First results of oceanographic works on Ukrainian longline vessels in Antarctica (CCAMLR zone) in 2017 / 2018 season
Aim of works is implementation of duties, taken by Ukraine on XXXVI Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) Session and study of habitation of main fishing objects in Antarctica waters. Methods of works were the use of DST CTD recorder produced by STAR OGGICompa...
Збережено в:
Дата: | 2019 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний антарктичний науковий центр МОН України
2019
|
Назва видання: | Український антарктичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/168296 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | First results of oceanographic works on Ukrainian longline vessels in Antarctica (CCAMLR zone) in 2017 / 2018 season / V.V. Paramonov // Український антарктичний журнал. — 2019. — № 1 (18). — С. 75-83. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-168296 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1682962020-04-30T01:26:25Z First results of oceanographic works on Ukrainian longline vessels in Antarctica (CCAMLR zone) in 2017 / 2018 season Paramonov, V.V. Гідрометеорологічні та океанографічні дослідження Aim of works is implementation of duties, taken by Ukraine on XXXVI Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) Session and study of habitation of main fishing objects in Antarctica waters. Methods of works were the use of DST CTD recorder produced by STAR OGGICompany (Iceland) and the analysis of the obtained data. Results of works include 36 longline and 11 other stations (on a line, on streamer, on Juday plankton net) executed in Amundsen, Ross and Weddell Seas during the period from December 2017 to April 2018. Vertical changeability of temperature, temporal changeability of benthic temperature were analyzed; spatial changeability of temperatures in separate Seas was found out; 4 basic water masses were distinguished, influence of bottom temperature to the catches of Antarctic toothfish was analyzed. Conclusion was made about the increase in catches while lowering the bottom temperature in Weddell Sea. З метою виконання обов’язків, взятих Україною на XXXVI сесії Комісії зі збереження морських живих ресурсів Антарктики (ККАМЛР) та вивчення умов проживання основних об’єктів промислу у водах Антарктики на українських риболовних судах, які вели промисел іклача, українські спостерігачі, окрім своїх основних завдань, здійснювали також деякі океанологічні роботи. Методами робіт було використання самопису DST CTD ісландської фірми STAR OGGI та аналіз отриманих даних. Результати робіт включають в себе 36 приярусних та 11 інших станцій (на фалі, на стрімері, на сітці Джеді), які були виконані в морях Амундсена, Роса та Ведделла у період з грудня 2017 по квітень 2018 року трьома українськими судами («Сімеїз», «Кореїз» та «Каліпсо»). На основі отриманих матеріалів була проаналізована вертикальна мінливість температури, яка звичайно знижувалась від поверхні до глибин 70—250 м, потім зростала до глибин 300—400 м і далі знижувалась. 2019 Article First results of oceanographic works on Ukrainian longline vessels in Antarctica (CCAMLR zone) in 2017 / 2018 season / V.V. Paramonov // Український антарктичний журнал. — 2019. — № 1 (18). — С. 75-83. — Бібліогр.: 10 назв. — англ. 1727-7485 http://dspace.nbuv.gov.ua/handle/123456789/168296 551.46.07(269) en Український антарктичний журнал Національний антарктичний науковий центр МОН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Гідрометеорологічні та океанографічні дослідження Гідрометеорологічні та океанографічні дослідження |
spellingShingle |
Гідрометеорологічні та океанографічні дослідження Гідрометеорологічні та океанографічні дослідження Paramonov, V.V. First results of oceanographic works on Ukrainian longline vessels in Antarctica (CCAMLR zone) in 2017 / 2018 season Український антарктичний журнал |
description |
Aim of works is implementation of duties, taken by Ukraine on XXXVI Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) Session and study of habitation of main fishing objects in Antarctica waters. Methods of works were the use of DST CTD recorder produced by STAR OGGICompany (Iceland) and the analysis of the obtained data. Results of works include 36 longline and 11 other stations (on a line, on streamer, on Juday plankton net) executed in Amundsen, Ross and Weddell Seas during the period from December 2017 to April 2018. Vertical changeability of temperature, temporal changeability of benthic temperature were analyzed; spatial changeability of temperatures in separate Seas was found out; 4 basic water masses were distinguished, influence of bottom temperature to the catches of Antarctic toothfish was analyzed. Conclusion was made about the increase in catches while lowering the bottom temperature in Weddell Sea. |
format |
Article |
author |
Paramonov, V.V. |
author_facet |
Paramonov, V.V. |
author_sort |
Paramonov, V.V. |
title |
First results of oceanographic works on Ukrainian longline vessels in Antarctica (CCAMLR zone) in 2017 / 2018 season |
title_short |
First results of oceanographic works on Ukrainian longline vessels in Antarctica (CCAMLR zone) in 2017 / 2018 season |
title_full |
First results of oceanographic works on Ukrainian longline vessels in Antarctica (CCAMLR zone) in 2017 / 2018 season |
title_fullStr |
First results of oceanographic works on Ukrainian longline vessels in Antarctica (CCAMLR zone) in 2017 / 2018 season |
title_full_unstemmed |
First results of oceanographic works on Ukrainian longline vessels in Antarctica (CCAMLR zone) in 2017 / 2018 season |
title_sort |
first results of oceanographic works on ukrainian longline vessels in antarctica (ccamlr zone) in 2017 / 2018 season |
publisher |
Національний антарктичний науковий центр МОН України |
publishDate |
2019 |
topic_facet |
Гідрометеорологічні та океанографічні дослідження |
url |
http://dspace.nbuv.gov.ua/handle/123456789/168296 |
citation_txt |
First results of oceanographic works on Ukrainian longline vessels in Antarctica (CCAMLR zone) in 2017 / 2018 season / V.V. Paramonov // Український антарктичний журнал. — 2019. — № 1 (18). — С. 75-83. — Бібліогр.: 10 назв. — англ. |
series |
Український антарктичний журнал |
work_keys_str_mv |
AT paramonovvv firstresultsofoceanographicworksonukrainianlonglinevesselsinantarcticaccamlrzonein20172018season |
first_indexed |
2025-07-15T03:05:26Z |
last_indexed |
2025-07-15T03:05:26Z |
_version_ |
1837680535573364736 |
fulltext |
75
Cite: Paramonov V. V. First results of oceanographic works on Ukrai-
nian longline vessels in Antarctica (CCAMLR zone) in 2017/2018
season. Ukrainian Antarctic Journal, 2019. № 1(18), 75—83.
UDK:551.46.07(269)
V. V. Paramonov
CCAMLR observer
Institute of Fisheries and Marine Ecology (IFME),
8 Konsulska Str., Berdyansk, Zaporizhzhya Region, 71118, Ukraine
Corresponding author: vparamonov@i.ua
FIRST RESULTS OF OCEANOGRAPHIC WORKS
ON UKRAINIAN LONGLINE VESSELS IN ANTARCTICA
(CCAMLR ZONE) IN 2017/2018 SEASON
ABSTRACT. Aim of works is implementation of duties, taken by Ukraine on XXXVI Commission for the Conservation of
Antarctic Marine Living Resources (CCAMLR) Session and study of habitation of main fishing objects in Antarctica waters.
Methods of works were the use of DST CTD recorder produced by STAR OGGICompany (Iceland) and the analysis of the
obtained data. Results of works include 36 longline and 11 other stations (on a line, on streamer, on Juday plankton net) executed
in Amundsen, Ross and Weddell Seas during the period from December 2017 to April 2018. Vertical changeability of temperature,
temporal changeability of benthic temperature were analyzed; spatial changeability of temperatures in separate Seas was found
out; 4 basic water masses were distinguished, influence of bottom temperature to the catches of Antarctic toothfish was analyzed.
Conclusion was made about the increase in catches while lowering the bottom temperature in Weddell Sea.
Keywords: Antarctic, temperature, changeability, water masses, Antarctic toothfish.
ISSN 1727-7485. Український антарктичний журнал. 2019, № 1 (18)
INTRODUCTION
With the aim of study of ecological connections be-
tween fishery objects and environment and according
to duty, taken by Ukraine on XXXVI Commission for
the Conservation of Antarctic Marine Living Resour-
ces (CCAMLR) Session, observers on the Ukrainian
ships additionally to the main duties have made some
oceanographic works. There are many works about
oceanographic conditions in some seas of Antarctica
(Arnold, 1977, Arnold et al, 2001, Deband Adrian,
2006, George, 1981, Jacobs et al, 2012, Walker et al, 2013).
The major fundamental work that united the efforts of
scientists of many countries became The Biogeographic
Atlas of the Southern Ocean (De Broyer, et al., 2014).
Our works had more specific orientation – to study in-
fluence of changeability of oceanogra phic elements
to forming and dynamics of concentrations of fishery
objects / firstly Antarctic toothfish (Dissosti chus maw-
so ni Norman). Information was presented at XXXVIІ
CCAMLR Session at 2018 (Paramonov, 2018).
MATERIALS AND METHODS
Oceanographic works on Ukrainian vessels were ca-
rried out with the help of DST CTD (hereinafter CTD).
DST CTD is a compact microprocessor-controlled
tempe ra tu re, depth and conductivity (salinity) recor-
der with electronic placed in a waterproof housing. It
is a com plex of programmable sensors, allowing
making mea su rements of temperature, water, pressure
(depths), conductivity and calculating salinity and
speed of sound up to a depth of 2500 m approximately.
Producer is STAR OGGI Company (Iceland) (https://
www.star- od di.com/products/data-loggers/salinity-
logger-probe-CTD).
76 ISSN 1727-7485. Ukrainian Antarctic Journal. 2019, № 1 (18)
V. V. Paramonov
Table 1. Amount of CTD stations executed by the Ukrainian vessels in separate areas of Antarctica in the season of 2017—2018
Ship
Amundsen Sea (88.2) Ross Sea (88.1) Weddell Sea (48.2) Total
Longline Other* Longline Longline Longline Other*
SIMEIZ 4 16 20
KOREIZ 10 11 10 11
CALIPSO 2 4 6
Total 16 11 4 16 36 11
* The “other” included the halyard, streamer, and Juday plankton net.
Distribution of longline CTD stations is indicated in Fig. 1
The sensor was fastened to rope of the anchor in
the distance a few meters from it and, accordingly,
from the bottom.
The instruments had the following accuracy: tem-
perature measurement ±0.1 °C, depth measure-
ment ± 14.4 m, electrical conductivity measurement
± 1.36 μS / cm. At a water temperature of —1.2°, the
accu racy of calculated salinity was ± 1.35 ‰. Depth
deter mination could be adjusted with the depth
sounder of the longline setting. Salinity data due to
insufficient measurement accuracy were only used to
determine water masses.
In addition, the sensors had a fairly large inertia.
To obtain 95% accuracy, the values had to be kept at
a predetermined horizon for about three minutes,
which was not possible during the longline setting.
Usually objective data started from depths of 100—
200 m, when the temperature differences between
the horizons were not so large. It was better to use the
data obtained during longline hauling, but this was
not always possible.
For the season of 2017—2018 the next volume of
works (Table 1) was executed.
RESULTS AND DISCUSSION
Vertical changeability
of temperature
The surface temperature in the Ross and the
Amundsen Seas in the moment of beginning of works
(December) was — 1,1—1,5°. In an eventual period
of works (January) the surface temperature was —
0,2—0,9°.
The surface temperature in the Weddell Sea in
March-April changed from 0° to —0,3°.
A vertical thermal structure is characterized by a
drop in temperature from the surface to the depths of
100—300 m, where the temperature of water was —
1,2—1,7°, after which it begun to increase.
The bottom temperature in the places of toothfish
fishing was in the Amundsen Sea: at a depth of 600 m
from —1,1° to 0°, at a depth of 800 m +0,4°, at a
depth of 900 m +0,58°, at a depth of 950 m +0,99
+1,02°, at a depth of 1150 m — +0,91 + 0,95°, at a
depth of 1200 m +0,65+0,68°, at a depth of 1306—
1372 m +0,61+0,79°, at a depth of 1496—1512 m
+0,42+0,52°.
In the Ross Sea the temperature was at depths of
650—675 m + 0, 18—0, 43°, at depths of 1600—1700
m +1, 06 + 1,17°.
In the Weddell Sea at a depth of 1000 m the
temperature was +0,17 + 0,34°, at 1400 m +0,13 +
0,17°, at 1500 m — 0,11 + 0,30°, at 1600 m fluctuated
around zero.
The examples of vertical change of temperature in
different Seas are presented in Fig. 2.
Absence of subsurface minimum of temperature in
the Ross Sea, probably, is explained by the insufficient
detailing of survey (a graph was built only for 8
points).
Changeability of bottom temperature
in the areas of survey and fishery
The obtained data are generalized in Tables 2—4.
In the Amundsen Sea (Table 2) at depths of about
77ISSN 1727-7485. Український антарктичний журнал. 2019, № 1 (18)
First results of oceanographic works on Ukrainian longline vessels in Antarctica (CCAMLR zone) in 2017/2018 season
600 m the presence of both ascending and de-
scending trends and presence of harmonic os ci-
llations are registered in the change of bottom
tem perature. At depths of 800—1368 m the tem-
perature practically did not change at times or
changed very weak. More often there was a ten-
dency to the rise of bottom temperature. In case of
presence of harmonic osci llations, they had a daily
period.
In the Ross Sea (Table 3) on the whole there
were the same regularities. The most interesting
changes were marked at a longline № 37 (Fig. 3),
Fig. 1. Distribution of longline CTD stations in the Amundsen and the Ross Seas (a) and the Weddell Sea (b)
a
b
E 1800000
E 1800000
E 15000S 600000
S 650000
S 700000
S 750000
S 800000
S 500000
S 600000
S 700000
E 17900
S 6640
S 6030
S 7050
E 178 50
S 7300
S 7600
S 7050
W 13000 W 11000
W 17800
Balleny Islands
W 10500 W 9500 W 8500 W 7500 W 7000
W 1800000
W 1800000
W 1600000
W 1600000
W 1400000
W 1400000
W 1200000
W 1200000
W 1000000
W 1000000
W 0800000
W 0800000
W 0800000 W 0600000 W 0400000 W 0200000 W 0000000 E 0200000
W 0600000
W 0600000
78 ISSN 1727-7485. Ukrainian Antarctic Journal. 2019, № 1 (18)
V. V. Paramonov
where both gradually attenuation oscillation a dai-
ly period and increasing trend, were simultaneously
marked.
In the Weddell Sea (Table 4) oscillation a daily
period observed only one time at a minimum depth
(of about 1000 m), and tendencies to the increase
and drop in the temperature were observed almost
equal frequently.
It is interesting that there were oscillations of a
daily period in all three seas. Most often they were
Table 2. Bottom temperature in the Amundsen Sea
№
of longline
Depth, m Temperature, deg.
Tendency, period
limits middle limits middle
KOREIZ
12 1119—1191 1172 +0,61+0,69 +0,65
18 581—603 596 –1,08—0,12 -0,76 Weak increase, after lowering
22 887—991 897 +0,56+0,61 +0,58
33 618—661 635 +0,09+0,29 +0,16 Weak increase
39 1006—1013 1010 +0,60+0,64 +0,64
44 1211—1216 1214 +0,64+0,68 +0,67
49 792—802 801 +0,28+0,48 +0,36 Weak oscillation a daily period
51 610—662 656 +0,17+0,33 +0,22 Weak increase
53 — — — — Measuring only near the surface
56 — — — — Measuring only at a surface
CALIPSO
50 904—905 905 +0,99+1,02 +1,02
56 1149—1169 1155 +0,87+0,95 +0,92 Tendency to the increase
SIMEIZ
33 1363—1388 1368 +0,67+0,79 +0,73 Oscillation a daily period
40 1306—1310 1308 +0,67+0,75 +0,73 Oscillation a daily period
61 1314—1323 1320 +0,63+0,71 +0,67 Increase
62 1499—1512 1501 +0,42+0,54 +0,45
Table 3. Bottom temperature in the Ross Sea (CALIPSO)
№
of longline
Depth, m Temperature, deg.
Tendency, period
limits middle limits middle
1 1604—1611 1609 +1,13+1,17 +1,14
6 1708—1698 1702 +1,06+1,14 +1,10 Oscillation a daily period
33 641—649 647 –0,43-0,27 –0,35 Oscillation a daily period
37 663—688 681 –0,35+0,18 –0,14 Oscillation a daily period; increasing trend
79ISSN 1727-7485. Український антарктичний журнал. 2019, № 1 (18)
First results of oceanographic works on Ukrainian longline vessels in Antarctica (CCAMLR zone) in 2017/2018 season
registered in the Ross Sea, the least – in the Weddell
Sea. It is possible, they have a tide origin.
Spatial changes of temperature
In the Amundsen Sea water in eastern parts is colder,
than in western. So, at a depth of 1000 m the
temperature of water in a SSRU 88.2F was more cold
(+0,57+0,64°), than in SSRUs 88.2.C and 88.2.D
(+0,91+1,03°). In the Ross Sera water in the north
(650 m +1,90°) in a SSRU 88.1C is notably warmer,
than in the south (650 m — 1,14°) in a SSRU 88.1I.
But the best of all spatial changeability can be
estimated from data of the survey executed in the
Weddell Sea. At a depth of 1000 m the increase of
Fig. 2. Typical vertical distribution of temperature in the
Amundsen Sea (a), the Ross Sea (b) and the Weddell Sea (c)
Fig. 3. Change of temperature in a bottom
layer. Longline № 37 (CALIPSO)
–2.5 –1.5
–1.5
–1.51.5 1.5 2.5–0.5
–0.5
–0.50.5
0.5
0.50
0
200
400
600
800
1000
1200
1400
1600
200
400
600
800
1000
1200
1400
1600
200
400
600
800
1000
1200
1400
1600
1800
0–1
–1
–11
1
12 2–2
Т, °С
Т, °С
Т, °С
H, m
H, m
H, m
a
c
b
0.2
0.1
0
–0.1
–0.2
–0.3
–0.4
Т, °С
Date
80 ISSN 1727-7485. Ukrainian Antarctic Journal. 2019, № 1 (18)
V. V. Paramonov
Table 4. Bottom temperature in the Weddell Sea (SIMEIZ)
№
longline
Depth, m Temperature, deg.
Tendency, period
limits middle limits middle
1 1000—1015 1008 +0,17+0,34 +0,28 Oscillation a daily period
2 1545—1550 1548 –0,10+0,22 +0,03 Tendency to the increase
3 1604—1610 1607 +0,02+0,10 +0,02 Tendency to the increase
4 1510—1515 1512 –0,01+0,01 –0,08 Tendency to the decrease
7 1545—1560 1552 0+0,09 +0,09
8 1427—1430 1428 +0,20+0,34 +0,29
9 1158—1161 1160 +0,35 +0,35
10 1683—1687 1685 –0,03–0,15 –0,07 Tendency to the decrease
13 1601—1605 1603 –0,02 –0,02
17 1473—1478 1476 +0,14+0,26 +0,16 Weak increase at the end
20 1497—1502 1500 +0,22+0,30 +0,22
21 1585—1590 1588 +0,02+0,22 +0,10 Tendency to the increase
23 1339—1407 1402 –0,03+0,30 +0.19 Weak tendency to the decrease
25 1595—1605 1600 –0,01+0,02 –0,01
42 1402—1409 1406 +0,13+0,17 +0,16
46 1651—1654 1652 +0,10+0,18 +0,14
Table 5. Water masses of the Amundsen, Ross and Weddell Seas
Water mass Amundsen Sea Ross Sea Weddell Sea
Antarctic Surface Water (AASW) Lower boundary
50—100m
Temperature –0,6—1,2°
Lower boundary
50—100m
Temperature –0,6—1,2°
Lower boundary
50 m
Temperature 0—0,4°
Winter water (WW), or Antarctic
Intermediate Cold Layer (AICL)
Lower boundary
200—600m
Temperature –1,2—1,8°
Lower boundary
200—300m
Temperature –1,2—1,8°
Lower boundary
50—200m
Temperature –0,9—1,4°
Circumpolar deep water (CDW) Lower boundary
1500m
Temperature +0,7 + 1,0°
Lower boundary
400—500m
Temperature +0,3 + 1,1°
Lower boundary
1000m
Temperature +0,5 + 0,7°
Deep water of the Ross Sea
(RSDW)
No Lower boundary
600—700m
Temperature –0,2—0,4°
No
Deep water of the Weddell Sea
(WSDW)
No No Lower boundary
1600 m
Temperature near 0°
81ISSN 1727-7485. Український антарктичний журнал. 2019, № 1 (18)
First results of oceanographic works on Ukrainian longline vessels in Antarctica (CCAMLR zone) in 2017/2018 season
temperature is observed from the southwest (+0,21°)
to the northeast (+0,46°). The same conformity is
observed at a depth of 1500 m (–0,07° in the southwest
and +0,22° in the northeast). In the southwest the
most considerable temperature gradients are marked
in a bottom layer (up to 0,05—0,07° on a mile). In
the northeast the increase of temperature is observed
above depth high.
The water masses
Three water masses are in the Amundsen Sea: An-
tarc tic surface water (AASW), Winter water (WW),
or Antarctic Intermediate Cold Layer (AICL) and
Circumpolar deep water (CDW).
AASW extends from a surface to the depth of 50—
100 m. It is the near-surface layer of water warmed up
in a spring-summer period with a temperature —
0,6–1,2°. WW (AICL) is lower, with a temperature in
a core near to the freezing-point of salt water in this
region — 1,8°. It extends to the depth of 200 m in the
north and to 600 m in the south. Warm CDW being
penetrating to the south waters of the Antarctic
Circumpolar Current (ACC) is deeper located.
Temperature in the core within the limits of measuring
is +0,7. Water mass extends to the maximal depth of
measuring of 1500 m and, maybe, deeper. A cha-
racteristic feature of this Sea is the absence of its own
deep water mass, at least within the surveyed parts,
which is confirmed by literature (Deb et al, 2006;
Jacobs et al, 2012; Walker et al, 2013).
In the Ross Sea the limited amount of data was
received, however, in the north part of the sea the
structure of waters and the water masses on the
whole are analogical to the Amundsen Sea. In the
south part of the sea, on a continent slope near-by
a shelf the waters structure is a bit different – the
core of CDW is located in the depths about 350 m
and temperature in the core is +0,3+1,1°, thus,
the farther south, the weaker it is traced. Cold
water mass (temperature near the bottom –0.2—
0.4°) extends deeper towards the bottom (600—
700 m), this is the deep water mass of the Ross Sea
(RSDW), which is formed on the Ross Sea shelf
and transforms after contact with the CDW. It is
more localized than a similar water in the Weddell
Sea (George, 1981).
Measuring in the Weddell Sea was carried out in
March-April, at least 3 months later, then in previous
seas, and this made some adjustments. AASW here
extended up to 50 m depth and had a temperature on
a surface 0—0,4°. WW (AICL) occupied a layer of
50—200 m and had a temperature in the core — 0,9—
1,4°. Warm CDW (in the core +0,5+0,7°) extended
from 200 up to 1000 m. According to a number of
scientists (Arnold, 1977, Arnold et al, 2001, Eberhard
et al, 1995, Fogviket al, 1985) this is slightly trans-
formed water mass of ACC. Subjacent the Weddell
Sea deep water (WSDW) is located. Temperature in
the core within the limits of measuring is — 0,1 + 0,2.
Water mass extends to the maximal depths of mea-
suring 1600 m and, obviously, deeper.
Determination of water masses and their borders
was made from limited and incomplete data. The
data are summarized in Table 5.
Antarctic toothfish
and bottom temperature
The Antarctic toothfish Dissostichus mawsoni in the
Weddell Sea was observed at almost all stations, only
at one station there was no catch at all. Increased
catches (over 50 fish per longline) were in the
northeast of the survey and in some places in the
south.
An attempt was made to relate catches and bottom
temperatures. Since the standard longlines (2500
hooks) were displayed and thus the catches were
comparable, the absolute value of the catches was
taken. In this case, the correlation coefficient of the
catch with the temperature at a depth of 1000 m was
–0.44, with the bottom temperature at the place of
fishing –0.55, and with a temperature at a depth of
1500 m –0.62. The values of the correlation
coefficients are quite large and indicate an increase
in catches with decreasing temperature at the bottom.
However, testing the null hypothesis by the Student’s
criterion in all three cases does not indicate that the
correlation coefficient is significant, which is related
to short series of observations (10—14 cases).
82 ISSN 1727-7485. Ukrainian Antarctic Journal. 2019, № 1 (18)
V. V. Paramonov
Thus, despite the shortcomings that occurred
du ring the preparation and execution of works,
interes ting data were obtained characterizing the
living con ditions of the objects of longline fishery.
Work in this direction has been continued in the
2018/19 season and data are currently being pro-
cessed. Continuation of the work is planned in sub-
sequent years.
REFERENCES
1. Arnold, L. Gordon. 1997. Western Weddell Sea Thermo-
haline Stratification. Ocean, Ice, and Atmosphere: Inter-
actions at the Antarctic Continental Margin Antarctic Re-
search Series, 75, 215—240.
2. Arnold, L. Gordon, Martin Visbeck and Bruce Haber.
2001. Export of Weddell Sea Deep and Bottom Water.
Journal of geophysical research, 106, 9005—9017.
3. De Broyer, C., Koubbi, P., Griffiths, H.J., Raymond, B.,
Udekem,d’Acoz C. d’ (eds.). 2014. Biogeographic Atlas of
the Southern Ocean. Scientific Committee on Antarctic
Research, Cambridge, 1—475.
4. Deb Shoosmith and Adrian Jenkins. 2006. Oceanographic
fieldwork in the Amundsen Sea: An overview of cruise
JR141. FRISP Report, 17, 1—4.
5. Eberhard Fahrbach, Gerd Rohardt, Norbert Scheele,
Michael Schriider, Volker Strass and Andreas Wisotzki.
1995. Formation and discharge of deep and bottom water
in the northwestern Weddell Sea. Journal of Marine Re-
search, 53, 4, 515—538.
6. Fogvik, A., Gammelsrat, T., Tarresen, T. 1985. Hydro-
graphic observations from the Weddell Sea during the
Norwegian Antarctic Research Expedition 1976/77. Po-
lar Research, 3, 177—193.
7. George, A. Knox. 1981. Biological oceanography of the
Ross Sea (extended abstract). Journal of the Royal Society
of New Zealand, 11 : 4, 341—347.
8. Jacobs, S., Jenkins, A., Hellmer, H., Giulivi, C., Nitsche,
F., Huber, B., Guerrero, R. 2012. The Amundsen Sea and
the Antarctic Ice Sheet. Oceanography, 25(3), 154—163.
9. Paramonov, V. 2018. Preliminary results of oceanologic
research of Ukrainian vessels in the CCAMLR area for the
season 2017/18. CCAMLR, WG-SAM 18/27, 1—14.
10. Walker, D.P., Jenkins, A., Assmann, K.M., Shoosmith,
D.R., Brandon, M.A. 2013. Oceanographic observations
at the shelf break of the Amundsen Sea, Antarctica. J.
Geophys. Res. Oceans, 118, 1—13.
В.В. Парамонов
спостерігач ККАМЛР
Інститут рибного господарства та екології моря,
вул. Консульська, 8, м. Бердянськ, Запорізька область, 71118, Україна
Автор для кореспонденції: vparamonov@i.ua
ПЕРШІ ПІДСУМКИ ОКЕАНОГРАФІЧНИХ РОБІТ
НА УКРАЇНСЬКИХ ЯРУСОЛОВНИХ СУДАХ В АНТАРКТИЦІ
(ЗОНА ДІЇ ККАМЛР) У СЕЗОН 2017/2018 РОКІВ
РЕФЕРАТ. З метою виконання обов’язків, взятих Україною на XXXVI сесії Комісії зі збереження морських живих
ресурсів Антарктики (ККАМЛР) та вивчення умов проживання основних об’єктів промислу у водах Антарктики на
українських риболовних судах, які вели промисел іклача, українські спостерігачі, окрім своїх основних завдань,
здійснювали також деякі океанологічні роботи. Методами робіт було використання самопису DST CTD ісланд-
ської фірми STAR OGGI та аналіз отриманих даних. Результати робіт включають в себе 36 приярусних та 11 інших
станцій (на фалі, на стрімері, на сітці Джеді), які були виконані в морях Амундсена, Роса та Ведделла у період з
грудня 2017 по квітень 2018 року трьома українськими судами («Сімеїз», «Кореїз» та «Каліпсо»). На основі отрима-
них матеріалів була проаналізована вертикальна мінливість температури, яка звичайно знижувалась від поверхні
до глибин 70—250 м, потім зростала до глибин 300—400 м і далі знижувалась. У часовій мінливості придонної тем-
ператури найбільші коливання спостерігалися на глибині біля 600 м, нижче вони здебільшого були незначні. Ви-
явлена просторова мінливість температури в окремих морях. Крім очікуваного зниження температури з півночі на
83ISSN 1727-7485. Український антарктичний журнал. 2019, № 1 (18)
First results of oceanographic works on Ukrainian longline vessels in Antarctica (CCAMLR zone) in 2017/2018 season
південь у морі Амундсена вода в східних частинах була холодніша, ніж у західних, тоді як у морі Веддела простежу-
ється підвищення температури з південного заходу на північний схід. У межах вимірювань (1000—1500 м глибини)
були виділені чотири основні водні маси у морях Роса та Веддела: Антарктична поверхнева водна маса (АПВМ);
Антарктичний холодний проміжний шар (АХПШ) або Зимова водна маса (ЗВМ); Циркумполярна глибинна водна
маса (ЦГВМ) та Глибинна водна маса морів Роса і Веддела (відповідно ГВМР та ГВМВ) та три — у морі Амундсена,
де не було власної глибинної водної маси. Проаналізовано вплив придонної температури на улови антарктичного
іклача. Зроблені висновки про зрос та ння уловів з пониженням придонної температури у морі Веддела. Роботи ма-
ють бути продовжені в наступні роки.
Ключові слова: Антарктика, температура, мінливість, водні маси, антарктичний іклач.
|