 Ω line (L2) 3.22
Width of the 70 Ω line (W2) 1.62
Length of the 100 Ω line (L3) 6.56
Width of the 100 Ω line (W3) 0.70
Length of the feed line (Lf) 6.52
Width of the feed line (Wf) 3.05
Fig. 2. Schematic of the CAA setup for mutual coupling
measurement [21]
Fig. 3. Schematic of a unit cell of the EBG structure
B
CD
A
Tekhnologiya i konstruirovanie v elektronnoi apparature, 2019, No 5—6
19ISSN 2225-5818
MICROWAVE ENGINEERING
4
s
Fig. 7. Frontal (left) and back (right) veiw of the
modified antenna array
Fig. 8. Frontal (left) and back (right) veiw of the modified
antenna array setup for mutual coupling measurement
Fig. 4. Schematic of the EBG structure
Fig. 5. Schematic of the modified antenna array
Fig. 6. Schematic of the modified antenna array setup for mutual coupling measurement
Tekhnologiya i konstruirovanie v elektronnoi apparature, 2019, No 5—6
20 ISSN 2225-5818
MICROWAVE ENGINEERING
5
Results and discussion
Fig. 9 depicts the simulated and measured re-
turn loss characteristics versus frequency of the
CAA, where we can see that the CAA is producing
simulated and measured resonant frequencies of 5.7
and 5.53 GHz, respectively. The corresponding re-
turn loss values are equal to –16.2 and –21.23 dB,
respectively.
The bandwidth parameter is obtained by subtract-
ing the lower frequency from the upper frequency
where the return loss is –10 dB on either side of the
resonant frequency. The simulated and measured
bandwidths are equal to 250 and 270 MHz, respec-
tively. Bandwidth is calculated by using equation
(bandwidth/resonant frequency)×100%. (1)
Hence, the simulated and measured bandwidths
are equal to 4.39 and 4.89% respectively.
Fig. 10 shows the graphs of simulated and
measured mutual coupling characteristics versus
frequency of the CAA. As can be seen from this
figure, the simulated values of mutual coupling
(S21, S31 and S41) of the CAA at the resonant
frequency of 5.7 GHz are –17.75, –12.71 and
–15.77 dB respectively. The corresponding mea-
sured values of mutual coupling at the resonant fre-
quency of 5.53 GHz are equal to –16.95, –14.22 and
–17.30 dB, respectively. The values of mutual
coupling of the CAA are very high. Moreover, as
can be seen from Fig. 10, the graphs of the mea-
sured return loss and mutual coupling of the CAA
are overlapping with each other at the resonant
frequency of 5.53 GHz. This overlapping implies
that there is an interference of signals between the
transmitting element 1 and the receiving elements
2, 3 and 4. Hence there is no proper transmission
and reception of electromagnetic waves in the
CAA.
Fig. 11 shows the simulated and measured
return loss characteristics versus frequency of the
30
–5
–10
–15
–20
–25
–30
–35
–40
1 2 3 4 5 6 7
Frequency, GHz
1
2
S
-p
ar
am
et
er
s,
d
B
a)
30
–5
–10
–15
–20
–25
–30
1 2 3 4 5 6 7
Frequency, GHz
1
2
S
-p
ar
am
et
er
s,
d
B
b)
Fig. 10. Simulated (1) and measured (2) mutual
coupling versus frequency of the CAA:
a — S21; b — S31; c — S41
(plot 3 in the figures is given for the measured S11 for
comparison)
30
–5
–10
–15
–20
–25
–30
–35
–40
1 2 3 4 5 6 7
Frequency, GHz
1
2
S
-p
ar
am
et
er
s,
d
B
c)
Fig. 9. Simulated (1) and measured (2) return loss S11
versus frequency of CAA
20
–5
–10
–15
–20
–25
1 2 3 4 5 6 7
Frequency, GHz
1
S
-p
ar
am
et
er
s,
d
B
modified antenna array. Here one can see that
the simulated values of resonant frequencies
of the modified antenna array are 1.31, 2.29,
5.7 and 6.42 GHz. The corresponding values of
measured resonant frequencies are 1.19, 2.15,
5.53 and 6.57 GHz, respectively. The simulated
bandwidths measured at the respective resonant
frequencies are 300, 560, 700 and 500 MHz. The
measured bandwidths calculated at the respec-
tive resonant frequencies are 260, 520, 680 and
520 MHz. Thus, the modified antenna array is
Tekhnologiya i konstruirovanie v elektronnoi apparature, 2019, No 5—6
21ISSN 2225-5818
MICROWAVE ENGINEERING
6
producing multi-bands. Additionally, the modified
antenna array is producing increased simulated and
measured bandwidths of 700 and 680 MHz at 5.7
and 5.53 GHz compared to 250 and 273 MHz of
the CAA at the same resonant frequencies.
Fig. 12 presents the graphs of simulated and
measured return loss and mutual coupling charac-
teristics versus frequency of the modified antenna
array. The simulated values of mutual coupling
at the resonant frequency of 5.7 GHz are –26.53,
–31.55 and –29.43 dB. The corresponding values
of the measured mutual coupling at the resonant
frequency of 5.53 GHz are equal to –25.93, –27.93
and –31.89 dB, respectively. The mutual coupling
values are reduced considerably by integrating
the I-shaped EBG structure with the CAA. The
measured return loss and coupling plots are not
overlapping at the resonant frequency of 5.53 GHz,
which implies a reduced interference between the
transmitting and receiving antennas. In this case,
therefore, the information transfer is better in
comparison to the CAA. Hence, in terms of band-
width and mutual coupling, the modified antenna
array has better characteristics than the CAA does.
The modified array antenna is resonating at a
lower fundamental resonant frequency compared
to its counterpart, the CAA. The simulated fun-
damental resonant frequencies of the CAA and the
modified antenna array are 5.7 and 1.3 GHz. The
measured fundamental resonant frequencies of the
CAA and the modified antenna array are 5.53 and
1.19 GHz. The lower value of the fundamental
resonant frequency of the modified antenna array
compared to that of the CAA leads to a virtual
size reduction. The virtual size reduction parameter
(%) is calculated thus:
(f1 – f2) / f1 × 100%, (2)
where f1 and f2 are the fundamental resonant frequen-
cies of the CAA and the modified antenna array.
Fig. 11. Simulated (1) and measured (2) return loss S11
versus frequency of the modified antenna array
20
–5
–10
–15
–20
–25
1 2 3 4 5 6 7
Frequency, GHz
1
S
-p
ar
am
et
er
s,
d
B
3
0
–10
–20
–30
–40
–50
–60
–70
1 2 3 4 5 6 7
Frequency, GHz
1
2S
-p
ar
am
et
er
s,
d
B
a)
3
0
–10
–20
–30
–40
–50
–60
1 2 3 4 5 6 7
Frequency, GHz
1
2
S
-p
ar
am
et
er
s,
d
B
b)
Fig. 12. Simulated (1) and measured (2) mutual
coupling versus frequency of the modified antenna
array:
a — S21; b — S31; c — S41
(plot 3 in the figures is given for the measured S11 for
comparison)
3
0
–10
–20
–30
–40
–50
–60
–70
1 2 3 4 5 6 7
Frequency, GHz
1
2
S
-p
ar
am
et
er
s,
d
B
c)
Therefore, the simulated and measured values
of virtual size reduction produced by modified
antenna array are 77.19 and 78.48%.
In order to study the radiation characteristics
of the array antenna, its radiation patterns are
studied without and with the I-shaped slot-type
EBG structure. The radiation plot provides infor-
mation about the amount of power radiated by the
antenna in free space from 0° to 360°.
Tekhnologiya i konstruirovanie v elektronnoi apparature, 2019, No 5—6
22 ISSN 2225-5818
MICROWAVE ENGINEERING
7
Fig. 13 presents the radiation plot of the an-
tenna array without and with the I-shaped slot-
type EBG structure. The radiation patterns of the
CAA and the modified antenna array are plotted at
the resonant frequency of 5.53 GHz. The radiation
patterns are E-plane power radiation patterns and
have been obtained experimentally.
As can be seen in Fig. 13, at the angle of 90° the
amount of the radiated forward power is greater
with the EBG than without one. The respective
powers in the presence and absence of the EBG
structure are 0 and –2 dB. Thus, the modified
antenna array is radiating more forward power
compared to its opponent, i.e., the CAA. At the
angle of 270°, the amount of the backward radiated
power is decreased with the introduction of the
EBG structure. The amount of backward power
radiated in the absence of EBG structure is –5 dB.
The corresponding power after the introduction of
EBG structure is reduced to –11.5 dB. Thus, the
modified antenna array is performing better than
its counterpart, the CAA, in terms of the forward
and backward power.
The front-to-back ratio parameter is determined
by subtracting the backward power from the for-
ward power and is measured in dB. Therefore,
the front-to-back ratios of antennas with and
without the EBG structure are equal to 11.5 and
3 dB, respectively. As the front-to-back ratio of
the modified antenna array is greater than that of
the CAA, in terms of this parameter, the former
makes for a better antenna than the CAA does.
Thus, the modified antenna array is a bet-
ter candidate than the CAA due to its improved
performance in terms of bandwidth, reduction of
mutual coupling, radiation properties, i.e. forward
power, backward power, and miniaturization.
Conclusion
In this paper the authors have demonstrated the
enhanced performance of the four-element array
antenna with the EBG structure. The simulated
and experimental results agree to a good extent.
The study has shown that with the introduction
of two-dimensional I-shaped EBG structure in the
ground plane, the four-element array antenna has
shown good improvement in the performance char-
acteristics. The modified array antenna is resonat-
ing at four different frequencies. Miniaturization
of array antenna of 78.48 % has been produced
with appreciable reduction in mutual coupling.
The radiation characteristics of the array antenna
have also been improved. The modified antenna
array finds application in the C band of the mi-
crowave frequency spectrum.
REFERENCES
1. Balanis C.A. Antenna theory, analysis and design (2nd
Ed.), John Wiley & Sons Inc, 1997, 941 p.
2. Bahl I.J., Bhartia P. Microstrip antennas, Artech
House, 1980, 348 p.
3. Fan Yang., Yahya Rahmat-Samii. Electromagnetic band
gap strucures in antenna engineering, Cambridge University
Press, 1980, 282 p.
4. Naser-Moghadasi M., Ahmadian R., Mansouri Z.
Compact EBG structures for reduction of mutual coupling in
patch antenna MIMO arrays. Progress in Electromagnetics
Research C, 2014, vol. 53, pp. 145–154.
5. Ahmed M. I., Abdallah E. A., Elhennawy H. M. Novel
wearable eagle shape microstrip antenna array with mutual
coupling reduction. Progress in Electromagnetics Research
B, 2015, vol. 62, pp. 87–103.
6. Nagaraj H. C., Rukmini T. S., Paga P. et al. Mutual
coupling reduction between planar patch antennas by using
electromagnetic band gap structures. International Journal
of Advanced Computing and Electronics Technology, 2015,
vol. 2, no. 2, pp. 87–91.
7. Ada N. R., Ardeshana M. A. Electromagnetic band gap
(EBG) structure antenna design for wide band applications.
International Journal of Advance Engineering and Research
Development, 2015, vol. 2, no. 7, pp. 327–331.
8. Kaabal A., Halaoui M. E., Ahyoud S. et al. A low
mutual coupling design for array microstrip antennas inte-
grated with electromagnetic band-gap structures. Procedia
Technology, 2016, vol. 22, pp. 549–555. https://doi.
org/10.1016/j.protcy.2016.01.115
9. Fangming Cao, Suling Wang. Performance of microstrip
patch antennas embedded in electromagnetic band gap struc-
ture. Lecture Notes in Electrical Engineering, Springer,
vol. 360, 2016. https://doi.org/10.1007/978-3-662-48365-7_2
10. Benykhlef F., Boukli-Hacene N. EBG structures for
reduction of mutual coupling in patch antenna arrays. Journal
of Communications Software and Systems, 2017, vol. 13, no.
1, pp. 9–14. http://dx.doi.org/10.24138/jcomss.v13i1.242
11. Duong Thi Thanh Tu., Nguyen Van Hoc., Pham Dinh
Son. et al. Design and implementation of dual-band MIMO
Fig. 13. Radiation patterns of the CAA (1) and the
modified antenna array (2)
1
2
270
300
90
60
30
0
330
120
150
180
210
240
2
0
–2
–4
–6
–8
–10
–12
–14
–16
–16
–14
–12
–10
–8
–6
–4
–2
0
2
Tekhnologiya i konstruirovanie v elektronnoi apparature, 2019, No 5—6
23ISSN 2225-5818
MICROWAVE ENGINEERING
8
antenna with low mutual coupling using electromagnetic band
gap structures for portable equipments. International Journal
of Engineering and Technology Innovation, 2017, vol. 7,
no. 1, pp. 48–60.
12. Abdulhameed M. K., Isa M. S. M., Ibrahim I. M. et
al. Review of radiation pattern control characteristics for the
microstrip antenna based on electromagnetic band gap (EBG).
Journal of Telecommunications, Electronic and Computer
Engineering, 2018, vol. 10, no. 3, pp. 129–140.
13. Reefat Inum, Md. Masud Rana, Kamrun Nahar Shushama
et al. EBG based microstrip patch antenna for brain tumor de-
tection via scattering parameters in microwave imaging system.
International Journal of Biomedical Imaging, 2018, vol. 2018,
pp. 1–13. https://doi.org/10.1155/2018/8241438
14. Niraj Kumar, Usha Kiran Kommuri. MIMO antenna
H-Plane isolation enhancement using UC-EBG structure and
metal line strip for WLAN applications. Radioengineeering,
2019, vol. 28, no. 2, pp. 399–406. https://doi.org/10.13164/
re.2019.0399
15. Xiaoyan Zhang, Yuting Chen, Haitao Ma et al. Design
of defective EBG structures for dual-band circular patch
MIMO antenna applications. AECS Journal, 2019, vol. 34,
no. 6, pp. 890–897. https://doi.org/10.1002/mmce.21287
16. Mahadu A. Trimukhe., Balaji G. Hogade. Compact
ultra-wideband antenna with triple band notch characteristics
using EBG structures. Progress in Electromagnetic Research
C, 2019, vol. 93, pp. 65–77. https://doi.org/10.22068/
IJEEE.15.2.195
17. Mohssine El Ouahabi., Alia Zakriti, Mohamed Essaaidi
et al. A very compact of a triple-band bandstop filter based
on a complementary split ring resonator. International
Journal of Microwave and Optical Technology, 2018, vol. 13,
no. 6, pp. 537–543.
18. Jeet Ghosh, Sandeep Ghosal, Debasis Mitra et al.
Mutual coupling reduction between closely spaced microstrip
patch antenna using meander line resonator. Progress in
Electromagnetics Research Letters, 2016, vol. 59, pp. 115–
122. https://doi.org/10.2528/PIERL16012202
19. Ahmed Ghaloua, Jamal Zbitou, Larbi El Abdellaoui
et al. A novel configuration of a miniaturized printed antenna
array based on defected ground structure. International
Journal of Intelligent Engineering & Systems, 2019, vol.
12, no. 1, pp. 211–220. https://doi.org/10.22266/
ijies2019.0228.21
20. Nataraj D., Karunakar G. Defected ground structure
based two element microstrip antenna array with reduced
mutual coupling. International Journal of Engineering and
Advanced Technology, 2019, vol. 8, no. 6S, pp. 484–489.
https://doi.org/10.35940/ijeat.F1099.0886S19
21. Vani R. M., Rao P. K., Hunagund G. Study of mi-
crostrip antenna array with EBG structure. Lecture Notes in
Electrical Engineering, Optical and Microwave Technologies,
2017, pp. 81–90. https://doi.org/10.1007/978-981-10-
7293-2_9
Received 27.10 2019
1K. PRAHLADA RAO, 2R. M. VANI,
1P. V. HUNAGUND
India, Gulbarga University, 1Department of PG Studies and Research
in Applied Electronics; 2University Science Instrumentation Centre
E-mail: pra_kaluri@rediffmail.com;
prahladielts@yahoo.co.in; pra.shr124@gmail.com
ВРАХУВАННЯ ВЗАЄМНОГО ВПЛИВУ ОКРЕМИХ МІКРОСМУЖКОВИХ ЕЛЕМЕНТІВ
НА ПЕРАМЕТРИ АНТЕННИХ РЕШІТОК
Роботу присвячено дослідженню можливості підвищення ефективності мікросмужкових антен-
них решіток, які розраховані на роботу у вузькій смузі частот. Для вирішення цієї проблеми
пропонується використовувати структури, які утворюють активні електромагнітні зони (АЕЗ)
в площині мікросмужкової антенної решітки. Ці зони можуть сприяти поширенню або придушенню
електромагнітних хвиль, що призводить до мінімізації впливу поверхневих хвиль, зменшенню взаємного
впливу між елементами антенних решіток, а також суттєвому зниженню рівня задньої пелюстки
діаграми спрямованості антени.
У статті продемонстровано зменшення, порівняно зі звичайним антенним масивом, взаємного впли-
ву чотирьох елементів базового фрагмента мікросмужкової антени, екрануюча (заземлена) поверхня
якої містить АЕЗ-структури І-подібної форми щілинного типу. Епоксидне скло FR-4 застосовано як
діелектричну підкладинку.
Для проектування та моделювання антен використане спеціалізоване програмне забезпечення Mentor
Graphics IE3D, а виміряні експериментальні результати отримано за допомогою векторного аналізатора
електричних кіл.
Результати досліджень показали, що порівняно зі звичайною запропонована антена демонструє вищу
ефективність в умовах багатодіапазонного резонансу. Вона резонує на чотирьох частотах, а її
віртуальний розмір менший на 78,48%. Антена характеризується діаграмою спрямованості у потрібному
DOI: 10.15222/TKEA2019.5-6.16
УДК 621.3
Tekhnologiya i konstruirovanie v elektronnoi apparature, 2019, No 5—6
24 ISSN 2225-5818
MICROWAVE ENGINEERING
9
Опис статті для цитування::
Rao K. Prahlada, Vani R. M., Hunagund P. V. Mitigation
of mutual coupling in microstrip antenna arrays. Техно-
логия и конструи рование в электронной аппаратуре,
2019, № 5-6, с. 16—24. http://dx.doi.org/10.15222/
TKEA2019.5-6.16
Cite the article as:
Rao K. Prahlada, Vani R. M., Hunagund P. V. Mitigation
of mutual coupling in microstrip antenna arrays.
Tekhnologiya i Konstruirovanie v Elektronnoi Apparature,
2019, no. 5-6, pp. 16-24. http://dx.doi.org/10.15222/
TKEA2019.5-6.16
1K. PRAHLADA RAO, 2R. M. VANI,
1P. V. HUNAGUND
India, Gulbarga University, 1Department of PG Studies and Research
in Applied Electronics; 2University Science Instrumentation Centre
E-mail: pra_kaluri@rediffmail.com;
prahladielts@yahoo.co.in; pra.shr124@gmail.com
УЧЕТ ВЗАИМНОГО ВЛИЯНИЯ ОТДЕЛЬНЫХ МИКРОПОЛОСКОВЫХ ЭЛЕМЕНТОВ
НА ПЕРАМЕТРЫ АНТЕННЫХ РЕШЕТОК
Работа посвящена исследованию возможности повышения эфективности микрополосковых антенных ре-
шеток, которые рассчитаны на работу в узкой полосе частот. Для решения этой проблемы предлагает-
ся использовать структуры, которые образуют активные электромагнитные зоны (АЭЗ) в плоскости
микрополосковой антенной решетки. Эти зоны могут способствовать распространению или подавлению
электромагнитных волн, что приводит к минимизации влияния поверхностных волн, уменьшению взаим-
ного влияния элементов антенных решеток, а также к существенному снижению уровня заднего лепест-
ка диаграммы направленности антенны.
В статье продемонстрировано уменьшение, по сравнению с обычным антенным массивом, взаимного вли-
яния четырех элементов базового фрагмента микрополосковой антенны, экранирующая (заземленная)
поверхность которой содержит АЭЗ-структуры I-образной формы щелевого типа. В качестве диэлек-
трической подложки применено эпоксидное стекло FR-4.
Для проектирования и моделирования антенн использовано специализированное программное обеспечение
Mentor Graphics IE3D, а измеренные экспериментальные результаты получены с помощью векторного
анализатора электрических цепей.
Результаты исследований показали, что по сравнению с обычной предложенная антенна обладает бо-
лее высокой эффективностью в условиях многодиапазонного резонанса. Она резонирует на четырех ча-
стотах, а ее виртуальный размер меньше на 78,48%. Антенна характеризуется диаграммой направлен-
ности в нужном направлении, которая обеспечивает лучшие характеристики излучения. Необходимо
отметить компактность данной антенной решетки. Также следует отметить, что в модифицирован-
ной микрополосковой антенной решетке значительно уменьшается взаимное влияние элементов, уве-
личивается уровень желательного сигнала и уменьшается уровень нежелательного сигнала на частоте
5,53 ГГц, поэтому такая антенная решетка подходит для применения в С-диапазоне микроволнового ди-
апазона.
Ключевые слова: диэлектрическая подложка, структура с активной электромагнитной зоной, микропо-
лосковых антенная решетка, взаимное влияние, резонансная частота.
DOI: 10.15222/TKEA2019.5-6.16
УДК 621.3
напрямку, яка забезпечує кращі характеристики випромінювання. Необхідно відмітити компактність
даної антенної решітки. Також слід зазначити, що у модифікованій мікросмужковій антенній решітці
значно зменшується взаємний вплив елементів, збільшується рівень бажаного сигналу та зменшується
рівень небажаного сигналу на частоті 5,53 ГГц, тому така антенна решітка підходить для застосуван-
ня у С-діапазоні мікрохвильового спектра.
Ключові слова: діелектрична підкладинка, структура з активною електромагнітною зоною,
мікросмужкова антенна решітка, взаємний вплив, резонансна частота.
|