The Distribution of the Antarctic Limpet Nacella concinna (Nacellidae) on Underwater Landscapes of the Meek Channel, Argentine Islands, Graham Land
Objective(s). To clarify the patterns of Nacella concinna (Nacellidae) distribution in the water area of the Argentine Islands Archipelago (Meek Channel). Morphometric, statistical, cartographic methods as well as geoinformation technologies were used.
Gespeichert in:
Datum: | 2018 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний антарктичний науковий центр МОН України
2018
|
Schriftenreihe: | Український антарктичний журнал |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/168284 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | The Distribution of the Antarctic Limpet Nacella concinna (Nacellidae) on Underwater Landscapes of the Meek Channel, Argentine Islands, Graham Land / A.E. Berezkina, M.Yu. Shrestha, O.I. Sinna, D.V. Shmyrov, A.Yu. Utevsky // Український антарктичний журнал. — 2018. — № 1 (17). — С. 102-112. — Бібліогр.: 14 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-168284 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1682842020-04-30T01:26:37Z The Distribution of the Antarctic Limpet Nacella concinna (Nacellidae) on Underwater Landscapes of the Meek Channel, Argentine Islands, Graham Land Berezkina, A.E. Shrestha, M.Yu. Sinna, O.I. Shmyrov, D.V. Utevsky, A.Yu. Біологічні дослідження Objective(s). To clarify the patterns of Nacella concinna (Nacellidae) distribution in the water area of the Argentine Islands Archipelago (Meek Channel). Morphometric, statistical, cartographic methods as well as geoinformation technologies were used. Мета. З’ясувати закономірності розподілу молюска Nacella concinna (Nacellidae) в акваторії архіпелагу Аргентинські острови (протока Міік). Використані морфометричні, статистичні, картографічні методи, а також геоінформаційні технології. 2018 Article The Distribution of the Antarctic Limpet Nacella concinna (Nacellidae) on Underwater Landscapes of the Meek Channel, Argentine Islands, Graham Land / A.E. Berezkina, M.Yu. Shrestha, O.I. Sinna, D.V. Shmyrov, A.Yu. Utevsky // Український антарктичний журнал. — 2018. — № 1 (17). — С. 102-112. — Бібліогр.: 14 назв. — англ. 1727-7485 http://dspace.nbuv.gov.ua/handle/123456789/168284 594 en Український антарктичний журнал Національний антарктичний науковий центр МОН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Біологічні дослідження Біологічні дослідження |
spellingShingle |
Біологічні дослідження Біологічні дослідження Berezkina, A.E. Shrestha, M.Yu. Sinna, O.I. Shmyrov, D.V. Utevsky, A.Yu. The Distribution of the Antarctic Limpet Nacella concinna (Nacellidae) on Underwater Landscapes of the Meek Channel, Argentine Islands, Graham Land Український антарктичний журнал |
description |
Objective(s). To clarify the patterns of Nacella concinna (Nacellidae) distribution in the water area of the Argentine Islands Archipelago (Meek Channel). Morphometric, statistical, cartographic methods as well as geoinformation technologies were used. |
format |
Article |
author |
Berezkina, A.E. Shrestha, M.Yu. Sinna, O.I. Shmyrov, D.V. Utevsky, A.Yu. |
author_facet |
Berezkina, A.E. Shrestha, M.Yu. Sinna, O.I. Shmyrov, D.V. Utevsky, A.Yu. |
author_sort |
Berezkina, A.E. |
title |
The Distribution of the Antarctic Limpet Nacella concinna (Nacellidae) on Underwater Landscapes of the Meek Channel, Argentine Islands, Graham Land |
title_short |
The Distribution of the Antarctic Limpet Nacella concinna (Nacellidae) on Underwater Landscapes of the Meek Channel, Argentine Islands, Graham Land |
title_full |
The Distribution of the Antarctic Limpet Nacella concinna (Nacellidae) on Underwater Landscapes of the Meek Channel, Argentine Islands, Graham Land |
title_fullStr |
The Distribution of the Antarctic Limpet Nacella concinna (Nacellidae) on Underwater Landscapes of the Meek Channel, Argentine Islands, Graham Land |
title_full_unstemmed |
The Distribution of the Antarctic Limpet Nacella concinna (Nacellidae) on Underwater Landscapes of the Meek Channel, Argentine Islands, Graham Land |
title_sort |
distribution of the antarctic limpet nacella concinna (nacellidae) on underwater landscapes of the meek channel, argentine islands, graham land |
publisher |
Національний антарктичний науковий центр МОН України |
publishDate |
2018 |
topic_facet |
Біологічні дослідження |
url |
http://dspace.nbuv.gov.ua/handle/123456789/168284 |
citation_txt |
The Distribution of the Antarctic Limpet Nacella concinna (Nacellidae) on Underwater Landscapes of the Meek Channel, Argentine Islands, Graham Land / A.E. Berezkina, M.Yu. Shrestha, O.I. Sinna, D.V. Shmyrov, A.Yu. Utevsky // Український антарктичний журнал. — 2018. — № 1 (17). — С. 102-112. — Бібліогр.: 14 назв. — англ. |
series |
Український антарктичний журнал |
work_keys_str_mv |
AT berezkinaae thedistributionoftheantarcticlimpetnacellaconcinnanacellidaeonunderwaterlandscapesofthemeekchannelargentineislandsgrahamland AT shresthamyu thedistributionoftheantarcticlimpetnacellaconcinnanacellidaeonunderwaterlandscapesofthemeekchannelargentineislandsgrahamland AT sinnaoi thedistributionoftheantarcticlimpetnacellaconcinnanacellidaeonunderwaterlandscapesofthemeekchannelargentineislandsgrahamland AT shmyrovdv thedistributionoftheantarcticlimpetnacellaconcinnanacellidaeonunderwaterlandscapesofthemeekchannelargentineislandsgrahamland AT utevskyayu thedistributionoftheantarcticlimpetnacellaconcinnanacellidaeonunderwaterlandscapesofthemeekchannelargentineislandsgrahamland AT berezkinaae distributionoftheantarcticlimpetnacellaconcinnanacellidaeonunderwaterlandscapesofthemeekchannelargentineislandsgrahamland AT shresthamyu distributionoftheantarcticlimpetnacellaconcinnanacellidaeonunderwaterlandscapesofthemeekchannelargentineislandsgrahamland AT sinnaoi distributionoftheantarcticlimpetnacellaconcinnanacellidaeonunderwaterlandscapesofthemeekchannelargentineislandsgrahamland AT shmyrovdv distributionoftheantarcticlimpetnacellaconcinnanacellidaeonunderwaterlandscapesofthemeekchannelargentineislandsgrahamland AT utevskyayu distributionoftheantarcticlimpetnacellaconcinnanacellidaeonunderwaterlandscapesofthemeekchannelargentineislandsgrahamland |
first_indexed |
2025-07-15T03:04:24Z |
last_indexed |
2025-07-15T03:04:24Z |
_version_ |
1837680468686798848 |
fulltext |
102
© A. E. BEREZKINA, M. Yu. SHRESTHA, O. I. SINNA,
D. V. SHMYROV, A. Yu. UTEVSKY, 2018
UDC 594
A. E. Berezkina 1, M. Yu. Shrestha 2, O. I. Sinna 2, D. V. Shmyrov 3, A. Yu. Utevsky 1, 2, *
1 State Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine,
16 Taras Shevchenko Blvd., Kyiv, 01601, Ukraine
2 V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine
3 SITRONICS Telecom Solutions Ukraine, Ltd, bldg. 2d, 9 Stepana Bandery Ave, Kyiv, 04073, Ukraine
* Corresponding author: andriy.utevsky@karazin.ua
THE DISTRIBUTION OF THE АNTARCTIC LIMPET
NACELLA CONCINNA (NACELLIDAE) ON UNDERWATER LANDSCAPES
OF THE MEEK CHANNEL, ARGENTINE ISLANDS, GRAHAM LAND
ABSTRACT. Objective(s). To clarify the patterns of Nacella concinna (Nacellidae) distribution in the water area of the Argentine
Islands Archipelago (Meek Channel). Methods. Morphometric, statistical, cartographic methods as well as geoinformation
technologies were used. Results. Analyzed the patterns of mollusc distribution on different transects, taking into account their
morphometric characteristics — the length of the shell, the mollusс weight, the population density. It is determined that the
distribution of Nacella concinna subpopulations does not have any visible strict regularity. At different transects with an insig-
nificant exception the morphometric characteristics of the mollusсs are distributed both in classical and non-classical models.
At the MK1 transect is shown the classical model of the distribution of morphometric characteristics, namely with an increase
in the mollusс population density, the morphometric characteristics (shell length and weight of the mollusс) tend to decrease.
At the MK2 transect is shown non-classical distribution model. The morphometric characteristics (shell length, mollusс weight)
increase with an increase in the population density of the molluscs. At the MK3 transect is shown the classical distribution
model, but a characteristic feature is an increase in the population density up to 5 m depth and a gradual decrease in the popula-
tion density from 5 to 20 m. Geoinformation models of the Nacella concinna distribution by depth in the water area of the
Ukrainian Antarctic Akademik Vernadsky station were constructed. Conclusions. Maps of the distribution of the Nacella con-
cinna population were created for this region for the first time. The dimensional classes of the Nacella concinna subpopulation
from selected water areas of the Argentine Islands were described.
Кеуwords: Nacella concinna, Meek Channel, Antarctic molluscs, West Antarctica, Argentine Islands.
ISSN 1727-7485. Ukrainian Antarctic Journal. 2018, № 1 (17)
INTRODUCTION
The Antarctic limpet Nacella concinna (Strebel, 1908)
is a widespread species of gastropod mollusks in Ant-
arctica. It could reach a significant density and abun-
dance in some regions and areas of the sea floor
(Walker, 1972; Picken, 1980; Picken and Allan, 1983;
Peck and Veal, 2001). These mollusks have been fo-
und in a wide range of depths from the littoral zone to
110 meters (Picken, 1980; Davenport, 1988; Brethes
et al., 1994).
Their distribution by depth and underwater land-
scapes is related to the microalgae substrate richness,
especially Lithothamnion species. Studies on the dis-
tribution of N. concinna by morphological types and
depths have been undertaken by many authors in
West Antarctica along the Antarctic Peninsula (Pick-
en, 1980; Beaumont and Wei, 1991; Nolan, 1991;
Gonzalez-Wevar, David, Poulin, 2011). Morpholog-
ical and phylogeographical analyses of the mollusks
have been conducted in the areas of South Bay, Ele-
phant Island, Admiralty Bay, Fildes Bay and Cova-
donga Bay (Gonzalez-Wevar, David, Poulin, 2011).
A population of N. concinna has been surveyed recen-
103ISSN 1727-7485. Український антарктичний журнал. 2018, № 1 (17)
The Distribution of the Аntarctic Limpet Nacella Concinna (Nacellidae) on Underwater Landscapes of the Meek Channel
tly near Anvers Island (Aranzamendi, Martinez, Sa ha-
de, 2010). A survey in these areas has revealed the exis-
tence of two morphotypes («littoral» and «sublittoral»).
Samplings of N. concinna were done during the
period of 2003—2016 in the water area near the Ver-
nadsky station (Utevsky, Tabikelova, Sennaya, Utev sky,
2015; Kushnir, Utevsky, 2015). The collected sam p-
les were used to deduce equations of the mollusk
growth and to determine the correlation of the mor-
phometric characteristics (Utevsky, Shrestha, Utevs-
ky, 2017). The underwater polygon (Fig. 1) was es-
tablished by A. Utevsky and D. Shmyrov in 2016 for
studying the distribution of species by depths and
lan dscapes. In this article we present results of the
morphometric analysis of N. concinna and analysis of
its distribution by depths and landscapes to test the
hypothesis of the existence of littoral and sublittoral
morphotypes.
MATERIALS AND METHODS
Three transects in the Meek Channel near Galindez
Island in the summer season of 2016 were established
(Fig. 1) and their base geocoordinates are given: MK1 –
S 65°14.699 W 64°15.106; MK2 – S 65°14.719 W
64°15.023, MK3 – S 65°14’42.73” W 64°15’4.90”.
The distance from the base of the transect MK1 to
MK3 is approximately 29 meters, and from MK2 to
MK3 – 33.9 meters. The base points location of
transects was designated based on the relief of the
above-water and underwater landscape. The diving
method along transects with photographing and vid-
eotaping the characteristic features of the landscape
and groups of benthic animals was used. Photograph-
ing of benthic animals at depths of 1 m, 5 m, 10 m, 15
m, 20 m, and 30 m using a standard square frame of
25 × 25 cm was carried out. A series of photographs at
each station was taken to quantify common species
and calculate their morphometric parameters using
VISION-ZEISS software package (Fig. 2, 3).
An acoustic survey was performed (Fig. 4) using a
Lowrance HD7 chart plotter to reconstruct the bot-
tom relief in the transect area.
The distribution pattern of N. concinna was obtai-
ned from underwater photographs (Table 1, Table 2).
The calculation of the biomass was performed using
the equations (Utevsky et al., 2017):
for L < 33 mm M = 0.0075 * exp (0.2211 * L) (1)
for L > 33 mm M = 0.4671 * exp (0.0624 * L) (2)
The subsequent reconstruction of the sea bottom re-
lief was carried out using ArcGISTm software package.
RESULTS AND DISCUSSION
Totally 225 mollusks from 3 transects and 11 under-
water sites were analyzed. The descriptive statistics of
N. concinna samples are presented in Table 1, Table 2
and Table 3. The distribution of mollusks along
transects and stations by length of the shell and weight
are shown in Fig. 5 and Fig. 6.
Description of N. concinna
population by transects
Transect MK1. Shell length and mollusk weight de-
crease with population density increases (Table 1—3,
Fig. 5, 6). It is consistent with classical ecological
pattern in which an increase in a population density
is accompanied by a decrease in the morphometric
indices of organisms that usually associated with the
lack of living space or food (Cohen, 2003). The high-
level correlation (p << 0.05) of mollusk weight with
population density confirms the inverse relationship.
The high-level correlation of mollusk length with po-
pu lation density shows an inverse relationship of the
parameters but statistically insignificant (p > 0.05) which
can be attributed to a small number of the samples (Fig. 7).
Transect MK2. Shell length and weight of the mol-
lusk increase with population density increases (Ta-
ble 1—3, Fig. 5, 6). It is demonstrates a non-classical
distribution of the population because morphometric
characteristics of mollusks also increase with increas-
ing of population density. Length of the shell increas-
es with increasing of population density but the
weight increases only slightly.
Dependence of mollusk weight and length on pop-
ulation density (Fig. 8) reflects a direct relation with
the high-level of correlation (r = 0.98, r = 0.93). Ho-
we ver, in both cases correlation coefficient was statis-
tically insignificant (p > 0.05). Probably it is associ-
ated with a small number of the samples.
104 ISSN 1727-7485. Ukrainian Antarctic Journal. 2018, № 1 (17)
A.E. Berezkina, M.Yu. Shrestha, O.I. Sinna, D.V. Shmyrov, A.Yu. Utevsky
Transect MK3. Shell length and mollusk weight
decrease with population density increases (Table
1—3, Fig. 5, 6). It is consistent with the classical eco-
logical pattern. Dependence of mollusk weight and
length on population density reflects an inverse rela-
tion with the high-level of correlation (r = 0.80, r =
= 0.95). But in both cases correlation coefficient was
statistically insignificant (p > 0.05) (Fig. 9).
Description of N. concinna
population by depths
Depth of 1 m. The shell length from the MK1 transect
has no significant differences from the shell length on
the MK3 transect (p = 0.057). Similarly, the shell
length on the MK3 and MK2 transect has no signifi-
cant differences (p = 0.182). The mollusks from the
Fig. 2. Benthic communities of transect MK2, 5 m depth: diving method along
transects using standard square frame 25 × 25 cm
Fig. 1. Transects of an underwater polygon in the Meek Chan-
nel near Galindez Island: MK1, MK2, MK3
105ISSN 1727-7485. Український антарктичний журнал. 2018, № 1 (17)
The Distribution of the Аntarctic Limpet Nacella Concinna (Nacellidae) on Underwater Landscapes of the Meek Channel
MK2 transect do not differ in shell length from the
mollusks from MK1 transect (p = 0.663) (Table 4).
The mollusk weight at the 1 m depth does not have
significant differences in all three transects. The
weight of individuals from the MK1 transect do not
differ from those in MK2 transect (p = 0.515). Also,
the weight of individuals from the MK2 transect has
no relevant differences from the weight of individuals
from the MK3 transect (p = 0.140). Similarly, the
weight from the MK3 and MK1 transect does not
show differences (p = 0.267) (Table 5).
Depth of 5 m. A comparative analysis on 5 m depth
shows statistically significant differences by shell
length in all three transects compared with each oth-
er (Table 4). Thus the MK1 transect differs from
MK2 transect, the MK2 from the MK3, the MK1
from the MK3 (p tends to “0”).
The weight of individuals from the MK1 transect
compared with the weight of individuals from the
MK2 transect has significant differences (p = 0.000).
Also the weight from the MK1 transect has significant
differences from the weight from the MK3 transect
Table 1. Comparative analysis by mean length (L, mm) of N. concinna along transects and depths
Transect
Parameter, mm
H, m Valid N Mean Confidence Interval Minimum Maximum Std. Dev. Standard Err.
MK-1L 01 15 19.880 18.131–21.629 12.000 25.100 3.158 0.816
L 05 15 24.113 21.790–26.436 16.200 30.400 4.195 1.0831
L 10 4 26.125 13.435–38.815 16.800 35.600 7.975 3.987
MK-2L 01 49 19.259 17.769–20.749 10.700 34.400 5.187 0.741
L 05 36 16.861 15.211–18.512 10.600 29.600 4.878 0.813
L 10 4 15.925 9.781–22.069 12.100 21.300 3.861 1.931
MK-3L 01 23 17.643 16.091–19.196 13.400 26.600 3.589 0.748
L 05 41 10.098 7.447–12.748 2.400 32.100 8.398 1.312
L 10 10 11.260 4.173–18.347 4.100 32.700 9.906 3.133
L 15 25 17.544 15.239–19.849 4.500 30.500 5.583 1.117
L 20 3 30.733 1.772–59.695 20.100 43.200 11.659 6.731
Table 2. Comparative analysis by mean weight (M, g) of N. concinna along transects and depths
Transect
Parameter, g
H, m Valid N Mean Confidence Interval Minimum Maximum Std.Dev. Standard Err.
MK-1M 01 15 0.742 0.481–1.002 0.107 1.929 0.471 0.122
M 05 15 2.190 1.230–3.149 0.270 6.225 1.733 0.447
M 10 4 6.390 –7.933–20.714 0.308 19.655 9.001 4.501
MK-2M 01 49 0.976 0.587–1.365 0.080 6.089 1.353 0.193
M 05 36 0.616 0.283–0.949 0.078 5.216 0.983 0.164
M 10 4 0.342 –0.184–0.868 0.109 0.83242 0.331 0.165
MK-3M 01 23 0.535 0.276–0.794 0.145 2.687 0.599 0.125
M 05 41 0.372 0.107–0.638 0.013 3.462 0.840 0.132
M 10 10 0.532 –0.281–1.346 0.019 3.594 1.137 0.360
M 15 25 0.650 0.296–1.004 0.020 3.133 0.857 0.171
M 20 3 3.465 –4.455–11.384 0.638 6.920 3.188 1.841
106 ISSN 1727-7485. Ukrainian Antarctic Journal. 2018, № 1 (17)
A.E. Berezkina, M.Yu. Shrestha, O.I. Sinna, D.V. Shmyrov, A.Yu. Utevsky
Fig. 4. Screenshot of acoustic survey track using a Lowrance
HD7 chart plotter in the transect area
Fig. 5. Nacella concinna distribution by weight in Meek Chan-
nel transects using ArcGISTm software package
Fig. 6. Nacella concinna distribution by shell length in Meek
Channel transects using ArcGISTm software package
Fig. 7. Nacella concinna relation analyses of shell length (L1)
and mollusk weight (M1) with population density (D1) on the
MK1 transect
Fig. 8. Nacella concinna relation analyses of shell length (L2)
and mollusk weight (M2) with population density (D2) on the
MK2 transect
Fig. 3. Nacella concinna shell morphometry, VISION-ZEISS soft-
ware package: L-length
107ISSN 1727-7485. Український антарктичний журнал. 2018, № 1 (17)
The Distribution of the Аntarctic Limpet Nacella Concinna (Nacellidae) on Underwater Landscapes of the Meek Channel
(p = 0.000). At the same time the weight from the
MK2 transect has no significant differences from the
weight from the MK3 transect (p = 0.245) (Table 5).
Depth of 10 m. A comparative analysis on 10 m
depth shows statistically significant differences by shell
length only between the MK1 and MK2 (p = 0.061)
and between the MK2 the MK3 transects (p = 0.388)
compared with each other. The shell length from the
MK1 transect has significant differences from the shell
length on the MK3 transect (p = 0.021) (Table 4).
The weight of individuals from the MK1 transect
compared with MK2 transect has no significant dif-
ferences (p = 0.228). Also, the weight from the MK2
transect does not differ from the weight from the
MK3 transect (p = 0.753). However, the weight of
individuals from the MK3 transect has significant
Table 3. Population density (mollusk quantity per frame) of N. concinna on transects
Transects
Depth (m)
1 5 10 15 20
N
u
m
b
e
r
o
f
m
o
ll
u
sk
s
N
u
m
b
e
r
o
f
fr
a
m
e
s
D
e
n
si
ty
N
u
m
b
e
r
o
f
m
o
ll
u
sk
s
N
u
m
b
e
r
o
f
fr
a
m
e
s
D
e
n
si
ty
N
u
m
b
e
r
o
f
m
o
ll
u
sk
s
N
u
m
b
e
r
o
f
fr
a
m
e
s
D
e
n
si
ty
N
u
m
b
e
r
o
f
m
o
ll
u
sk
s
N
u
m
b
e
r
o
f
fr
a
m
e
s
D
e
n
si
ty
N
u
m
b
e
r
o
f
m
o
ll
u
sk
s
N
u
m
b
e
r
o
f
fr
a
m
e
s
D
e
n
si
ty
MK-1 15 4 3.75 15 5 3 4 5 0.8 – 5 – – 1 –
MK-2 49 6 8.17 36 7 5.14 4 7 0.57 – 8 – – 7 –
MK-3 23 4 5.75 41 3 13.67 10 1 10 25 4 6.25 3 6 0.5
Table 4. Comparison of N. concinna by length at different transect horizons
Parameter Mean Mean P Valid N Valid N Std. Dev. Std. Dev. p
L 3-1 vs. L 2-1 17.643 19.259 0.182 23.000 49.000 3.589 5.187 0.063
L 3-1 vs. L 2-5 17.643 16.861 0.510 23.000 36.000 3.589 4.878 0.132
L 3-1 vs. L 2-10 17.643 15.925 0.390 23.000 4.000 3.589 3.861 0.697
L 3-1 vs. L 1-1 17.643 19.880 0.057 23.000 15.000 3.589 3.158 0.631
L 3-1 vs. L 1-5 17.643 24.113 0.000 23.000 15.000 3.589 4.195 0.498
L 3-1 vs. L 1-10 17.643 26.125 0.001 23.000 4.000 3.589 7.975 0.018
L 3-5 vs. L 2-1 10.098 19.259 0.000 41.000 49.000 8.398 5.187 0.002
L 3-5 vs. L 2-5 10.098 16.861 0.000 41.000 36.000 8.398 4.878 0.001
L 3-5 vs. L 2-10 10.098 15.925 0.180 41.000 4.000 8.398 3.861 0.224
L 3-5 vs. L 1-1 10.098 19.880 0.000 41.000 15.000 8.398 3.158 0.000
differences from the weight of individuals from the
MK1 transect (p = 0.053) (Table 5).
Shell weight and length of the N. concinna increase
at depth from 1 to 10 m on the MK1 transect. This is
a classical model of the biomass chain where a small
number of individuals in an ecotope with a sufficient
amount of food are characterized by large morpho-
metric indices (Cohen, 2003). The direct depend-
ence of the increase in nutrient substrate (algae of the
genus Lithothamnion) with increasing depth is visu-
ally observed on the MK1 transect.
On the MK2 transect the shell length decreases at
the depth from 1 to 10 m. The high-level correlation
of the shell length, weight, population density with
depth are shows an inverse dependence. The correla-
tion of the depth, weight and density are confirmed
108 ISSN 1727-7485. Ukrainian Antarctic Journal. 2018, № 1 (17)
A.E. Berezkina, M.Yu. Shrestha, O.I. Sinna, D.V. Shmyrov, A.Yu. Utevsky
End of Table 4
Parameter Mean Mean P Valid N Valid N Std. Dev. Std. Dev. p
L 3-5 vs. L 1-5 10.098 24.113 0.000 41.000 15.000 8.398 4.195 0.007
L 3-5 vs. L 1-10 10.098 26.125 0.001 41.000 4.000 8.398 7.975 1.000
L 3-10 vs. L 2-1 11.260 19.259 0.000 10.000 49.000 9.907 5.187 0.003
L 3-10 vs. L 2-5 11.260 16.861 0.016 10.000 36.000 9.907 4.878 0.002
L 3-10 vs. L 2-10 11.260 15.925 0.388 10.000 4.000 9.907 3.861 0.148
L 3-10 vs. L 1-1 11.260 19.880 0.004 10.000 15.000 9.907 3.158 0.000
L 3-10 vs. L 1-5 11.260 24.113 0.000 10.000 15.000 9.907 4.195 0.005
L 3-10 vs. L 1-10 11.260 26.125 0.021 10.000 4.000 9.907 7.975 0.793
L 3-15 vs. L 2-1 17.544 19.259 0.194 25.000 49.000 5.583 5.187 0.648
L 3-15 vs. L 2-5 17.544 16.861 0.614 25.000 36.000 5.583 4.878 0.458
L 3-15 vs. L 2-10 17.544 15.925 0.584 25.000 4.000 5.583 3.861 0.599
L 3-15 vs. L 1-1 17.544 19.880 0.147 25.000 15.000 5.583 3.158 0.031
L 3-15 vs. L 1-5 17.544 24.113 0.000 25.000 15.000 5.583 4.195 0.268
L 3-15 vs. L 1-10 17.544 26.125 0.012 25.000 4.000 5.583 7.975 0.270
L 3-20 vs. L 2-1 30.733 19.259 0.001 3.000 49.000 11.659 5.187 0.020
L 3-20 vs. L 2-5 30.733 16.861 0.000 3.000 36.000 11.659 4.878 0.014
L 3-20 vs. L 2-10 30.733 15.925 0.059 3.000 4.000 11.659 3.861 0.106
L 3-20 vs. L 1-1 30.733 19.880 0.004 3.000 15.000 11.659 3.158 0.001
L 3-20 vs. L 1-5 30.733 24.113 0.085 3.000 15.000 11.659 4.195 0.011
L 3-20 vs. L 1-10 30.733 26.125 0.558 3.000 4.000 11.659 7.975 0.530
L 2-1 vs. L 1-1 19.259 19.880 0.663 49.000 15.000 5.187 3.158 0.046
L 2-1 vs. L 1-5 19.259 24.113 0.002 49.000 15.000 5.187 4.195 0.389
L 2-1 vs. L 1-10 19.259 26.125 0.018 49.000 4.000 5.187 7.975 0.166
L 2-5 vs. L 1-1 16.861 19.880 0.032 36.000 15.000 4.878 3.158 0.084
L 2-5 vs. L 1-5 16.861 24.113 0.000 36.000 15.000 4.878 4.195 0.557
L 2-5 vs. L 1-10 16.861 26.125 0.002 36.000 4.000 4.878 7.975 0.125
L 2-10 vs. L 1-1 15.925 19.880 0.048 4.000 15.000 3.861 3.158 0.518
L 2-10 vs. L 1-5 15.925 24.113 0.003 4.000 15.000 3.861 4.195 1.000
L 2-10 vs. L 1-10 15.925 26.125 0.061 4.000 4.000 3.861 7.975 0.264
Note: the significant differences are grey (p < 0.05).
109ISSN 1727-7485. Український антарктичний журнал. 2018, № 1 (17)
The Distribution of the Аntarctic Limpet Nacella Concinna (Nacellidae) on Underwater Landscapes of the Meek Channel
Table 5. Comparison of N. concinna by weight at different transect horizons
Parameter Mean Mean P Valid N Valid N Std.Dev. Std.Dev. p
M 3-1 vs. M 2-1 0.535 0.976 0.140 23.000 49.000 0.599 1.353 0.000
M 3-1 vs. M 2-5 0.535 0.616 0.724 23.000 36.000 0.599 0.983 0.017
M 3-1 vs. M 2-10 0.535 0.342 0.540 23.000 4.000 0.599 0.331 0.356
M 3-1 vs. M 1-1 0.535 0.742 0.267 23.000 15.000 0.599 0.471 0.355
M 3-1 vs. M 1-5 0.535 2.190 0.000 23.000 15.000 0.599 1.733 0.000
M 3-1 vs. M 1-10 0.535 6.390 0.002 23.000 4.000 0.599 9.001 0.000
M 3-5 vs. M 2-1 0.372 0.976 0.015 41.000 49.000 0.840 1.353 0.002
M 3-5 vs. M 2-5 0.372 0.616 0.245 41.000 36.000 0.840 0.983 0.336
M 3-5 vs. M 2-10 0.372 0.342 0.944 41.000 4.000 0.840 0.331 0.148
M 3-5 vs. M 1-1 0.372 0.742 0.114 41.000 15.000 0.840 0.471 0.022
M 3-5 vs. M 1-5 0.372 2.190 0.000 41.000 15.000 0.840 1.733 0.000
M 3-5 vs. M 1-10 0.372 6.390 0.000 41.000 4.000 0.840 9.001 0.000
M 3-10 vs. M 2-1 0.532 0.976 0.337 10.000 49.000 1.137 1.353 0.600
M 3-10 vs. M 2-5 0.532 0.616 0.819 10.000 36.000 1.137 0.983 0.507
M 3-10 vs. M 2-10 0.532 0.342 0.753 10.000 4.000 1.137 0.331 0.066
M 3-10 vs. M 1-1 0.532 0.742 0.528 10.000 15.000 1.137 0.471 0.004
M 3-10 vs. M 1-5 0.532 2.190 0.014 10.000 15.000 1.137 1.733 0.207
M 3-10 vs. M 1-10 0.532 6.390 0.053 10.000 4.000 1.137 9.001 0.000
M 3-15 vs. M 2-1 0.650 0.976 0.276 25.000 49.000 0.857 1.353 0.018
M 3-15 vs. M 2-5 0.650 0.616 0.891 25.000 36.000 0.857 0.983 0.489
M 3-15 vs. M 2-10 0.650 0.342 0.490 25.000 4.000 0.857 0.331 0.141
M 3-15 vs. M 1-1 0.650 0.742 0.704 25.000 15.000 0.857 0.471 0.023
M 3-15 vs. M 1-5 0.650 2.190 0.001 25.000 15.000 0.857 1.733 0.002
M 3-15 vs. M 1-10 0.650 6.390 0.002 25.000 4.000 0.857 9.001 0.000
M 3-20 vs. M 2-1 3.465 0.976 0.006 3.000 49.000 3.188 1.353 0.014
M 3-20 vs. M 2-5 3.465 0.616 0.000 3.000 36.000 3.188 0.983 0.001
M 3-20 vs. M 2-10 3.465 0.342 0.100 3.000 4.000 3.188 0.331 0.004
M 3-20 vs. M 1-1 3.465 0.742 0.003 3.000 15.000 3.188 0.471 0.000
M 3-20 vs. M 1-5 3.465 2.190 0.322 3.000 15.000 3.188 1.733 0.126
M 3-20 vs. M 1-10 3.465 6.390 0.620 3.000 4.000 3.188 9.001 0.227
M 2-1 vs. M 1-1 0.976 0.742 0.515 49.000 15.000 1.353 0.471 0.000
M 2-1 vs. M 1-5 0.976 2.190 0.006 49.000 15.000 1.353 1.733 0.205
M 2-1 vs. M 1-10 0.976 6.390 0.000 49.000 4.000 1.353 9.001 0.000
M 2-5 vs. M 1-1 0.616 0.742 0.640 36.000 15.000 0.983 0.471 0.005
M 2-5 vs. M 1-5 0.616 2.190 0.000 36.000 15.000 0.983 1.733 0.007
M 2-5 vs. M 1-10 0.616 6.390 0.000 36.000 4.000 0.983 9.001 0.000
M 2-10 vs. M 1-1 0.342 0.742 0.132 4.000 15.000 0.331 0.471 0.615
M 2-10 vs. M 1-5 0.342 2.190 0.053 4.000 15.000 0.331 1.733 0.019
M 2-10 vs. M 1-10 0.342 6.390 0.228 4.000 4.000 0.331 9.001 0.000
Note: the significant differences are grey (p < 0.05).
110 ISSN 1727-7485. Ukrainian Antarctic Journal. 2018, № 1 (17)
A.E. Berezkina, M.Yu. Shrestha, O.I. Sinna, D.V. Shmyrov, A.Yu. Utevsky
Fig. 10. Nacella concinna relation analyses of length (L1),
weight (M1) and population density (D1) with depth on the
MK1 transect
mined. The high-level correlation of the shell
length, weight, population density and depth are
not confirmed (p > 0.05) The mollusk weight in-
creases at depth from 1 to 20 m and shell length in-
creases only from 6 m depth.
Population density varies by depth: increases at the
5 m, gradually decreases deeper up to 20 m (Fig. 12).
Such the weight, length and population density dis-
tribution on this transect could be related to nutrition
access at a depth of up to 5 m and after 15 m, wave
influence and underwater landscapes structure.
Fig. 11. Nacella concinna relation analyses of length (L2), we-
ight (M2) and population density (D2) with depth on the
MK2 tran sect
Fig. 12. Nacella concinna relation analyses of length (L3),
weight (M3) and population density (D3) with depth on the
MK3 transect
(p < 0.05). The correlation of the depth and length are
not confirmed (p > 0.05). The mollusk weight shows
a slight tendency to decreases as the sharp decreases
of the population density (Fig. 11). A non-classical
distribution model is observed on the MK2 transect:
density of the population and the morphometric pa-
rameters (length and weight) decrease by depth in-
creasing. But by visual observing the nutrition avail-
ability at a depth of 10 m is more than sufficient.
On the MK3 transect the classical model of dis-
tribution of the N. concinna population was deter-
Fig. 9. Nacella concinna relation analyses of shell length (L3)
and mollusk weight (M3) with population density (D3) on the
MK3 transect
111ISSN 1727-7485. Український антарктичний журнал. 2018, № 1 (17)
The Distribution of the Аntarctic Limpet Nacella Concinna (Nacellidae) on Underwater Landscapes of the Meek Channel
CONCLUSIONS
An obvious correlation of the mollusk shell length
with the depth on the transects MK1, MK2, MK3
was not observed. The complex relations of the N.
concinna shell weight, length and distribution by depth
on the transects MK1, MK2, MK3 does not corre-
spond to previous literature records. The separation
of the mollusk population into littoral and sublittoral
morphotypes was not confirmed for surveyed Meek
Channel water area in the Argentine Islands. Appar-
ently, the shell morphology and the weight of N.
concinna depend on the bottom relief, nutrition ac-
cess (abundance of algae) and wave activity on each
site of transects under study.
Acknowledgments. The study was supported by the
grant from the President of Ukraine (project F70/137-
2017 of the State Fund for Fundamental Research (No.
of the SRW 0117U003557); the National Antarctic Sci-
entific Cen ter of the Ministry of Education and Science of
Uk rai ne, the project N/17-2017, No. 011UA007599).
REFERENCES
1. Aranzamendi, M. C., Martinez, J. J., Sahade, R. 2010.
Shape differentiation and characterization in the two
morphotypes of the Antarctic limpet Nacella concinna
using Elliptic Fourier analysis of shells. Polar Biology, 33,
1163-1170. doi:10.1007/s00300-010-0803-2.
2. Beaumont, A. R., Wei, J. H. C. 1991. Morphological and
genetic variation in the Antarctic limpet Nacella concin-
na. Journal of Molluscan Studies, 57, 443—450.
3. Brethes, J.-C., Ferreyra, G., Vega, S. 1994. Distribution,
growth and reproduction of the limpet Nacella (Patinig-
era) concinna (Strebel, 1908) in relation to potential food
availability, in Esperanza Bay (Antarctic Peninsula). Po-
lar Biology, 14, 161—170.
4. Cohen, J. E., Jonsson, T., Carpenter S. R. 2003. Ecologi-
cal community description using the food web, species
abundance, and body size. Proceedings of the National
Aca demy of Sciences, 100 (4), 1781—1786; DOI:10.1073/
pnas.232715699.
5. Davenport, J. 1988. Tenacity of the Antarctic limpet Na-
cella concinna. Journal of Molluscan Studies, 54, 355 356.
6. Gonzalez-Wevar, C. A., David, B., Poulin, E. 2011. Phylo-
geography and demographic inference in Nacella (Patini-
gera) concinna (Strebel, 1908) in the western Antarctic Pe-
ninsula. Deep Sea Research Part II: Topical Studies in Ocea-
nography, 58, 220-229. DOI:10.1016/j.dsr2.2010.05.026.
7. Kushnir, M. A., Utevsky, A. Y. 2015. Morphological di ver-
sity of the Antarctic limpet Nacella concinna (Gastropoda:
Nacellidae) in the waters of the Argentine islands. Ant-
arctic Research: New Horizons and Priorities (VII Interna-
tional Antarctic Conference). Kyiv, 12-14 May, 2015, 63—64.
8. Nolan, C. P. 1991. Size, shape and shell morphology in the
Antarctic limpet Nacella concinna at Signy Island, South Or-
kney Islands. Journal of Molluscan Studies, 57, 225—238.
9. Picken, G. B. 1980. The distribution, growth, and repro-
duc tion of the Antarctic limpet Nacella (Patinigera) con-
cinna (Strebel, 1908). Journal of Experimental Marine Bio-
logy and Ecology, 42, 71—85.
10. Picken, G. B., Allan, D. 1983. Unique spawning behavio ur
by the Antarctic limpet Nacella (Patinigera) concinna (Stre-
bel 1908). Journal of Experimental Marine Biology and Eco-
logy, 71, 283–287.
11. Peck, L., Veal, R. 2001. Feeding, metabolism and growth in
the Antarctic limpet, Nacella concinna (Strebel, 1908). Ma-
rine Biology Journal, 138, 553–560.
12. Utevsky, A.Yu., Tabikelova, K.S., Sennaya, E.I., Utevsky,
S.Yu. 2015. Changes of population structure in common
benthic species of the proposed Stella Creek MPA in the
vicinity of the Akademik Vernadsky Station, Galindez Is-
land, Antarctica. CCAMLR Science: ЕММ-15-41.
13. Utevsky, A.Yu., Shrestha, M.Yu., Utevsky, S.Yu. 2017. Mo-
delling the morphological features correlations of the Na-
cella concina (Strebel, 1908) (Patellogastropoda; Nacelli-
dae) for the analysis of the benthic landscapes images.
VIII International Antarctic Conference dedicated to the 24th
Anniversary of Ukraine’s accession to the Antarctic Treaty.
Kyiv, 16-18 May, 2017, 103—105.
14. Walker, A. J. M. 1972. Introduction to the ecology of the
An tarctic limpet Patinigera polaris (Hombron and Jacqui-
not) at Signy Island, South Orkney Islands. British Ant-
arctic Survey Bulletin, 28, 49—69.
112 ISSN 1727-7485. Ukrainian Antarctic Journal. 2018, № 1 (17)
A.E. Berezkina, M.Yu. Shrestha, O.I. Sinna, D.V. Shmyrov, A.Yu. Utevsky
А.Є. Березкіна 1, М.Ю. Шрестха 2, О.І. Сінна 2, Д.В. Шмирьов 3, А.Ю. Утєвський 1, 2, *
1 Державна установа Національний антарктичний науковий центр МОН України, м. Київ
2 Харківський національний університет імені В. Н. Каразіна, м. Харків
3 ТОВ «СІТРОНІКС ТЕЛЕКОМ СОЛЮШНС УКРАЇНА», м. Київ
* Corresponding author: andriy.utevsky@karazin.ua
РОЗПОДІЛ АНТАРКТИЧНОЇ ЧАШЕЧКИ NACELLA CONCINNA (NACELLIDAE)
НА ПІДВОДНИХ ЛАНДШАФТАХ ПРОТОКИ МІІК, АРГЕНТИНСЬКІ ОСТРОВИ, ЗЕМЛЯ ГРЕЙАМА
РЕФЕРАТ. Мета. З’ясувати закономірності розподілу молюска Nacella concinna (Nacellidae) в акваторії архіпелагу Ар-
гентинські острови (протока Міік). Методи. Використані морфометричні, статистичні, картографічні методи, а та-
кож геоінформаційні технології. Результати. Проаналізовано закономірності розподілу молюсків на різних трансек-
тах з урахуванням їх морфометричних характеристик — довжини раковини, ваги молюска, щільності поселення.
Встановлено, що розподіл субпопуляцій Nacella concinna не має будь-яких видимих строгих закономірностей. На
різних трансектах на незначному віддаленні, морфометричні характеристики молюсків у вибірках розподіляються як
за класичними, так і не за класичними моделями. Для трансекти МК1 показана класична модель розподілу морфоме-
тричних характеристик — зі збільшенням щільності поселення молюска морфометричні характеристики молюсків
(довжина раковини і вага молюска) мають тенденцію до зменшення. Для трансекти МК2 показана некласична мо-
дель розподілу, де зі збільшенням щільності поселення молюска морфометричні характеристики молюсків (довжина
раковини, вага особини) також збільшуються. Для трансекти МК3 також показана класична модель розподілу, але
характерною особливістю є збільшення щільності поселення молюска до 5 метрів глибини і поступове зниження
щільності поселення до глибини 20 м. Побудовані геоінформаційні моделі розподілу популяції Nacella concinna за
глибинами в акваторії Української антарктичної станції «Академік Вернадський». Висновки. Вперше для зазначеного
регіону створено карти розподілу популяції молюска Nacella concinna, а також описані окремі субпопуляції з їх роз-
мірними класами в акваторії архіпелагу Аргентинські острови.
Ключові слова: Nacella concinna, протока Міік, антарктичні молюски, Західна Антарктика, Аргентинські острови.
|